i SystemVerilog Design: User Experience Defines
Multi-Tool, Multi-Vendor Language Working Set

Ways Design Engineers Can Benefit
the Use of SystemVerilog Assertions

Stuart Sutherland, Sutherland HDL, Inc.

Tutorial Overview..

The primary goal of this presentation is to encourage RTL
design engineers to take advantage the many ways in which
SystemVerilog Assertions can help them!

Why SystemVerilog Assertions are important to me

= From

= From

my perspective as a SystemVerilog trainer

my perspective as a design and verification consultant

The main topics we will be discussing are:

= Part 1.
= Part 2:
= Part 3:
= Part 4.

A short tutorial on SystemVerilog Assertions

Assertions that Design Engineers should write
SystemVerilog constructs with built-in assertion-like checks
Simulation and Synthesis support for SVA

2

accellera

SYSTEMS INITIATIVE

U

Part One

A Short Tutorial On
SystemVerilog Assertions

IIIIIIIIIIIIIIIII

What Is
An Assertion?

= An assertion is a statement that a certain property must be true

g 2 3 4 5 Design Specification:
e After the request signal is asserted,
req \,__ S the acknowledge signal must arrive
ack Lodo-J 1 to 3 clocks later

= Assertions are used to:

Document design intent (e.g.: every request has an acknowledge)
Verify design meets the specification over simulation time

Verify design assumptions (e.g.: state value is one-hot)

Localize where failures occur in the design instead of at the output
Provide semantics for formal verification Which one of these is
Describe functional coverage points the most important To
And... requires clarifying ambigyities INn spec

you in your pr-ojec'rs?

SYSTEMS INITIATIVE

Embedded Verification Checking and
Synthesis

= Without assertions, embedded checks must be hidden from Synthesis
using conditional compilation or pragmas £

- Embedded checking can make RTL code look ugly!

if (mode) How many design engineer's.do
// do true statements } RTL code you know that will add this
else much extra code to an
//synthesis translate off if._else RTL statement?
it (node == 0)
//synthesis translate_on This checking code is
// do the not true statements } hidden from synthesis,
//synthesis translate off but it is always active
else])) in simulation (not easy
$display(“mode is either an X or Z%); to disable for reset or
//synthesis translate_on for low-power mode)

= SystemVerilog Assertions are easier, and synthesis ignores SVA

assert (!'$isunknown(mode)) else $error(*'mode is either an X or Z");

iIT (mode) ... // do true statements

is ignored by synthesis
else ... [// do not true statements g y sy

can be disabled in simulation

SystemVerilog Has
Two Types of Assertions

" |mmediate assertions test for a condition at the current time
- Similar to an 1 T...else statement, but with assertion controls

always comb begin
assert ($onehot(state)) else $error;
case (state) ... // RTL code

reports an error if the

variable is not a one-hot value

= Concurrent assertions test for a sequence of events spread over

multiple clock cycles ORI R 5
— EXxecute as a background process po 1
in parallel with the RTL code =t
ack s=d==l =

a_regack: assert property (@(posedge data clk) req |-> ##[1 3] ack)
else $error;

always ff @(posedge clock) // RTL code
iIT (data _ready) req <= 1;

reports an error if Is not high

within 1 to 3 clock cycles after

represents a “cycle delay” —a“cycle” in this example is
from one posedge of data clkto the next positive edge 306‘8//8[‘8

~—

U

SYSTEMS INITIATIVE

Concurrent Assertions Can
Span Multiple Clock Cycles

= ##n specifies a fixed number of clock cycles

After evaluating

request ##3 grant;

and then evaluate

= ##[min_count:max_count] specifies a rang

, Skip 2 clocks
on the 3rd clock

e of clock cycles

= min_count and max_count must be non-negative constants

After evaluating

request ##[1:3] grant;

be true between

must
and 2 clocks later

= The dollar sign ($) is used to specify an infinite number of cycles

= Referred to as an “eventuality assertion”

Design Spec: request must true at the current

cycle; grant must become true sometime between

request ##[1:$] grant;

1 cycle after request and the end of time

accellera

SYSTEMS INITIATIVE

U

Concurrent Assertions Run in the
Background Throughout Simulation

= Concurrent assertions start a new check every clock cycle

assert ropert |
@(posgdgg Cl)l:)(— this assertion will ; |
req ##2 ack) fail every clock cycle in req 41—@
elseq$err0r' which thereis no ack |
: assertion ‘ ‘ ‘ @ ‘
= Assertions can be qualified with implication operators (] ->, |=>)
— If a condition is true, the sequence is evaluated

— If a condition Is false, the sequence is not evaluated (a don’t care)

assert property (, _ B R | | |—
@(posedge clk) Wﬂgrr]] :hde?‘earsy:]rgng req ﬂ - I I
req |-> ##2 ack) ack | — |
else $error; asserion . @ @ © © @

— Antecedent — the expression before the implication operator
* The evaluation only continues if the antecedent is true
— Consequent — the expression after the implication operator

— Vacuous success — when the antecedent is false, the check is T
not of interest, so evaluation is aborted without considering it a failure 4¢¢€/€rd

SYSTEMS INITIATIVE

Concurrent Assertions Only Sample
Values on Clock Edges

= Concurrent assertions can sample logic levels on each clock cycle

assert property (—the assertion passes clk

i L iy
rieorcvy [l - (1
req |-> ##2 ack) Mgt oK for - to be pulled high? e
- k | : : :
else $error; P | g ack | : : : \1J
assertion @

= Concurrent assertions can look for a change between the last sampled
value and the current sampled value

— $rose —returns true if there was a rising change in the current cycle
— $fell —returns true if there was a falling change in the current cycle
— $changed — returns true if there any change in the current cycle

— $stable —returns true if there no change in the current cycle

assert property (
@(posedge clk)

$rose(req) |-> ##2 $rose(ack) ;
else S$error;

and must transition

assertion !

' SYSTEMS INITIATIVE

SVA Property Blocks and
Sequence Blocks

» The argument to assert property() is a property specification
- Properties are typically defined in a property block
- Contains the definition of a sequence of events

ap Req2E: assert property { pReq2E) else $error;

property pReq2E ;
@(posedge clock) (request ##1 grant ##1 (gABC and gDE))
property

unnamed sequence calls to named sequences

endproperty: pReq2E

= A complex sequence can be partitioned into named sequence blocks
= Low level building blocks for sequence expressions

sequence QqABC; sequence (gDE;
(a ##3 b ##1 cC); (d ##[1:4] e);
endsequence: gABC endsequence: QqDE

= A simple sequence can be specified directly in the assert property

alq$yisggggsgggEE$ég§k) The clock cycle is inferred from

assert property (request ##3 grant) else $error; where the assertion is called

SYSTEMS INITIATIVE

Immediate and Concurrent Which pros and

cons are most

Assertion Pros and Cons Aot i yeur
Immediate Assertions Concurrent Assertions
" Pros: " Pros:
- Easy to write — simple syntax - Background task — define it and it
- Close to code being checked just runs
- Can check asynchronous values - Cycle based — no glitches between
between clock cycles cycles
- Self-documenting code - Can use binding (next page)
= Cons: - Works with simulation and formal
- Cannot be bound (next page) verification
- Difficult to disable during resetor ® Cons:
low-power - More difficult to define (and debug)
- Must following good RTL practices - Can be far from code being
to prevent race conditions (just like checked

any programming statement) - Cannot detect glitches a@

SYSTEMS INITIATIVE

When To Use Immediate Assertions,
When To Use Concurrent Assertions

= There are many reasons signals might change more than once
during a single clock cycle (a potential glitch)

- Combinatorial decoding, clock domain crossing, async reset, ...

opcode | ADD | SUB | XOR ; ROL |ADD
This glitch within a clock cycle will This glitch wu‘rhln a clock cycle
affect my design functionality - T will never be stored in my

I/’/ registers - I can ighore it.

NG

/ \L / You need a
*f N concurrent assertion!
/ ; ’// . &

Bt
accellera

SYSTEMS INITIATIVE

need to detect it. £
You need an k,z

immediate asservtion! \/

.

Assertion Binding

= SystemVerilog assertions can be defined in a separate file and:

- Bound to all i

nstances of a design module or interface

- Bound to a specific instance of a design module or interface

top-level testbench module

assertions module
assert property
assert property

asisert
asgert

DUT tgp-level

(

(
roperty (..);
roperty (

nodule

RTLl moduleg

RTL modul

RTL modulie RTL modul

accellera

SYSTEMS INITIATIVE

13

Embedded Versus Bound Which of these

pros and cons are

Assertions Pros and Cons most important in

your project?

Assertion Binding Assertions Embedded in
" Pros: RTL

- Do not need RTL file access = Pros:

permissions to add assertions - Close to the code being verified
- Adding assertions does not impact _ Can use both concurrent and

RTL file time-stamps immediate assertions

| . o n
Cons: _ - Document designer’s assumptions
- Assertions can be far from code and intentions

being ch_ecked _ _ - Assertion errors originate from
- RTL engineers must edit multiple same file as the failure

files to add assertions while the - CETE

ETL modes S belr;g developgd - Adding/modifying an assertion
- Lannot use immediate assertion could trigger automated regression

or synthesis scripts a@

SYSTEMS INITIATIVE

When To Embed Assertions,
When To Bind-in Assertions

Sutherland HDL recommends ...

» Design engineers should embed assertions into the RTL code

- Validate all assumptions (e.g. control inputs are connected)
- Trap invalid data values where they first show up

- Embedded assertions should be written at the same time the RTL code is being
developed!

= Verification engineers should add bound-in assertions

- Verify the design functionality matches the specification
- Verify that corner cases work as expected (e.g.: FIFO full)
- Verify coverage of critical data points
- By using binding:
- There is no need to check out and modify the RTL model files
- Adding assertions not affect RTL file time stamps

There can be exceptions to this guideline — you get paid the big money to @

figure out which way of specifying assertions is best for your projects! =

Part Two

Assertions That Design Engineers
Should Write

IIIIIIIIIIIIIIIII

Design Engineers
Should Add Assertions to RTL!

