
Reinventing SoC Verification – It Is
about Time
Simon Chang

© 2017 Cadence Design Systems, Inc. All rights reserved. 2

Tutorial Agenda

•  Industry Status and Need for Change
•  Integration Verification with Formal Technology
•  Kicking Verification up a Notch with Multi-Core Simulation
•  Leveraging Hardware: Acceleration, Emulation, and FPGA

Prototyping
•  Automating Test Creation with Portable Stimulus
•  Bringing It All Together: Planning, Management, Coverage

and Debug

© 2017 Cadence Design Systems, Inc. All rights reserved. 3

Tutorial Agenda

•  Industry Status and Need for Change
•  Integration Verification with Formal Technology
•  Kicking Verification up a Notch with Multi-Core Simulation
•  Leveraging Hardware: Acceleration, Emulation, and FPGA

Prototyping
•  Automating Test Creation with Portable Stimulus
•  Bringing It All Together: Planning, Management, Coverage

and Debug

© 2017 Cadence Design Systems, Inc. All rights reserved. 4

Challenges in HW/SW Systems

•  Many IPs
–  Standard I/O

–  WiFi, USB, PCI Express® (PCIe®), etc.

–  System infrastructure
–  Interconnect, interrupts, UART, timers…

–  Differentiators
–  Custom accelerators, modem…

•  Many cores
–  Both symmetric and asymmetric
–  Both homogeneous and heterogeneous

•  Lots of software
–  Part of core functionality

–  Communication stack, DSP software, GPU microcode…

–  User application software infrastructure
–  Android, Linux…

Application Specific Components

SoC interconnect fabric – ARM or ithers

ARM V8 CPUSubsystem

3D
GFX

DSP
A/V

High speed, wired interface peripherals

DDR
3

PHY

Other peripherals

SATA
MIPI

HDMI

WLA
N

LTE Low-speed
peripheral
subsystem

Low speed peripherals

PMU
MIPI
JTA
G

INTC
I2C
SPI

Time
r

GPI
O

Display

UAR
T

Boot
process

or

Modem

CPU

L2 cache

USB3.
0

3.
0
P
H
Y

2.
0
P
H
Y

PCIe
Gen 2,3

PHY

Eth
er
net

PHY

CPU

CPU

L2 cache

A57

Cache coherent fabric

SoC

Software

B
ar

e
m

et
al

so

ftw
ar

e

D
SP

 s
of

tw
ar

e

In
it

So
ftw

ar
e

fo
r

bo
ot

, p
ow

er
,

se
cu

rit
y

 RTOS

Drivers

Communications L2

Communications L1

Firmware / HAL

Communications L3

Operating Systems (OS)

Drivers

Applications

Middleware

Firmware / HAL

Low-Speed
Peripherals

General-
Purpose

Peripherals

High Speed,
Wired Interface

Peripherals

Customer’s
Application-Specific Components

ARM®
Processor
Subsystem

© 2017 Cadence Design Systems, Inc. All rights reserved. 5

Common Customer Use Models Leveraging
Integrated Suite
Enables optimized verification and SW development flows

SystemC® /
Virtual

Prototyping

High-level
Synthesis

Formal
Verification

Simulation Acceleration &
Emulation

FPGA-Based
Prototyping

Solutions: Metric-Driven Verification, ARM-Based Development (Server, Mobile, IoT),
Low Power & Mixed Signal, Functional Safety, TLM Design & Verification

Verification IP

Debug & Analysis

Plan & Management

System-level Use-Case Verification

Acceleration
Acceleration

Workstation

RTL
TB

RTL
Design

Emulation
Emulator

RTL
Design

Emulator

TB
RTL

Design

Virtual Prototype/Palladium Hybrid
Acceleration

Workstation

TLM
RTL

Design

Virtual Prototype/
RTL Sim Mixed VP

Workstation

TLM
RTL

Design

C/C++/FPGA Hybrid
FPGA Board

Workstation

C/C++
RTL

Design

Acceleration/FPGA Hybrid
Acceleration

 RTL
Design

FPGA Board
 RTL

Design

Simulation
Workstation

TB
RTL

Design

FPGA Based Prototyping
FPGA Board

 RTL
Design

TB/RTL

TLM / RTL

TLM / RTL

TLM/RTL RTL/RTL

© 2017 Cadence Design Systems, Inc. All rights reserved. 6

Tutorial Agenda

•  Industry Status and Need for Change
•  Integration Verification with Formal Technology
•  Kicking Verification up a Notch with Multi-Core Simulation
•  Leveraging Hardware: Acceleration, Emulation, and FPGA

Prototyping
•  Automating Test Creation with Portable Stimulus
•  Bringing It All Together: Planning, Management, Coverage

and Debug

© 2017 Cadence Design Systems, Inc. All rights reserved. 7

•  Lint/super-lint are required before designers block go into
verification

•  Formal-based integration “Linting” before integrated
subsystem/system go into system-level verification

•  Similar to RTL linting, many issues can be cleaned up a lot
quicker to enable system-level functional verification

Why SoC Integration Verification

© 2017 Cadence Design Systems, Inc. All rights reserved. 8

What Goes In / What Comes Out

•  System specification (IP-XACT or other format) defining
integration information

–  Direct connections (conditional or unconditional)
–  Indirect connection – how does one block talk to another without a direct connection
–  Address mapping for the different components
–  Control and status registers
–  Low-power descriptions (UPF, CPF, IP-XACT extension)
–  Clock and reset information

•  Verify that the integrated system meets the specifications

© 2017 Cadence Design Systems, Inc. All rights reserved. 9

SoC Integration Verification – What It Is and Is Not

•  It is NOT SoC functional or system verification
•  It verifies that the System level integration specification

matches the RTL
•  For example: Verify that a master is reaching a slave via

expected path, we check:
–  The physical connection along the path
–  The address mapping, mostly to ensure that the transaction passes

through the interconnect
–  The interconnect is configured correctly
–  There is no other paths that the expected path
– Does not verify the full data-integrity

© 2017 Cadence Design Systems, Inc. All rights reserved. 10

The Flow

– Clock and Reset Verification
– Control & Status Register Verification
– Master/Slave Path Verification
– Connectivity Verification

CONN CSR Clock and
Reset

Path
Analysis

RTL Design

Specification
(IPXACT/Other)

© 2017 Cadence Design Systems, Inc. All rights reserved. 11

The Problem: A Tangled Web

SoC	Core	
Pad	Muxing	

0 1

0 1

0 1

IP1	

IP2	

IP3	

IP4	

Mux	Control	

Pads	

IO	Pad	

IO	Pad	
IP5	

IP6	

IP7	

IP8	

0
1

Mux	Control	

1

2

1
2

3

4

1

0 5

1

0 6

Connection Types

Combinational
1.  Direct
2.  Conditional

Pipelined
3.  Fixed latency
4.  Variable latency
5.  Fixed latency and

multiplexing logic
6.  Variable latency and

multiplexing logic

© 2017 Cadence Design Systems, Inc. All rights reserved. 12

The Key: The 3 C’s

•  Proving all connections in the chip are correct
–  In a typical chip there may be 10,000+ connections to verify

•  Traditional simulation methods lack efficient way to exercise
the connections
–  Significant manual effort to apply stimulus

•  Very difficult to assess coverage in a
simulation environment
– Have you really exercised all combinations?

•  Finally, it’s a big challenge to identify whether all connections
are tested by the testbench
– Do you have checks for all connections?

Controllability

Coverage

Completeness

© 2017 Cadence Design Systems, Inc. All rights reserved. 13

The Solution: Formal Analysis

Solving the 3 challenges:
1. Controllability

2. Coverage

3. Completeness

Black-Boxing
By removing unnecessary
logic, we can give the tool

direct access to IP interfaces
to apply stimulus

Formal Verification
The exhaustive nature of
formal analysis ensures a

comprehensive analysis for
the connections being tested

Reverse Connectivity
Automatic RTL analysis

identifies missing checks for
existing connections

© 2017 Cadence Design Systems, Inc. All rights reserved. 14

Problem Statement: Register Verification

•  Critical validation goal of any programmable block is
checking the design matches the register specification
–  Straightforward to verify under ideal conditions (i.e. simple read-write

registers)

•  Time consuming and difficult for more complex cases
– Register interactions
–  Secure access
– Dependency on status update
–  Simultaneous actions

© 2017 Cadence Design Systems, Inc. All rights reserved. 15

Problem Statement: Register Verification (cont.)