= RTL models assume inputs and other values are valid
Input ports are connected (no floating input values)

Control signals are never a logic X

State machine encoding is a legal value

Data values are in an expected range

Parameter redefinitions meet design requirements

= These assumptions eaR-Be-should be verified using assertions
- Most of these can be done with simple 1-line assertions

= The examples on the next few pages show how to:
Validate assumptions on reset values

Validate assumptions regarding value ranges

Validate assumptions on pulse widths

Validate parameter values after parameter redefinition
accellera

Eliminate problems with X-pessimism and X-optimism

SYSTEMS INITIATIVE

Validating Assumptions
On Critical Control Signals

An X or Z if...else control signal will take the “else” branch and propagate incorrect
logic values that could:

= Not be detected until much later in the design logic

= Not be detected until a much later clock cycle
= Go undetected

* RTL models assume that control signals have known values
- Reset is either O or 1, Enable is either O or 1, etc.

= A 1-line immediate assertion or simple “~—-\
concurrent assertion® can check this assumption! "”——ﬁ
A %
- o
T -

- Catch problems when and where they occur

module data_reg (input resetN, |Assumes reseth input e
) ;| Is properly connected (an unconnected
always ff @(posedge clk) begi| r€S€t will set q <= d every clock cycle) ‘ -
assert (!$isunknown(resetN)) else $error(unknown value on resetN);
iIT (IresetN) q <= O; lImmediate and concurrent

else q <= d; assertions handle glitches
end differently — use the type that best

meets the needs of your project!

S —m

SYSTEMS INITIATIVE

Validating Assumptions Regarding
Value Ranges

= RTL code often assumes data values are within a valid range
- Out of range values propagate as a functional bug
- Can be difficult to detect
- Might not be detected until downstream in both logic and clock cycles

= A 1-line immediate assertion can check that values are within a
required range!

. . Shift-right operation assumes
module alu (input logic [15:0] a, b, binpuq[haspavalue of 110 3

...);
always ff @(posedge clock) 4

case (opcode)
ADD_A TO B : result <= a + b;
. // other operations
SHIFT_BY B : begin
assert (b inside {[1:3]}) else $error("b i1s out of range for shift");
result <= a >> b;
end
endcase

Validating Assumptions
On Pulse Widths

= RTL models sometimes assume certain signals remain true for some
number of clock cycles

- So that reset to propagate through multiple stages of logic
- To allow devices to enter or leave low-power mode

= A simple concurrent assertion can check pulse widths!

Assumes rsth input meets the

dule i t input logi Ik, rstN, - i i
module jcounter (inpu ogic ¢ e pulse width required by this model

output logic [3:0] q);

assert property (@(posedge clk) $fell(rstN) |-> IrstN[*4]) \s~q£g:
else $error('rstN did not remain low for at least 4 clock cycles™); Ry)k
>q[0]
always ff @(posedge clk) be > a1
q[0] <= ~q[3] & rstN; 1 i > q[2]
q[1] <= q[O]; L“’Q
ql2] <= q[1ll;]
al3]1 <= q[2]; rmN—+::>_+d a d g > i3]

o
fe]
A A 4
o
0

v \d
v Y

v
v

end
endmodule

clk

ZU ——
SYSTEMS INITIATIVE

Validating Parameter Values After
Parameter Redefinition

= Parameterized models assume exterior code redefines the
parameters to viable values

= An elaboration-time assertion can ensure redefined parameters have
expected values!

module muxN // 2:1 MUX (S == 1) or 4:1 MUX (S == 2)

#(parameter N=8, S=1)| Assumes S is only redefined to be 1 or 2
(output logic [N-1:0] v,

input Hlogic [N-1:0] a, b,

input Hlogic [N-1:0] c=0, d=0, // c, d have default value i1f unconnected
input logic [S-1:0] sel

generate

IT (S inside {[1:2]}); else $fatal(0,"S must be 1 or 2");
endgenerate

always comb begin

end
endmodule (is used in generate blocks instead of

Eliminating X-Pessimism
and X-Optimism Gotchas

= RTL models are notorious for hiding problems involving X values
- A non-X value is propagated instead of a logic X
- Verification must determine the non-X value is incorrect functionality

- Bugs must be traced back through logic and clock cycles to figure out where the
problem first occurred

= A 1-line immediate assertion! can trap X values!
- Do not need to detect and debug resulting functional bugs

k’ﬂ
always _comb begin

assert final (!$isunknown(sel)) else $error('sel is X or Z"); %
if (sel) y = a; An unknown sel will '
else y = b; | propagate the value of b

end

IMost immediate assertions can also be written as concurrent assertions

but there is a difference on how the assertion types handle glitches — use
the assertion type that best meets the needs of your project!

Self-Checking Interfaces

= An RTL interface port can be used to model bus protocols

- Encapsulates the bus-related signals into a single port

» Embedded assertions in an interface can automatically detect

protocol errors
- Protocol violations are detected at the moment they occur

AMBA
APB bus
port

P

master_reset

[

AMBA_APB
addr

rdata

wdata

selx

A

enable

write

AMBA
APB bus
port

interface AMBA_APB;
logic [31:0] addr;

logic [7:0] rdata, wdata;
logic selx, enable, write;

property p_sel _enable;
@(posedge clk)

$rose(selx) |-> ##1 $rose(enable);

endproperty: p_sel _enable

assert property (p_sel _enable);
. // additional protocol checks

endinterface

SYSTENS INTTTATIV

Part Threae

SystemVerilog Constructs With
Built-in Assertion-like Checking

IIIIIIIIIIIIIIIII

SystemVerilog Adds Better
RTL Constructs to Verilog

= Traditional Verilog will allow writing code with functional errors

- Allows engineers to model faulty behavior in order to prove a design will not
work correctly

- Puts a burden on Design Engineers to avoid dysfunctional code
- Puts a burden on Verification Engineer to find dysfunctional code

= SystemVerilog adds constructs with built-in error checking!
- Self-checking RTL modeling blocks /’/
- Self-checking decision statements
- Self-checking assignment statements

» Using these constructs is like getting free assertions!

- Can detect and prevent many types of functional bugs
before synthesis

SYSTEMS INITIATIVE

Self-Checking
RTL Modeling Blocks

= Verilog always procedures model all types of design logic

- Synthesis must “infer” (guess) whether an
engineer intended to have combinational,
latched or sequential functionality

always @(mode)

1T (Imode)
ol = a + b;
else
02 = a - b;

= SystemVerilog has hardware-specific always procedures:

always _comb, always latch, always ff

= Documents designer intent
= Enforces several synthesis RTL rules

= Synthesis can check against designer intent

.

Where did
all these
latches
come from?

always_comb

Hode) Warning: test.sv:5
ol = a + b; Netlist for always comb
else block contains a latch
02 = a - b;

26

SYSTEMS INITIATIVE

Self-Checking
Decision Statements

= Verilog only defines simulation semantics for decision statements
- Evaluate sequentially; only the first matching branch is executed

= Specifying synthesis parallel case and full case pragmas
causes gate-level optimizations

FTA
- Evaluate decisions in parallel, do Karnaugh mapping, etc.)
: These optimizations are in simulation! ! o,)

= SystemVerilog adds unique, uniqueO and priority decisions

- Enable synthesis parallel _case and/or full _case pragmas

- Enable run-time simulation checking for when the decision might not work as
expected if synthesized with the pragma

always comb Will get simulation warnings if
unique case (state) multiple branches (not a valid parallel _case)

- - - Will get simulation warnings if doesn’t match
endcase any branch (not a valid full_case)

SYSTEMS INITIATIVE

Self-Checking

Assignment Statements

parameter [2:0]

Traditional Verilog

WAIT = 3"b001,

LOAD = 3"b010,

DONE = 3"b001;
parameter [1:0]

READY = 3"b101,

SET = 3"b010,

GO = 3"b110;

_ _ dﬁzggﬂﬁ

reg [2:0] state, next_state;
reg [2:0] mode_ control;

always @(posedge clk or negedge rstN)
IT (IresetN) state <= 0;
else state <= next_state;

always @(state) // next state decoder
case (state)

WAIT - next _state = state + 1;
LOAD : next state = state + 1;
DONE : next _state = state + 1;

endcase

always @(state) // output decoder
case (state)

WAIT :- mode control = READY;
LOAD : mode control = SET;
DONE : mode _control = DONE;

endcase

enum logic [2:0]

{WAIT = 3"b001,
LOAD = 37"b010,
DONE = 3"b001}

state, next_state;

enum logic [1:0] «

RER0Y Z 3Dl 7 syntax errors k&
SET = 3"b010, ;
GO = 3"b110} (compiler finds

all the bugs)

mode_control;

always ff @(posedge clk or negedge
iIT (IresetN) state <= 0;
else state <= next_state;

always comb // next state decoder
case (state)

WAIT - next state = state + 1;

LOAD : next_state = state + 1;

DONE : next state = state + 1;
endcase

always comb // output decoder
case (state)

WAIT : mode_control = READY;

LOAD : mode_control = SET;

DONE : mode _control = DONE;
endcase

Part Four

Simulation and Synthesis Support for
SystemVerilog Assertions

IIIIIIIIIIIIIIIII

Simulation and Synthesis Support for

Assertions

= Simulation should execute assertions; Synthesis should ignore

Assertion Construct Vendor A Vendor B Vendor C
Sim Synth Sim Synth Sim Synth

Embedded Immediate Assertions v v v v v v
Embedded Concurrent Assertions v v v v v v
Property Blocks v v v v v v
Sequence Blocks v v v v v v
Disable Assertion During Reset v 4 4 v v v
Deferred Immediate Assertions v v v v v
Let Statements v v v v
Checker Statement v
Validate Reset Example v v v v v v
Validate Value Range Example v v v v v v
Validate Pulse Width Example v v v v v v
Validate Parameters v v
always_comb with Latch Logic v v v v v v
Enumerated Types with Faulty Logic v v v v v v

/
Summary @ Do It!