•  Proliferation of registers
–  Even small IP blocks can have 100s
– Unit level control & status registers can number in the thousands
–  Automation is key to effectively dealing with large numbers

•  Prove the data integrity of register fields
– Reset values – data read gets reset values until it is written to
– Write values – data read gets values from most recent data write
–  Access types / attributes

© 2017 Cadence Design Systems, Inc. All rights reserved. 16

Exhaustive Register Verification

•  Formal proofs are exhaustive
– Checks for all possible sequences of RD/WRs in any order
– Checks for all register addresses, aliases, and interferences

•  Conceptually, the following non-deterministic trace is
considered by formal for proving address A:

D

Non-deterministic # (zero to infinite) of
RD/WR access to any address except A

Read from address A Write D to address A

re
se

t

Register

Transfer

Expected

Register
Value

Reset value

check

D1

D1

update check

D2

D2

update check

© 2017 Cadence Design Systems, Inc. All rights reserved. 17

SoC Clock and Reset Verification

•  Specification
– Define clocks and reset pins at the top-level
– Which flops get which type of reset
– Obtained from IP-XACT or CSV specification
–  Identify generated clocks, gated clocks

•  SoC Clock and Reset
–  Identify clock/reset drivers and connections between top-level and

block-level
–  Verify the specification
– Help create reset sequence
–  Extract clock and reset connections

© 2017 Cadence Design Systems, Inc. All rights reserved. 18

Path Analysis

•  User provides
– RTL Master and Slave interface

–  ABVIP (standard or custom) instantiations for each port
–  Spec (IP-XACT or CSV/xls)

–  Address ranges for the master/slave agents connected to the fabric
–  Other information like: Interface clock, address bus width, instance of ABVIP for

corresponding port, etc.

•  Tool provides automation
–  Transactions show up at correct destination port (group of covers)
–  Ensure transactions do not show up at unintended destinations

(assertion per unintended destination)
– Create tasks that exercise master/slave permutations containing the

properties above

© 2017 Cadence Design Systems, Inc. All rights reserved. 19

Path Analysis Examples

•  Considering the following example:

Fabric #1

Fabric #2

Master
Agent 1

Slave
Agent 0

Slave
Agent 2

Master
Agent 0

Slave
Agent 1

Slave
Agent 1

Injec?ng	
transac?on	with	
specific	address	

Monitor	that	at	least	
one	transac?on	reaches	

the	des?na?on	

Monitor	that	NO	
transac?on	reaches	
this	des?na?on	

Monitor	that	NO	
transac?on	reaches	
this	des?na?on	

Repeat	for	all	paths	and	address	ranges	

© 2017 Cadence Design Systems, Inc. All rights reserved. 20

Tutorial Agenda

•  Industry Status and Need for Change
•  Integration Verification with Formal Technology
•  Kicking Verification up a Notch with Multi-Core

Simulation
•  Leveraging Hardware: Acceleration, Emulation, and FPGA

Prototyping
•  Automating Test Creation with Portable Stimulus
•  Bringing It All Together: Planning, Management, Coverage

and Debug

© 2017 Cadence Design Systems, Inc. All rights reserved. 21

Does Parallelism Really Require New
Algorithms?
•  In some cases, no

–  For example, a for-loop can sometimes be
broken up to smaller tasks

–  “Embarrassingly parallel algorithms”

•  In other cases, yes
–  Example: sum of a vector of elements

–  Single CPU algorithm: go over
the vector elements one by one
and accumulate them into a
single memory location

–  Parallel CPUs algorithm: do a
“binary tree” sum

© 2017 Cadence Design Systems, Inc. All rights reserved. 22

Multi-Core Isn’t the Only Server Change: Now
Cache Is King

•  Multi-core is not the only thing that’s changed in the last 20
years

•  Cache memory hierarchy has become increasingly
important for performance optimizations

•  Example:
–  In the 90’s: linked-list was considered perfectly fine
–  Today: keeping your elements in a contiguous vector is much better!

•  Careful consideration of modern server architecture is key

© 2017 Cadence Design Systems, Inc. All rights reserved. 23

Why a Paradigm Shift?

•  Optimizing any 20-year-old architecture for new servers is
challenging
– Change expense is high and performance yield is often low – which is

the software headache generally observed
–  From engineering perspective it is also known that all architectures

have a life cycle – the challenge is finding the right circumstance to
trigger that new architecture

•  A new simulation engine, re-architected from scratch, is a
solution

•  Modernization isn’t enough – a different algorithm is required
–  Analyze the dependency graph at a global scale
–  Existing algorithms rely too much on global, cache-inefficient data

structures

© 2017 Cadence Design Systems, Inc. All rights reserved. 24

Parallel Simulation Requires a Paradigm Shift

© 2017 Cadence Design Systems, Inc. All rights reserved. 25

Introducing Xcelium Parallel Simulator

REVOLUTIONARY

Incisive®
Enterprise Simulator

PROVEN

OPTIMIZED

•  2X average single-core speed-up
•  Direct kernel engine integration
•  New randomization engine

3X+ RTL 5X+ Gate 10X+ DFT

High-performance third-generation parallel simulator

© 2017 Cadence Design Systems, Inc. All rights reserved. 26

Xcelium™ Contains RocketSim® Multi-Core
Simulation Technology
New core engine for third generation of simulation

•  Unique compile/elaboration process analyzes each design’s dependency graph
•  Patented and patent-pending technology proven scalable beyond a billion gates
•  Multi-core speed-up over single-core performance

•  Automatically maps
dependency graph
to cores to
maximize speed

•  Users can set
number of cores on
command line
without recompile

Simon Chang, Cadence

© 2017 Cadence Design Systems, Inc. All rights reserved. 27

Xcelium Multi-Core Enables More
Efficient SoC Verification

•  Single-core simulation slows with more
events

•  To compensate, verification teams
narrowed tests

•  But SoC functions operate concurrently
•  Multi-core simulation is more effective with

higher event density

•  Multi-core simulation enables test
methodology better suited for SoC

•  Perspec™ System Verifier can be used
to create concurrent scenarios

•  Creates test alignment between
Xcelium™ multi-core and Palladium®
Z1 acceleration

Concurrent Test
Scenarios Single-Core Multi-Core

1	 0.6 hr 0.2 hr	
2	 1.0 hr	 0.3 hr	
3	 1.4 hr	 0.4 hr	
4	 1.7 hr	 0.5 hr	
5	 2.1 hr	 0.6 hr	

Simulation
Function

Event
Density

SoC HW
Run Time

Single-
Core

Multi-
Core

Multi-
Core

Speedup

Boot
Sequence

1.0 28 ms 16.8 hr 5.7 hr 2.9X

Test
Scenarios

4.3 15 ms 37.3 hr 6.8 hr 5.5X

Overall 2.1 43 ms 54.1 hr 12.5 hr 4.3X

© 2017 Cadence Design Systems, Inc. All rights reserved. 28

Xcelium Summary

Xcelium™ Parallel Simulator, the industry’s first production-ready
third-generation simulator

•  Multi-core engine architected for fast SoC simulation
–  Patented solution analyzes design and selects configuration for speed
–  Provides on-average simulation speed-up of 3X RTL, 5X gate-level, 10X DFT

•  Single-core engine refactored for fast IP simulation
–  Proven engine runs comprehensive set of simulation use cases
–  Provides on average 2X speed-up over Incisive® Enterprise Simulator

•  Productivity features enable efficient verification
–  Innovative solutions on top of fast engines reduce overall project time
–  Provides enhanced smart exclusion flow and parallel multi-core

© 2017 Cadence Design Systems, Inc. All rights reserved. 29

Tutorial Agenda

•  Industry Status and Need for Change
•  Integration Verification with Formal Technology
•  Kicking Verification up a Notch with Multi-Core Simulation
•  Leveraging Hardware: Acceleration, Emulation, and