= SystemVerilog Assertions really do work!
- An effective way to verify many aspects of design functionality
- Find errors that functional verification might miss

» RTL Design Engineers should embed assertions that validate
assumptions directly into RTL code as the code is being written
- Embed relatively simple immediate and concurrent assertions
- Use RTL modeling constructs with built-in assertion-like checking
- Synthesis compilers properly ignore embedded assertions

= There are big advantages to RTL designers specifying assertions
Validate assumptions on which the RTL model depends

Localizes where functional problem occurred

Clarify specification ambiguities

Help to avoid RTL modeling gotchas
accellera

SYSTEMS INITIATIVE

U

31

Thank you!

i SystemVerilog Design: User Experience Defines
Multi-Tool, Multi-Vendor Language Working Set

Experience from Four Years of SVD
Junette Tan, PMC

Agenda

= Motivating Factors for SV Adoption
= Migration Challenges

= Benefits Gained

SYSTEMS INITIATIVE

Motivating Factors for SV Adoption

= Align with industry momentum on Verilog
- New technologies being introduced and tested in Verilog
- No use wasting resources trying to push developments in VHDL

= Target one HDL/HVL language for the company
- Mixed language usage increases complexity

= Powerful new constructs in SystemVerilog

- User-defined enumerations, packed structs, interfaces increase code readability
- always comb and always_fTT procedural blocks decrease coding errors

- Code compactness, design reuse, scalability = 10-20% increase in productivity

accellera

SYSTEMS INITIATIVE

U

Timeline of Adoption

2005

IEEE 1800-
2005 released

SV training
‘ and coding

guidelines

created

2010

—
1

o
@\

First project
developed in
SV and
company-wide
deployment

SYSTEMS INITIATIVE

Migration Challenges

Migration Challenges

= Resistance to change
Promoted migration through company-wide presentation

Organized multiple instructor-led training sessions

Created self-paced online training modules

Migrated re-use components to SystemVerilog

Changes

NEXT EXIT A

SYSTEMS INITIATIVE

Migration Challenges

= Lots of VHDL knowledge, sparse Verilog knowledge

- Coordinated effort with training vendor to create coding guidelines and custom
training, took conservative approach knowing tool limitations (e.g., no interfaces)

- Provided VHDL to SystemVerilog examples

- Created library of SystemVerilog code for design community

modulle shift _register #(
parameter NUM_ELEMENTS = 8,
parameter NUM BITS = 4 . _
) (use logic for everything

v
output logic [NUM_ELEMENTS-1:0][NUM_BITS-1:0] data_out,

) S y use always_ff for sequential logic
always ff @(posedge clk or negedge rstb)
begin : sr_logic
iIT (rstb = 1°bl) begin :
data_out <= "{default:0}; «— use assignment
end patterns for arrays

ené-; sr_logic
accellera

SYSTEMS INITIATIVE

U

Migration Challenges

= Troublesome tools
- Early adoption meant working closely with EDA vendor to flush out all bugs:

- Weekly calls to drive all issues to closure before

Packages

Size casting with parameters
Assignment patterns
Enumerated types

Packed structs and unions
Multi-dimensional arrays
Mixed language usage

they could become gates in the project schedule

- Unexpected number of issues faced with all tools in the design flow (e.qg.,
simulator, emulation tool, FPGA tool, synthesis tool, equivalence checker)

accellera

SYSTEMS INITIATIVE

U

Migration Challenges

= SystemVerilog Gotchas

- Compiler directive "default _nettype was not interpreted consistently
across tools

“default_nettype none “default_nettype none
modulle bad_example (modulle correct_example (
input logic a, input wire logic a,
input logic b, input wire logic b,
= N
no net type declared! net type wire specified

for input ports

Why bother with "default_nettype?
cpu cpu_inst (
.- ~ typo would result in incorrect
-halted(halter), 4— implicit net declaration!

accellera

SYSTEMS INITIATIVE

U

Migration Challenges

= SystemVerilog Gotchas

— Int as reserved word caused grief when connecting to VHDL ports named
Hintﬂ
vhdl_block vhdl_inst (

-int(irq), \
); can‘t use “int” as port name,
So must create SV-friendly

wrapper for VHDL code

accellera
10

SYSTEMS INITIATIVE

Metrics

Projects using SVD to date
(gate count including reuse IP)

Number of SV files in 15t Project

Number of SV issues reported

Number of engineers trained in SV

7 projects
(1043.8M gates)

2788

120

150

accellera

SYSTEMS INITIATIVE

U

Current Challenges

= Interfaces
- Still have yet to take advantage of connectivity gains that interfaces can provide

interface apb_intf; module top_ level (...);
apb_addr_t paddr;
logic pwrite; apb_intf intf _inst(); <«—
apb_data_t pwdata;
apb_data_t prdata; apb_master master_inst (

S -intf(intf _inst),
endinterface

);
modulle apb_master (
apb_intf intf, apb_slave slave_inst (
-intf(intf _inst),

); .-
)
module apb_slave (Interfaces must be
apb_intf intf, endmodule instantiated
Y- S Interface connections a@
are bi-directional

SYSTEMS INITIATIVE

Current Challenges

= I[nterfaces

- Currently use structs as a workaround

package apb_pkg;

typedef struct packed {
apb_addr_t paddr;
logic pwrite;
apb_data_t pwdata;

} apb_ctrl;

typedef struct packed {
logic pready;
apb_data_t prdata;

} apb_resp;

modulle apb _master (
input wire apb pkg::apb _resp resp,
output apb_pkg::apb_ctrl ctrl,

)

modulle apb_slave (
input wire apb_pkg::apb_ctrl ctrl,
output apb_pkg::apb _resp resp

): Must specify
correct direction!

Signals grouped

endpackage

by direction

accellera
13

SYSTEMS INITIATIVE

Current Challenges

= Low Power
- Simulation tool doesn’t support adding isolation when the DUT port is connected
to logic or unpacked array port in the testbench

 “bit, byte, shortint, int, longint, user-defined types, enumerated data types, structures,
unions, [and so on,] and constructs, such as clocking blocks, program blocks, classes,
packages, and so on, are not supported and cannot be part of a power-down domain” —
EDA vendor

* Logic datatypes had to be converted to wire or reg
* Unpacked arrays had to be split up

SYSTEMS INITIATIVE

Benefits Gained

= Alignhed with industry momentum
- Many vendor issues, but no project delays due to conservative migration

= One HDL to rule them all
- All reuse IP successfully migrated to SV, no need to support multiple languages
- All new IP designed in SV

= Productivity gains
- Code compaction achieved with always comb (no more sensitivity lists) and
.name shorthand notation

CIOUC‘IJEUJ”S" (.name shorthand notation looks clean

rstb . and reduces chance of error

- Abstraction achieved with new logic datatype (no more wire or reg)
- No more configuration files!

- Simulation performance increased
accellera

SYSTEMS INITIATIVE

U

Thank you!

i SystemVerilog Design: User Experience Defines
Multi-Tool, Multi-Vendor Language Working Set

No Excuses for Not Using SystemVe
In Your Next Design

Mike Schaffstein, Qualcomm

Who I1s Mike Schaffstein?

= 20+ years of design, architecture and methodology experience

= Introduced limited SV coding to design at previous company in 2010

- Chip in production

= Last 18 months with Qualcomm® Adreno™ graphics team
- Created initiative to use SV coding in design
- Used a larger portion of the language than at previous company

- Code exposed to the full tool flow

accellera

SYSTEMS INITIATIVE

U

Qualcomm Adreno is a product of Qualcomm Technologies, Inc.

Remember 20057

g"h',; the newly ratified...
eI SystemVerilog
Bar Phone IEEE 1800-2005!

FINGERPRINT N°
(still using Verilog-2001®)

\TRATE

. accellera

You should emerge from
this tutorial with...

= No excuse not to use SystemVerilog in your next design
= A clear idea of what to expect from the process through tapeout

= A template for how to proceed

Phase 1: APPROVAL
Phase 2: PLANNING
Phase 3: DESIGN

Phase 4: TOOLS

IIIIIIIIIIIIIIIII

APPROVAL: Justification

= Communicate your intent
- A stealth effort will likely backfire

= Prepare a rock-solid argument for why this is good for your product
- Higher productivity
- Time to market
- Fewer bugs
- Flexible, future proof coding

= Build consensus
- Find progressive, like-minded people to back you
- Use strength in numbers to sway others

SYSTEMS INITIATIVE

| want to use SystemVerilog in
our next project.

Of course not, the spec has
been around for a decade.

Not exactly.

Will it jeopardize our revenue
stream?

So everyone is using it?
We'll need a plan. I'll setup a

bunch of meetings.

accellera

SYSTEMS INITIATIVE

U

Is this SystemVerilog like trying
to synthesize SystemC?

Will our area be impacted?

Will our timing blow up?

No, it's the same level of
abstraction as Verilog. It's just a
more efficient language for
coding hardware constructs.

Nope.
No again.

accellera

SYSTEMS INITIATIVE

U

There may be some hiccups the first
time through.

Maybe we can restrict the language
to a simple set of constructs?

Or maybe we can limit SystemVerilog
to one block as a pilot program?

But we can’t push out the
schedule.

Not bad, keep talking.

Good, | like having options.

accellera

SYSTEMS INITIATIVE

U

Do our tools support
SystemVerilog?

What if the tools produce bad
results and our chip is DOA?

So if functional tool issues aren’t
a big concern, where are the
tools weakest?

Well, they all say they do.