FPGA Prototyping
•  Automating Test Creation with Portable Stimulus
•  Bringing It All Together: Planning, Management, Coverage

and Debug

29

© 2017 Cadence Design Systems, Inc. All rights reserved. 30

Verification of Different Payload Sizes

Application Specific Components

SoC interconnect fabric

ARM V8 CPUSubsystem

3D
GFX

DSP
A/V

High speed, wired interface peripherals

DDR3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low-speed peripheral

subsystem

Low speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Boot
processor

Modem

CPU

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ether
net

PHY

CPU

CPU

L2 cache

A57

Cache coherent fabric

Low-Speed
Peripherals

General-
Purpose

Peripherals

High Speed,
Wired Interface

Peripherals

Customer’s
Application-Specific Components

Compute
Sub System

CPU
Subsystem

CPU

L2 cache

CPU

CPU

L2 cache

A57

Cache coherent fabric

IP Sub-System SoC / System

Application Specific Components

3D
GFX

DSP
A/V

Boot
processor

Modem Customer’s
Application-Specific IP

CPU

2-16M Gates 32-128M Gates 128-1024M+ Gates

Debug fixes trigger
Re-run

of test suites

Debug fixes trigger
Re-run

of test suites

System-level bugs may trigger
module-level changes (ECOs)

© 2017 Cadence Design Systems, Inc. All rights reserved. 31

There Is No “One Size Fits All”
Verification and software platforms need to interoperate

SDK OS
Simulation

• Highest
speed

• Earliest in the
flow

• Ignore
hardware

Virtual
Platform

• Almost at
speed

• Less
accurate (or
slower)

• Before RTL
• Great to
debug (but
less detail)

• Easy
replication

• Exhaustive
• Finds bugs
early

• Great for IP
• Few apps
scale to SoC

• No SW
execution

HDL
Simulation

• KHz range
• Accurate
• Excellent HW
debug

• Broadly
available

•  Mixed-
abstractions

• Limited SW
execution

Acceleration
Emulation

• MHz Range
• RTL accurate
• After RTL is
available

• Good to debug
with full detail

• Expensive to
replicate

FPGA
Prototype

• 10’s of MHz
• RTL accurate
• After stable
RTL is
available

• OK to debug
• More
expensive
than software
to replicate

Prototyping
Board

• Real time
speed

• Fully accurate
• Post Silicon
• Difficult to
debug

• Sometimes
hard to
replicate

™

Formal
Verification

© 2017 Cadence Design Systems, Inc. All rights reserved. 32

Use Models for Hardware Based Verification

Early software
development

System
validation

HW/SW
integration

HW
regressions

HW verification

•  Performance
•  Cost
•  Native interfaces

•  Performance
•  Debug
•  Transaction I/F

•  Capacity
•  SpeedBridge
•  Transaction I/F

•  Capacity
•  Performance
•  Any interface

•  Fast compile
•  Flexible stimuli
•  Debug
•  Use models

© 2017 Cadence Design Systems, Inc. All rights reserved. 33

Palladium Z1: Core Value Proposition
Bridging the productivity gap

HW/SW
Spec

HW/SW
Spec Prototype /

Si lab test Emulation Chip Field
test

of bugs in
the design

time Block

Block Chip Prototype Silicon
lab test Field test

Traditional
Flow

“Easy” bugs
Bugs that take many cycles
 to be uncovered

Power-aware
verification & analysis

System bugs
HW/SW bugs

Analog / RF bugs

Analog/RF bugs

“Easy” bugs

Palladium® Z1 finds HW/SW bugs while
enabling early system-level validation

Sim-Acc

ROM
Content Drivers / RTOS / Applications Diagnostics

& Firmware

Time to
market

advantage
of 2 to 4
months

© 2017 Cadence Design Systems, Inc. All rights reserved. 34

Emulation Use Models

Performance
benchmarking

Embedded software
profiling

Dynamic power
analysis in a pre &

post Si environment

Fast OS validation
with hybrid

Complementing ICE
with virtualization

System & interface
modeling

Coverage driven
verification

Transaction based
acceleration

Low power
verification with

CPF

Low power
verification with

IEEE1801

Verification
acceleration with

AVIP

Accelerating pre-
silicon SoC power

profiling

© 2017 Cadence Design Systems, Inc. All rights reserved. 35

 Speed FPGA-based

Prototyping

Hardware

Simulation

Software
Emulation

Hardware
Closer to Final Product

Design
Creation

Workload

Emulation & FPGA Co-Exist

100%

0%
Tape-out

Software Development
and System Validation

Test Chip RTL Stable

Hardware Regressions

Acceleration

Palladium®

Series	

In-Circuit Emulation

Protium™
Series	

The roadmap is provided for informational purposes only and does not represent a commitment to deliver any of the features or functionality discussed in the materials.