The tools have supported similar
VHDL constructs for years. This is
familiar territory for them.

SystemVerilog language parsing.

accellera

SYSTEMS INITIATIVE

U

PLANNING: Educate Your Team

= |EEE 1800-2012

= Your synthesis tool’'s SystemVerilog user’s guide
= DV team members
= Web searches and web sites

= Sample code in this presentation

SYSTEMS INITIATIVE

http://www.sutherland-hdl.com/papers.php

Define Your Synthesizable Subset

= Arguably the most important step!

= Don’t bite off more than you can chew
- Know your design team: coding style, diligence, patience with tools, etc.

- Keep it simple if need be

= Stick to IEEE 1800-2005 constructs for now

- 1800-2009, 1800-2012 constructs are too new

= Use your synthesis tool’s documentation

SYSTEMS INITIATIVE

My Synthesizable Subset

» typedef

= logic

= enum

= struct

» package

* interface

» always ff/always comb

= $clog2, $bits, $size,..

= Operator enhancements
= Packed arrays

= Arrays as ports

= Literal enhancements

= Casting

= Wildcard and .name ports
= Sets

= Streaming operators

Roll out more in the next generation!

12

accellera

SYSTEMS INITIATIVE

U

DESIGN: Where and When?

= Code all the new features/blocks with SystemVerilog

= What about all the legacy code?
- If it isn’t broken, don’t fix it
- But where your new SV code interacts with your old code consider updating
- And anywhere you think SV will make the code easier to maintain long term

= Consider sharing SV package definitions with DV

/> Register Address enum
/ Register Bit Field struct

Specification
e S Top |evel interface

_' Top Level typedef
accellera
13

SYSTEMS INITIATIVE

DESIGN: Exploit the language

SystemVerilog

+ ? I

Good coding

Bad coding

= Progressive language demands progressive coding
- Use typedeT datatypes everywhere you can
- Use package to organize shared types

- Put simple naming guidelines in place

= Review any code examples you can find...and use the good stuff

accellera

SYSTEMS INITIATIVE

U

14

EXAMPLE: Port Optimizations

module apb_top (input logic clk, 1nput logic ares,
apb_i1f.slave host);

TEMPS
REGS

!.
|
K
import apb_pkg::*; !
|
apb_if slave[SLAVE_ NUM]O: |

apb_bridge bridge (.master(host), .slave);

APB BRIDGE

t 4

DAY BD
MASK MONTH
REGS REGS

.
o s s s s s s s o o

reg_temps temps (.apb(slave[SLAVE TEMPS]), -temps(Q), -*);
reg_bd month bdmonth(.apb(slave[SLAVE _BD MONTH]), .bdMonth(), -*);
reg_day mask daymask(.apb(slave[SLAVE DAY MASK]), .dayMask(Q), -*);

endmodule

Check out the bonus material
for the full code example

15

SYSTEMS INITIATIVE

Example: Port Optimizations (ontinued)

apb_if.slave host);

input [19:2] host_addr, Verilog
input [31:0] host wdata,

input host write,

input host_enable,

output host ready,

output [31:0] host rdata

accellera
16

SYSTEMS INITIATIVE

EXAMPLE POrt Opt|m|zat|0ns (continued)

import apb_pkg::*;

apb_1f slave[SLAVE NUM]O;

localparam SLAVE_TEMPS

= 0, .
SLAVE BD MONTH = 1, Verilog
SLAVE_DAY MASK = 2,
SLAVE_NUM -3

wire [19:2] slave addr [SLAVE_NUM];
wire [31:0] slave_wdata [SLAVE_NUM];

wire slave write [SLAVE NUM];
wire slave _enable [SLAVE NUM];
wire slave ready [SLAVE NUM];

wire [31:0] slave rdata [SLAVE NuUM];
accellera

17

SYSTEMS INITIATIVE

EXAMPLE POrt Opt|m|zat|0ns (continued)

apb_bridge bridge .
¢ Verilog
-.master_addr(host_addr),
.master_wdata(host_wdata),
-.master_write(host_write),
.master_enable(host_enable),
.master_ready(host_ready),
.master_rdata(host_rdata),

.slaveO_addr(slave_addr[SLAVE_TEMPS]),
.slaveO_wdata(slave_wdata[SLAVE_TEMPS]),
.slaveO_write(slave_write[SLAVE_TEMPS]),
.slaveO_enable(slave_enable[SLAVE_TEMPS]),
.slaveO_ready(slave_ready[SLAVE_TEMPS]),
S I ave .slaveO_rdata(slave_rdata[SLAVE_TEMPS]),

Y .slavel_addr(slave_addr[SLAVE_BD_MONTH]),
.slavel wdata(slave_wdata[SLAVE_BD_MONTH]),

M = .slavel write(slave_write[SLAVE_BD_MONTH]),
apb—br 1 dge br i dge' (= maSte r(hOSt) 7 .slavel_enable(slave_enable[SLAVE_BD_MONTH]),

- .slavel_ready(slave_ready[SLAVE_BD_MONTH]),
-S I ave) ’ .slavel_rdata(slave_rdata[SLAVE_BD_MONTH]),

.slave2_addr(slave_addr[SLAVE_DAY_MASK]),
.slave2_wdata(slave_wdata[SLAVE_DAY_MASK]),
.slave2_write(slave_write[SLAVE_DAY_MASK]),
.slave2_enable(slave_enable[SLAVE_DAY_MASK]),
.slave2_ready(slave_ready[SLAVE_DAY_MASK]),
.slave2_rdata(slave_rdata[SLAVE_DAY_MASK])

);

accellera

SYSTEMS INITIATIVE

18

EXAMPLE POrt Opt|m|zat|0ns (continued)

clk ares
AtV 4 o
reg_temps temps reg_bd_month bdmonth reg_day_%ask daymask . |
(((

.clk(clk), .clk(clk), -clk(clk), Verl Og
.ares(ares), .ares(ares), .ares(ares),
-temps(), -bdMonth(), .dayMask(Q),
.apb_addr(slave_addr[SLAVE_TEMPS]), .apb_addr(slave_addr[SLAVE_BD_MONTH]), -apb_addr(slave_addr[SLAVE_DAY_MASK]),
.apb_wdata(slave_wdata[SLAVE_TEMPS]), .apb_wdata(slave_wdata[SLAVE_BD_MONTH]), -apb_wdata(slave_wdata[SLAVE_DAY_MASK]),
.apb_write(slave_write[SLAVE_TEMPS]), .apb_write(slave_write[SLAVE_BD_MONTH]), -apb_write(slave_write[[SLAVE_DAY_MASK]),
.apb_enable(slave_enable[SLAVE_TEMPS]), .apb_enable(slave_enable[SLAVE_BD_MONTH]), .apb“enable(slave_enable[[SLAVE_DAY_MASK]),
.apb_ready(slave_ready[SLAVE_TEMPS]), .apb_ready(slave_ready[SLAVE_BD_MONTH]), -apb_ready(slave_ready[SLAVE_DAY_MASK]),
.apb_rdata(slave_rdata[SLAVE_TEMPS]) .apb_rdata(slave_rdata[SLAVE_BD_MONTH]) .apb_rdata(slave rdata[SLAVE_PAY_MASK])

reg_temps temps (.apb(slave[SLAVE TEMPS]), -temps(QO, A -*);
reg _bd month bdmonth(.apb(slave[SLAVE BD MONTH]), .bdMonth(), -*);
reg_day mask daymask(.apb(slave[SLAVE DAY MASK]), .dayMask(Q), -*);

accellera
19

SYSTEMS INITIATIVE

EXAMPLE POl‘t Opt|m|zat|0ns (continued)

Verilog

module apb_top

input clk,
input ares,
input [19:2] host_addr,
input [31:0] host_vdata,

ady.
output [31:0] host_rdata
bH

Tocalparan SLAVE_TENPS o,
SLAVE_BD_MONTH = 1.
SLAVE_DAY_HASK = 2
SLAVE_NW = 3!

wire [19:2] e_addr [SLAVE_NUV:
wire [31:0] slave wdata [SLAVE_NU]:
wire slave write [SLAVE_NU:
slave_enable [SLAVE_NUT:
re e ready [SLAVE_NUW:
wire [31:0] slave_rdata [SLAVE.N]:

apb_bridge bridge

_master_addr (host_addr),

_master_rdata(host_rdata)

ave0_addr (slave_addr [SLAVE_TEWPS]) ,
“stave wdala(slave wdata[SLAVE_TEWPS])
-slave0_urite(slave_write[SLAVE_TENPS])
-stave0 enableCalave_enable[SLAVE TEVS]).
ready ady [SLAVE_TEWPS]) .
“Shveo rdataelave rdatalSAVE TEWPST)

SystemVerilog

module apb_top (e togic clk, input logic ares,
)_if.slave host);

_slavel, addr(slave addr [SLAVE_BD_WONTH]),

_slavel_rdata(slave_rdata[SLAVE_BD_MONTH]) .

import aph_pkg::*;

_slave2_addr(slave_addr [SLAVE_DAY_WASKI),
.slave2_wdata(slave_wdata[SLAVE_DAY_MASK]).
ave2_urite(slave_write [SLAVE DAY JASK]).
.slave2_enable(slave_enable[SLAVE_DAY_MASK]).
.slave2_ready(slave_ready[SLAVE_DAY_MASK]).
Slavez_rdata(slave_rdata[SLAVE_DAY_HASKI)
>

apb_if slave[SLAVE_NVIQ):

apb_bs

g bridge (.master(host), .slave);

reg_tetps temps (.apb(slave[SLAVE TEWPS]), .tenpsQ), -*
reg_bd_month bdnonth(.apb(slave[SLAVE_BD_WONTH]), -bdlionthQ), .
reg_day_mask daynask(-apb(slave[SLAVE_DAY_MASK]), .daylaskQ. .

endnodule
reg_tenps temps

RINCON

,ares(ares)

~tempsQ .

,.sub addr(slave sddr[SLAVE TEUPSI).
~apb_ud wdata[SLAVE_TENPS])
~apb_y wrme(slave write[SLAVE_TENPS])

apb_rdata(slave_rdata[SLAVE_TEMPS])
>

reg_bd_nonth bdnonth

~clk(elk),

we_addr [SLAVE_BD_VONTHI) ,
~apb_y wnam(slave wdata[SLAVE_BD_WONTH]) ,
~apb_write(slave_write[SLAVE_BD_WONTH])
~aph_e enable(slave _enahIo[SLAVE_D_WONTH)
~oob_re eady[SLAVE_BD_WONTH]) .
aph T Fdataelave rdatalSLAVE 6D WONTH>

reg_day_nask daynask

RIEON

,ares(ares).

~daylask(

~apb_s addr(slave addr [SLAVE_DAY_MASK]),
~apb_udata(s lave_wdata[SLAVE_DAY_NASK]) .
Tabb i to(alave wri e[SLAVE DAY NASKD),

apb_rdataslave_rdata[SLAVE_DAY_NASKI)

endnodule

accellera

SYSTEMS INITIATIVE

20

EXAMPLE: Falling Short of Greatness

module apb_bridge (apb_if.slave master,
apb_1f.master slave[SLAVE NUM]);

always comb begin
master.resp = "{ default: 0 };
fdreach (slave[i])

master.resp = master.resp | slavefi]-resp;

end \\

endmodule

Poor tool
support.

21

AN

Shortcoming of
the language.

SYSTEMS INITIATIVE

EXAMPLE Fa”|ng ShOI"[.+« (continued)

module apb_bridge (apb_if.slave master,
apb_1f.master slave[SLAVE NUM]);

apb_resp s resp [$size(slave)];

for (genvar 1 = 0; 1 < $size(slave); i1++) begin : gen_select
always comb resp[i1] = slave[i].-resp;
end

assign master.resp = resp.-or;

endmodule\\\- \\\=

Single tool fails Poor tool
to support. support.

Verilog

slaveO _ready | slavel ready | slave2 ready;
slaveO _rdata | slavel rdata | slave2 rdata;

accellera
22

SYSTEMS INITIATIVE

assign master_ready
assign master_rdata

EXAMPLE: State Machine enum

enum logic [23:0] { localparam [23:0] Verilog
RED = 24"hff0000, RED = 24"hff0000,
GREEN = 24"hO00ff00, GREEN = 24"h00ff00,
BLUE = 24"h0O000fF BLUE = 24"h0000ff;

} color, next_color;
reg [23:0] color, next_color;

always comb next_color = color.next;

always @* Verilog
case (color)
RED: next color = GREEN;
GREEN: next color = BLUE;
default: next color = RED;

endcase

accellera
23

SYSTEMS INITIATIVE

EXAMPLE: State Machine enum continued)

Waveform viewers understand enumerations

Verilog

color FFOO000 (010] =1 =(0]0) 0O000FF
next_color | 00FF00 | 0000FF | FF0000 1

SystemVerilog
color

next_color

accellera
24

SYSTEMS INITIATIVE

TOOLS

= Know your tool flow
- Understand which tools digest RTL directly
- How good is your tool vendor support?
- Let your tool vendors’ support people know about this undertaking

= Build flow and setup files may need adjustments
- SV switches
- package / interface compile order dependencies

= Use the latest versions if possible

SYSTEMS INITIATIVE

TOOLS: Dealing with SV Issues

= |s it a tool bug, a documented tool limitation or bad syntax?

= There is [almost] always a workaround
- The trick is finding a syntax that all the tools digest

= Log tool issues
- Use 1Tdef in the code to show workaround code next to broken code

- Keep a database with code snippet, tool version, error #, error message

= Run as many tools as possible at the block level
- Finds issues earlier

= Work with vendors to resolve issues
- But don’t expect timely bug fixes during the project cycles

accellera

SYSTEMS INITIATIVE

U

TOOLS: Hot Spots for SV Issues

= Module parameter port lists and optional parameter keyword

= Use of an enum where a localparam intwould normally be

= Tools get iffy when lots of SV nested together

assign month = anlF[anENUM].aStruct.month enum.next;

Suctmember

Array of interfaces

Indexed by an Enumerated method

enumerated constant

= See the workaround examples in the conference handouts

accellera

SYSTEMS INITIATIVE

U

27

SV Parsing Issues by Tool Category

6.5
4.25
4
2

2H 2012 2H 2014

Average SV Parsing Issues

® Frontend mBackend mEmulation
[4 tools] [4 tools] [2 tools]

accellera
28

Current SV Parsing Issue Landscape

2H 2014 TOOL VERSIONS USED

| 1800-2009
&5 36 39 40 42

SV Parsmg Issue Referece Number
[10 tools]

accellera
29

SYSTEMS INITIATIVE

Number of Tools Exhibiting SV
Parsing Issue

Need one more reason?

= |t's good for you too!
= SystemVerilog competency is a VALUABLE INDUSTRY SKILL
= Stay COMPETITIVE, stay RELEVANT —don’t be a designasaur

= Be the INNOVATOR at your company

Check out the bonus material with
code examples and tool workarounds

accellera

SYSTEMS INITIATIVE

U

30

Thank you!

i SystemVerilog Design: User Experience Defines
Multi-Tool, Multi-Vendor Language Working Set

APB Example Code

Tool vendors and designers: Use this code to screen your tools

APB EXAMPLE CODE

IIIIIIIIIIIIIIIII

APB Example

HOST

P S

' |
: APB BRIDGE :
: |
! !
| DAY BD .
' TREéV'GPSS MASK ~ MONTH |
| REGS REGS
N . /.

SYSTEMS INITIATIVE

apb_pkg.sv

User defined type. :
Package definition. Logic type.
package apb_pkg; // Data width/unspecified by APB
// AMBA 3 APB Protocol Specification v1.0 // so make a/type for flexibility.

typedef logic [31:0] apb_data t;
// Addr width unspecified by APB

// so make a type for flexibility. // APB request (master to slave).
typedef logic [19:2] apb_addr_t; typedef struct packed {
User defined type as apb_addr_e addr; \
typedef enum apb_addr_t'{f///’_ enum base type. logic enable;] S
REG_BD_MONTH_MOM "h40, logic write; :
REG_BD_MONTH_DAD "h41, apb_data_t wdata;
REG_BD_MONTH_DAUGHTER "h42, } apb_req_s;
REG_BD_MONTH_SON "h43,

// APB response (slave to master).

REG_DAY_MASK = "h50,
REG_TEMP_JAN = *hel, type?ifiitr“Ct Sggge? {
REG_TEMP_FEB = "h62, apg ek
REG_TEMP_MAR = "hes, } apb_resp_s; ’
REG_TEMP_APR = "hé4, - - Int as enum
REG_TEMP_MAY ===h65, typedef enum int { LYPebase
REG_TEMP_JUN = "h66, SLAVE TEMPS,
REG_TEMP_JUL = "h67, SLAVE_BD_MONTH,
REG_TEMP_AUG = "hes, SLAVE_DAY_ MASK,
REG_TEMP_SEP = "h69, SLAVE_NUM
REG_TEMP_OCT = "h6a, } SLAVE_e; _ —
REG_TEMP_NOV = "héb, LAl TS
REG_TEMP_DEC = "héc endpackage assignments.
} apb_addr_e; Explicit value —
assignments. 806'8//8/‘3
4

SYSTEMS INITIATIVE

other pkg.sv

package other_ pkg;

typedef logic [3:0] MONTH_t;
typedef enum MONTH_t {
JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC
} MONTH_e;

typedef enum int { LO, HI } RANGE e;
typedef enum iInt {
MOM, DAD, DAUGHTER, SON,
FAMILY_SIZE
} FAMILY e;

typedef logic [7:0] temp t;

d k
endpackage 5 acce//era

SYSTEMS INITIATIVE

apb _if.sv

Interface definition.

interface apb_ if;
Wildcard package import.

import apb_pkg::*;

logic sel;
apb_req_s req;
apb_resp_s resp;

Function within an interface.

function automatic logic WriteReg(input apb_addr_e addr);
WriteReg = sel & req.write & reqg.enable & (reg.addr == addr);
endfunction

function automatic logic ReadReg(input apb_addr_e addr);
ReadReg = sel & ~reqg.write & reqg.enable & (req.addr == addr);
endfunction

Interface modport.

modport master(output req, sel, Input vresp);
modport slave (input req, sel, output resp,
import WriteReg, mmport ReadReg);

endinterface . acce//era

SYSTEMS INITIATIVE

reg_day mask.sv

Interface as a port.

modulle reg_day mask (input logic clk,Aput logi

always_ff

Package import within a module.

import apb_pkg::*fr_

‘1 literal fills vector with ones.

always ff @(posedge clk/or posedge ares)

iIT (ares) begin
dayMask <= "1;

C ares,

apb_i1f.slave apb, output logic [31:1] dayMask);

[Struct with default assignment.

apb.resp <= "{ default: 0 };

end
else begin

1T (apb.WriteReg(REG_DAY_ MASK

Call to a function inside an interface.

)) /— $bits system function.

dayMask <= apb.req.wdata[O+:$bits(dayMask)];

1T (apb.ReadReg(REG_DAY_MASK))
apb.resp <= *"{ ready: 1, rdata: apb data_ t"(dayMask) };

else

apb.resp <= "{ default: 0 };

end

Referencing items inside
an interface.

endmodule

Casting to pad to desired
vector width..

Struct assignment by field.

SYSTEMS INITIATIVE

reg_bd month.sv

import other_pkg::*;

Package import outside of a
/ module because definitions are

needed in the port list.

module reg_bd month (1nput logic clk, input logic ares,

apb_1f.slave apb,

always_comb

output MONTH e [FAMILY_SIZE-1:0] bdMonth)

import apb pkg::*;

L

Packed array of enum as a port.

/ Struct variable declaration.

apb_resp_s resp;

const

always comb begin

apb_addr_e start _reg = REG _BD MONTH_MOM;
~—

Constant enum declaration.

resp = "{ default: 0 };
foreach (bdMonth[i1]) begin

foreach loop.

_/ 1T (apb.ReadReg(start _reg.next(i)))
resp = "{ ready: 1,
rdata: apb_data t"(bdMonth[i]) };

end

end

SYSTEMS INITIATIVE

reg_b d_m oNnth.sV (continued)

localparam int width = $bits(MONTH_e);

Enumerated method .first

always ff @(posedge clk or posedge ares) begin
1T (ares) beg in /_ Packed array element default value assignment.
bdMonth <= *{ default: bdMonth[$low(bdMonth)].first };
apb.resp <= "{ default: 0 };

end $low system function.
e l se beg i N Enumerated method .next

foreach (bdMonth[1]) begin i netemen vaue
iIT (apb.WriteReg(start_reg.next(i)))
bdMonth[1] <= MONTH_ e*"(apb.req.wdata[O+:width]);

end
apb.resp <= resp; Z
end

Casting a vector to
an enumerated type.

end

endmodule

SYSTEMS INITIATIVE

reg_temps.sv

import other_pkg::*;

module reg_temps (input logic clk, input logic ares,
apb_i1f.slave apb,
output temp_t [DEC:JAN][HI:LO] temps);

import apb_pkg::*; Multidimensional packed

array as a port.

apb_resp_ s resp;
const apb _addr_e start _reg = REG_TEMP_JAN;
const Int shift = 16;

foreach loop with

always comb begin multiple dimensions.
resp = "{ default: 0 };
foreach (temps[month,range]) begin : rd _loop
apb_data_t rdata;
rdata = apb _data t" (temps[month][range]);
1T (apb.ReadReg(start _reg.next(month))) begin

resp.ready = 1;
resp.rdata = resp-rdata | (rdata << (range*shift));

end
end . accellera

SYSTEMS INITIATIVE

end

reg_tem PS.SV (continued)

always ff @(posedge clk or posedge ares) begin
1T (ares) begin _
temps <= 05— | GRGIRS
apb.resp <= *{ default: 0 };
end
else begin
foreach (temps[month,range]) begin : wr_loop
localparam int width = $bits(temp_t);
apb_data_t wdata;
wdata = apb.reg.wdata[shift+:width];
1T (apb.WriteReg(start_reg.next(month)))
temps[month][range] <= wdata;

end
apb.resp <= resp;
end
end

endmodule

accellera
11

SYSTEMS INITIATIVE

apb_bridge.sv

i mpo rt apb_p kg - - - / Array of interfaces as a port.

modulle apb _bridge (apb_if.slave master,

$size system function.

| Og iC se | [$S i ze (S | ave)] : Unpacked array element default value assignment.
always comb begin

end

—\\ apb_if._master slave[SLAVE_NUM]);

Inside operator with range bounds.

it (~master.sel)
sel = *"{ default: O
else begin
sel[SLAVE_TEMPS] = master.reqg.addr
inside { [REG _TEMP_JAN:REG _TEMP_DEC] };
sel[SLAVE_BD MONTH] = master.req.addr
inside { REG_BD_MONTH MOM, REG BD_ MONTH_DAD,
REG_BD MONTH_SON, REG_BD MONTH_DAUGHTER };
sel[SLAVE DAY MASK] = master.req.addr == REG_DAY_ MASK;

¥

Inside operator with individual match.

end

accellera
12

SYSTEMS INITIATIVE

ap b_brld J€.SV (continued)

Genvar without the
use of the generate

Loop variable declaration
inside a for loop.

keyword.

apb_resp_s|resp/[$size(slave)];

for (genvar 1" = O;

always comb begin

slave[i]-sel
slave[i1]-req

resp[i]
end
end
assign master.resp =

endmodule

////_

Packed array of a
struct.

I < $size(slave);

sel[1];

1++) begin : gen_select

_

Plus-plus operator.

sel[1] ? master.req
- "{ addr: apb_addr_e*"(0),

slave[i].-resp;

default: O };_

_

Decomposition of array of
interfaces using a genvar.

resp.or,

AN

reduction

Unpacked array

method.

13

Struct assignment with
enum and default.

SYSTEMS INITIATIVE

apb_top.sv

Direct package scope resolution.

module apb_ top\ (input logic clk, input logic ares,

apb_i1f.slave host);
import apb_pkg::SLAVE TEMPS;
import apb_pkg::SLAVE BD MONTH;
import apb_pkg::SLAVE DAY MASK;
apb_1f slave[apb pkg::SLAVE NUM]O;

apb_bridge bridge (.master(host),

reg_temps temps (.apb(slave[SLAVE TEMPS]),

Array of interfaces declaration.

-

.slave);

Implicit (.name) port assignment
with an array of interfaces.

-temps(), -*);

reg_bd _month bdmonth(.apb(slave[SLAVE _BD MONTH]), .bdMonth(), .*);
reg_day mask daymask(.apb(slave[SLAVE DAY MASK]), .dayMask(), -*);

endmodule

14

/

Wildcard port assignments.

SYSTEMS INITIATIVE

Each slide represents an actual tool issue overcome during
project development

TOOL WORKAROUNDS

IIIIIIIIIIIIIIIII

Enums as index

= Original code:

typedef enum int { BUS A, BUS B, BUS C } bus_targets e;
logic [BUS_C:BUS_A] all_valid;

logic valid;

assign valid = Jall_valid;

block_a u_block_a (all_valid[BUS_A]);

block_b u_block b (all_valid[BUS_B]);

block ¢ u block ¢ (all_valid[BUS C]);

= Unsuccessful workaround attempt:

always _comb begin
valid = 0;
for C int i = BUS_A; 1 <= BUS C; 1++)
valid = valid | all_valid[i];
end

= Workaround code:

assign valid = all_valid[BUS_A] | all _valid[BUS B] | all _valid[BUS C];
= Conclusion:

- Tool complains that bits of all_valid are not driven

- Explicitly OR the bits together

- May also work with localparam instead of enum accellera

SYSTEMS INITIATIVE

Use of enum In an interface select

= Original code:

interface readback if;
logic [31:0] data;
logic valid;

endinterface

typedef enum int { UART, SPIl } target e;
readback if rdata[SPI1:UART]();

logic valid;
logic [31:0] data;
always comb begin
valid = rdata[UART].valid | rdata[SPI].valid;
data = rdataJUART].data | rdata[SP1].data;
end

= Workaround code;:

rdata[int® (UART)].-valid | rdata[int"(SP1)].valid;
rdata[int®"(UART)].data | rdata[int®"(SPl)].data;

valid
data

= Conclusion:
- Cast interface select enums to an int

SYSTEMS INITIATIVE

Broadside struct default
assignments

= Original code:

typedef struct packed {

logic [4:0] hour;

logic [5:0] minute, second;
} time_s;

time_s noon;

always comb begin
noon = "0; // Should assign all fields to zero
noon_hour = 12;

end

= Workaround code;:

always comb begin

noon.second = 0;

noon.minute = 0;

noon.hour = 12;
end

= Conclusion:
- Tool complains that noon.second and noon.minute are unassigned
- Explicitly assign each field of the struct

SYSTEMS INITIATIVE

Parameter keyword in parameter
port lists

IEEE Std 1800-2005 - 6.3.4

= Original code:

package test case pkg;
typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days_e;
endpackage

import test _case pkg::*;

modulle test case module #(days_e THIS DAY = days e"(0), int WIDTH = 1)
// Code here..

endmodule

= Workaround code:

import test case pkg::*;

modulle test case module #(parameter days e THIS DAY = days e"(0), parameter int WIDTH = 1)
// Code here..

endmodule

= Conclusion:
- Add parameter keyword even though LRM says it isn’'t needed

SYSTEMS INITIATIVE

Loss of type In parameter port
lists after an enum

= Original code:

package test_case_pkg;
typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days e;
endpackage

import test _case pkg::*;

modulle test case module #(days_e THIS DAY = days e"(0), int WIDTH = 1)
// Code here..

endmodule

= Workaround code;:

import test case pkg::*;

modulle test case module #(days_e THIS DAY = days e"(0), int WIDTH = int"(1))
// Code here..

endmodule

= Conclusion:
- Add parameter keyword even though LRM says it isn’'t needed

accellera

SYSTEMS INITIATIVE

U

Macro with open parenthesis on
different line

= Original code:

always ff @(posedge clk or posedge ares)
if "RESET_MACRO

(
gTraffic_light <= RED;
)

= Workaround code;:

always ff @(posedge clk or posedge ares)
if "RESET_MACRO(
gTraffic_light <= RED;
)

= Conclusion:
- Open parenthesis must be on the same line as the macro
- Just plain Verilog

SYSTEMS INITIATIVE

Use of enum with a genvar for loop

= Original code:
typedef enum int { HEADS, TAILS } coin_e;
logic [1:0] coin_side;
for (genvar 1 = HEADS; 1 <= TALILS; i++) begin : gen_coin
assign coin_side[i] = i;
end

= Workaround code:

for (genvar 1 = int”’(HEADS); i1 <= int"(TAILS); i++) begin : gen_coin
assign coin_side[i] = i;
end

= Conclusion:
- Recast enum to int

SYSTEMS INITIATIVE

Casting using $bits as the vector
Size

= Original code:
typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days e;

days_e day as_enum;
logic [7:0] day_as byte;

assign day_as_enum = THU;
assign day_as_byte = $bits(day_as_byte)"(day_as_enum);

= Code to fix one tool’s order of operation issue:
assign day_as byte = ($bits(day_as byte))"(day_as enum);

= Workaround code:

typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days e;
typedef logic [7:0] byte t;

days_e day_as_enum;
byte t day as byte;

THU;

assign day_as_enum
byte t*(day_as_enum);

assign day_as_byte

= Alternate code (do not use):

assign day as byte = type(day_as byte)*(day_as _enum);

= Conclusion:
- Different issues in multiple tools
- Recommend casting with typedeT types or constants

SYSTEMS INITIATIVE

Packed array of a type defined
logic vector

= Original code:
typedef logic [7:0] byte t;
byte t [3:0] dword;

= Workaround code;:

logic [3:0][7:0] dword;

// Or..

typedef logic [3:0][7:0] dword_t;
dword_t dword;

= Conclusion:
- Combine into a single declaration or typedef

SYSTEMS INITIATIVE

Package import is forgotten

= Original code:

package test_case_pkg;
typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days e;
endpackage

import test _case pkg::*;
modulle test case module;
days e day;
assign day = WED;
endmodule

= Workaround code;:

import test case pkg::*;
modulle test case module;
days e test case pkg::day;
assign day = test case pkg::WED;
endmodule

= Conclusion:
- Rare occurrence — no pattern to when or where
- In such cases explicitly specify the source package

SYSTEMS INITIATIVE

Enumerated module parameters
loose their type when assigned to a
struct or interface member

= Original code:

package test case_ pkg;
typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days_e;
typedef struct packed {
days e day;
logic [4:0] hour;
} time_s;
endpackage

import test case pkg::*;
modulle test_case module #(parameter days e THIS DAY = SUN)
(input logic [4:0] hour; output time_s present);

assign present.hour = hour;
assign present.day = THIS_DAY;

endmodule

= Workaround code:

assign present.day = days e"(THIS DAY);

= Conclusion:
- Re-cast to remind the tool of the member’s type

SYSTEMS INITIATIVE

Enumerated methods
(1.e. .first, .next)

IEEE Std 1800-2005 - 23.2

= Original code:

always ff @(posedge clk or posedge ares)
it (ares)
gTraffic_light <= qTraffic_light.first;
else If (timer_expired)
gTraffic_light <= gTraffic_light.next;

= Workaround code;:

always ff @(posedge clk or posedge ares)
it (ares)
gTraffic_light <= RED;
else 1T (timer_expired)
case (gTraffic_light)
RED: gTraffic_light <= GREEN;
GREEN: qTraffic_light <= YELLOW;
default: gTraffic_light <= RED;
endcase

= Conclusion:
- Tool's documents explicitly state that enumerated methods aren’t supported
- No choice but to be explicit which decreases coding efficiency

SYSTEMS INITIATIVE

Use .num method In constant
expression

= Original code:

typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days_e;
days_e day;

localparam int days _per week = day.num; // produces a value of 7

logic [days_per_week-1:0] busy that day;

= Workaround code:

localparam Int days _per_week = 2**$bits(days_e); // produces a value of 8

= Conclusion:
- Brute force the vector creation by any number of methods

- Method chosen is flexible and responds to changes in enumeration
- But likely results in superfluous bits

SYSTEMS INITIATIVE

Modport in instantiation port
connectivity

= Original code:

interface payload_if;
logic payload, rts, rtr;
modport initiator(output payload, rts, input rtr);
modport target (input payload, rts, output rtr);
endinterface

payload if my payload;
initiator_submodule u_initiator (.my payload(my_payload.initiator));
target_submodule u_target (-my payload(my_ payload.target));

= Workaround code;:

payload if my payload;
initiator_submodule u_initiator (.my payload); // Wildcard is now possible
target _submodule u_target (-my_payload);

= Conclusion:
- Only workaround is to be less specific and eliminate the modport in instance
- The fringe benefit is that this allows the use of instance wildcarding

accellera

SYSTEMS INITIATIVE

U

Implied flop enable to
always zero

= Original code:

logic [31:0] irqg, set_irq;

logic set src a, set src b;

assign set_irq = { 15’b0, set _src_b, 15’b0, set _src_a };
always ff @(posedge sclk_g or posedge ares) begin

it (ares)
irq <= "0;

else
for Cint i = 0; 1 < $bits(C 1irq); i++)

it (set_irg[i]) irq[i] <= 1"bl;
end

= Workaround code;

always ff @(posedge sclk_g or posedge ares) begin

it (ares)
irq <= "0;

else
irqg <= irqgq | set_irq;

end

= Conclusion:

a flop that is

- Tool cannot separate an always zero flop from the coding style

- Just plain Verilog

SYSTEMS INITIATIVE

Enumerated constants
array of interfaces

= Original code:

typedef enum int { CABLE_BOX, BLURAY, NETWORK } video_sources e;
interface stream_if;

logic [31:0] data;

logic rts, rtr;
endinterface

stream_if video_stream[2:0]1();

assign video_stream[CABLE_BOX].rtr = cable box selected & rtr;

= Workaround code;:

localparam int CABLE BOX=0, BLURAY=1, NETWORK=2;
interface stream_if;
logic [31:0] data;
logic rts, rtr;
endinterface
stream_if video _stream[2:0]();

assign video_stream[CABLE BOX].rtr = cable box selected & rtr;

= Conclusion:
- Use a localparam in place of enum

as select In

SYSTEMS INITIATIVE

Unpacked array of interfaces

= Original code:

interface stream_if;
logic [31:0] data;
logic rts, rtr;

endinterface

stream_if my stream[3]();

= Workaround code;:

interface stream_ if;
logic [31:0] data;
logic rts, rtr;

endinterface

stream_if my stream[2:0]Q);

= Conclusion:
- Packed array format is accepted

SYSTEMS INITIATIVE

Use of $clog?2 in parameter
definition to override a module

= Original code:

module inv_addr #(parameter int WIDTH = 8)
(input [WIDTH-1:0] iAddr, output [WIDTH-1:0] oAddr);
assign iAddr = ~oAddr;

$display(, $bits(iAddr)); /7 Should be 8 but Conformal says 1
endmodule

localparam int WIDTH = $clog2(256);
inv_addr #(WIDTH) uinv_addr (.iAddr(addr_in), .oAddr(addr_out));

= Workaround code;:

localparam int WIDTH = 8;
inv_addr #(WIDTH) uinv_addr (-i1Addr(addr_in), .oAddr(addr_out));

= Conclusion:

- Remove the $clog2 from the parameter definition

SYSTEMS INITIATIVE

Generate loops for RAM instances

= Original code:
for (genvar 1 = 0; 1 < 4; i++) begin : gen_ram
cache_data u_ram

(C

.clk (ifRam.clk),
.Cs_n (ifRam.csn),
.addr (addr[i]),
.din (wdata[i]),
.we_n (ifRam.wen),
.dout (rdata[i])
Vs

= Conclusion:
- Manually unroll the loop (too large to include code here)

SYSTEMS INITIATIVE

Multi-line loops In macros

= Original code:

“define RESET MACRO(reset _code) (ares) begin reset code end

“define RESET MACRO_SYNC(reset code,sres) \

"RESET_MACRO(reset_code) else if (sres) begin reset _code end

logic [7:0][2:0] gArrayl, gArray2;

always ff @(posedge clk or posedge ares)
if “RESET_MACRO_SYNC(
for Cint i =0; 1 < 8; i++) begin
gArrayl[i] <= i;
gArray2[i] <= 7-i;
end
,Ssoftware_reset

)

= Workaround code:

always ff @(posedge clk or posedge ares)
it "RESET_MACRO_SYNC(

for Cint 1 = 0; 1 < 8; 1++) qArrayl[i] <= i;
for Cint 1 = 0; 1 < 8; i++) gArray?2[i] <= 7-i;

,software_reset

)

= Conclusion:

- Keep code on a single line until the semicolon

- No begin/end allowed

35

IEEE Std 1800-2005 - 23.2

SYSTEMS INITIATIVE

‘define using the "~ syntax in
m aC r O IEEE Std 1800-2005 - 23.2

= Original code:

“ifdef VENDOR_SPECIFIC_COVERAGE_TOOL_DEFINE

“define COVERAGE(cov) 7/~ "/ pragma coverage cov

“else

“define COVERAGE(cov) /" "/ coverage comment for other tools
“endif

= Workaround code;:

“ifdef VENDOR_SPECIFIC_COVERAGE_TOOL_DEFINE
“define COVERAGE(cov) 7/~ "/ pragma coverage cov
“else

“define COVERAGE(cov)

“endif

= Conclusion:
- An empty macro seems to work

SYSTEMS INITIATIVE

Inline comments 1N hested macros

= Original code:

“define RESET_MACRO(reset_code) (ares) begin reset_code end
“define ENUM_FIRST(enumtype) enumtype“(0)

typedef enum logic [1:0] { RED, GREEN, YELLOW } traffic_light e;
typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days_e;
traffic_light_e qTraffic_light;

days_e gDay;

always ff @(posedge clk or posedge ares)
iT "RESET_MACRO(
gTraffic_light <= "ENUM_FIRST(traffic_light e); // SVWORKAROUND gTraffic_light.first;
qbay <= "ENUM_FIRST(days_e); // SVWORKAROUND qgDay.Tfirst;

= Workaround code;:

always ff @(posedge clk or posedge ares)
// SVWORKAROUND gTraffic_light.first;
// SVWORKAROUND gDay.first;
iT "RESET_MACRO(
gqTraffic_light <= "ENUM_FIRST(traffic_light e);
gDay <= "ENUM_FIRST(days_e);
)

= Conclusion:
- Move comments out of the outermost macro

- Loss of context for the comment
accellera
37

SYSTEMS INITIATIVE

Use of default assign to struct with
enum field

= Original code:

typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days_e;
typedef struct packed {
days_e day;
logic [4:0] hour;
} time_s;
time_s start_time;
assign start_time = "{ default: 0 };

= Workaround code:

assign start _time = "{ day: SUN, default: 0 };

= Conclusion:
- Be explicit about enum assignments
- Other tools complain with warnings not errors

SYSTEMS INITIATIVE

Reuse of genvar for loop variable

= Original code:

typedef enum int { HEADS, TAILS } coin_e;

typedef enum int { ROCK, PAPER, SCISSORS } roshambo_e;

logic [1:0] coin_side;

for (genvar 1 = HEADS; 1 <= TAILS; i++) begin : gen_coin
assign coin_side[i] = 1;

end

logic [2:0] roshambo_turn;

for (genvar 1 = ROCK; i1 <= SCISSORS; i++) begin : gen_roshambo
assign roshambo_turn[i] = i;

end

= Workaround code:

for (genvar jJ = ROCK; j <= SCISSORS; j++) begin : gen_roshambo
assign roshambo_turn[j] = j;
end

= Conclusion:
- Scoping rules allow reuse
- Change to a different genvar name to make it work

SYSTEMS INITIATIVE

‘begin_keywords/ end keywords

= Original code:

“begin_keywords “1800-2005"
module test_case;
// Only 1800-2005 compliant keywords allowed
endmodule
~“end_keywords

= Workaround code;:

module test_case;
// No keyword protection
endmodule

= Conclusion:
- Only provides keyword checking, not full syntax checking
- With limited value, no harm in eliminating

SYSTEMS INITIATIVE

Set operator inside used In
continuous assignment

= Original code:

typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days_e;
days e day;
logic is_weekend;

assign is_weekend = day inside { SUN, SAT };

= Workaround code;:

allways_comb is_weekend = day inside { SUN, SAT };

= Conclusion:
- Must use procedural assignment

SYSTEMS INITIATIVE

Packed array of interfaces that
doesn’t start at zero

= Original code:

interface month_if;
logic [4:0] day;
endinterface

month_if calendar_Q4 months[12:10]1Q);

= Workaround code:
month_if calendar_Q4 months[2:0]1(Q);
= Conclusion:

- Some tools mistake [12:10] as a bit slice
- Bit-sliced interface usage is explicitly called out as illegal in the LRM

- Reverting to [n:0] loses its self-documenting appearance

SYSTEMS INITIATIVE

‘define using the ~ syntax as non-
m aC r O IEEE Std 1800-2005 - 23.2

= Original code:

“ifdef VENDOR_SPECIFIC_COVERAGE_TOOL_DEFINE
“define COVERAGE_ON /~ °/ pragma coverage on
“define COVERAGE _OFF / "/ pragma coverage off

“else
“define COVERAGE _ON /" "~/ coverage comment for other tools

“define COVERAGE OFF / ~/ coverage comment for other tools
“endif

= Workaround code;:

~ifdef VENDOR_SPECIFIC_COVERAGE TOOL_DEFINE
“define COVERAGE(cov) /" "/ pragma coverage cov

“else
“define COVERAGE(cov) /" "/ coverage comment for other tools

“endif

= Conclusion:
- No issue with "~ syntax when used in a "define macro

SYSTEMS INITIATIVE

Non-overridden parameter in an
Interface

= Original code:

interface stream_if;
parameter NDATA = 32;
logic [NDATA-1:0] data;
logic rts, rtr;
endinterface

= Workaround code;:

interface stream_if;
logic [31:0] data;
logic rts, rtr;

endinterface

= Conclusion:
- Parameter will throw an error even if the parameter is not overriden

SYSTEMS INITIATIVE

Enumerated interface members
loose their type

= Original code:

typedef enum logic [2:0] { SUNNY, OVERCAST, FOG, RAIN, SNOW } weather_e;
interface weather_report_if;

logic update;

weather_e condition;
endinterface

weather_report_if weather_report();
weather_e current _weather;

always latch begin
it (weather_report._update)

current_weather <= weather_report.condition;
end

= Workaround code;

always latch begin
if (weather_report.update)
current_weather <= weather_e”(weather_report.condition);
end

= Conclusion:
- Re-cast to remind the tool of the member’s type

SYSTEMS INITIATIVE

Enumerated module parameters
assighed to an enumerated
constant

= Original code:
package test case pkg;
typedef enum logic [2:0] { SUN, MON, TUE, WED, THU, FRI, SAT } days e;
endpackage

import test_case_pkg::*;

module test case module #(parameter days_e THIS DAY = SUN)
// Code here..

endmodule

= Workaround code;

import test_case_pkg::*;

module test case module #(parameter days_e THIS DAY = days e (0))
// Code here..

endmodule

= Conclusion:
- Re-cast to remind the tool of the member’s type

SYSTEMS INITIATIVE

Ternary after a for loop

= Original code:
logic [4:0] hour;
logic [1:0] data;

always @(posedge hour_clk or posedge ares)
it (ares)
data <= 1;
hour <= “0;
else begin
for Cint i =0; 1 < 2; i++) data[i] <= ~data[i];
hour <= (hour == 23) ?2 0 : hour + 1; // Tool sees two coverage blocks
end

= Workaround code;:

else begin
hour <= (hour == 23) ?2 0 : hour + 1; // Tool sees one coverage block
for Cint i =0; 1 < 2; i++) data[i] <= ~data[i];

end

= Conclusion:
- Not a parsing issue!
- Probably just a Verilog issue
- Tool creates a superfluous coverage block which is never covered
- Move the for loop after the code

SYSTEMS INITIATIVE

Thank you!

	1_assertions
	Slide Number 1
	Tutorial Overview…
	Part One
	What Is�An Assertion?
	Embedded Verification Checking and Synthesis
	SystemVerilog Has �Two Types of Assertions
	Concurrent Assertions Can�Span Multiple Clock Cycles
	Concurrent Assertions Run in the Background Throughout Simulation
	Concurrent Assertions Only Sample Values on Clock Edges
	SVA Property Blocks and �Sequence Blocks
	Immediate and Concurrent �Assertion Pros and Cons
	When To Use Immediate Assertions,�When To Use Concurrent Assertions
	Assertion Binding
	Embedded Versus Bound �Assertions Pros and Cons
	When To Embed Assertions,�When To Bind-in Assertions
	Part Two
	Design Engineers �Should Add Assertions to RTL!
	Validating Assumptions �On Critical Control Signals
	Validating Assumptions Regarding Value Ranges
	Validating Assumptions �On Pulse Widths
	Validating Parameter Values After Parameter Redefinition
	Eliminating X-Pessimism �and X-Optimism Gotchas
	Self-Checking Interfaces
	Part Three
	SystemVerilog Adds Better �RTL Constructs to Verilog
	Self-Checking �RTL Modeling Blocks
	Self-Checking �Decision Statements
	Self-Checking �Assignment Statements
	Part Four
	Simulation and Synthesis Support for Assertions
	Summary
	Slide Number 32

	2_svd_adoption
	Slide Number 1
	Agenda
	Motivating Factors for SV Adoption
	Timeline of Adoption
	Migration Challenges
	Migration Challenges
	Migration Challenges
	Migration Challenges
	Migration Challenges
	Migration Challenges
	Metrics
	Current Challenges
	Current Challenges
	Current Challenges
	Benefits Gained
	Slide Number 16

	3_no_excuses
	Slide Number 1
	Who is Mike Schaffstein?
	Remember 2005?
	You should emerge from�this tutorial with…
	APPROVAL: Justification
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	PLANNING: Educate Your Team
	Define Your Synthesizable Subset
	My Synthesizable Subset
	DESIGN: Where and When?
	DESIGN: Exploit the language
	EXAMPLE: Port Optimizations
	Example: Port Optimizations (continued)
	EXAMPLE: Port Optimizations (continued)
	EXAMPLE: Port Optimizations (continued)
	EXAMPLE: Port Optimizations (continued)
	EXAMPLE: Port Optimizations (continued)
	EXAMPLE: Falling Short of Greatness
	EXAMPLE: Falling Short ... (continued)
	EXAMPLE: State Machine enum
	EXAMPLE: State Machine enum (continued)
	TOOLS
	TOOLS: Dealing with SV Issues
	TOOLS: Hot Spots for SV Issues
	SV Parsing Issues by Tool Category
	Current SV Parsing Issue Landscape
	Need one more reason?
	Slide Number 31

	3b_sample_code
	Slide Number 1
	APB Example code
	APB Example
	apb_pkg.sv
	other_pkg.sv
	apb_if.sv
	reg_day_mask.sv
	reg_bd_month.sv
	reg_bd_month.sv (continued)
	reg_temps.sv
	reg_temps.sv (continued)
	apb_bridge.sv
	apb_bridge.sv (continued)
	apb_top.sv
	TOOL Workarounds
	Enums as index
	Use of enum in an interface select
	Broadside struct default assignments
	Parameter keyword in parameter port lists
	Loss of type in parameter port lists after an enum
	Macro with open parenthesis on different line
	Use of enum with a genvar for loop
	Casting using $bits as the vector size
	Packed array of a type defined logic vector
	Package import is forgotten
	Enumerated module parameters loose their type when assigned to a struct or interface member
	Enumerated methods�(i.e. .first, .next)
	Use .num method in constant expression
	Modport in instantiation port connectivity
	Implied flop enable to a flop that is always zero
	Enumerated constants as select in array of interfaces
	Unpacked array of interfaces
	Use of $clog2 in parameter definition to override a module
	Generate loops for RAM instances
	Multi-line loops in macros
	`define using the `` syntax in macro
	Inline comments in nested macros
	Use of default assign to struct with enum field
	Reuse of genvar for loop variable
	`begin_keywords/`end_keywords
	Set operator inside used in continuous assignment
	Packed array of interfaces that doesn’t start at zero
	`define using the `` syntax as non-macro
	Non-overridden parameter in an interface
	Enumerated interface members loose their type
	Enumerated module parameters assigned to an enumerated constant
	Ternary after a for loop
	Slide Number 48