Hybrid SW Bring-up

© 2017 Cadence Design Systems, Inc. All rights reserved. 36

HW/SW
integration

System
validation

Early software
development

HW
regressions

#1 #2

#3 #4

Prototyping Use Modes

© 2017 Cadence Design Systems, Inc. All rights reserved. 37

Common Compile Flow

•  Reuse of the existing (Palladium®) emulation
environment

–  Clock definition, memory models, clocking mode
(CAKE1/2), scripts

•  No learning of new tools and flows

•  Congruency between emulation and prototyping
–  No guessing about which debug results are correct
–  Going back to emulation for detailed debug and failure

analysis

•  Fast & easy transition from emulation to prototyping

•  Identical language coverage
–  No RTL changes required

Palladium QTDB
Design Libraries

Compile Compile

ASIC RTL

Palladium
Emulation

Protium™
FPGA Prototyping

SpeedBridge
Adapters

© 2017 Cadence Design Systems, Inc. All rights reserved. 38

Time to Prototype

RTL
preparation

Compile
Synthesis

Automatic / manual
Multi-FPGA partitioning Functional model validation In-circuit

bring-up
Memory
remodeling

5 weeks 2 / 4 weeks 4 weeks 2 weeks

3 days 1 day 2 days 5 days

•  No FPGA -specific design/RTL
modifications needed

•  Handling of any clocking structure and any
number of clocks

•  Automatic memory compilation & modeling

•  Fully automatic, multi-FPGA partitioning
•  Optional, manual guidance for performance

optimization

•  Pre FPGA P&R model validation
–  Multiple design integrations per day
–  Avoids time consuming FPGA P&R

runs

•  Fully integrated FPGA P&R
–  Automatic constraint generation
–  Guaranteed P&R success

© 2017 Cadence Design Systems, Inc. All rights reserved. 39

Tutorial Agenda

•  Industry Status and Need for Change
•  Integration Verification with Formal Technology
•  Kicking Verification up a Notch with Multi-Core Simulation
•  Leveraging Hardware: Acceleration, Emulation, and FPGA

Prototyping
•  Automating Test Creation with Portable Stimulus
•  Bringing It All Together: Planning, Management, Coverage

and Debug

© 2017 Cadence Design Systems, Inc. All rights reserved. 40

System-Level Scenarios

•  The whole is greater than the sum of its parts!
–  And so are its bugs...

•  Application use-cases involve multiple IPs interoperating
–  Example – read video off a mass-storage device, decode, split audio

data from video frames, process by dedicated multi-media engines
•  Stress and performance use-cases involve saturated utilization of shared

resources
–  Example – all processors and DMA-enabled controllers access a

certain memory controller in parallel
•  System low-power use-cases need to be crossed with functional

scenarios
•  System coherency of caches/TLBs requires coordinated pattern of

accesses from CPUs and non-processor masters

© 2017 Cadence Design Systems, Inc. All rights reserved. 41

SoC Verification Needs to Address:

Diverse Platforms

Virtual Platform Simulation Emulation FPGA Prototype Silicon Board

Diverse Users

Architect HW
Developer

SW
Developer

Verification
Engineer

SW Test
Engineer

Post-Silicon
Validation
Engineer

Diverse Scopes

(Integration)

IP

Sub-System

OS & Drivers

Bare Metal SW

System on Chip

(HW + SW)

Middleware
(Graphics, Audio,

etc..)

Ve
rti

ca
l R

eu
se

Horizontal Reuse

Use Case Reuse

Application-Specific Components

SoC interconnect fabric

CPU subsystem

3D
GFX

DSP
A/V

High-speed, wired interface peripherals

DDR3

PHY

Other peripherals

SATA

MIPI

HDMI

WLAN

LTE Low-speed peripheral
subsystem

Low-speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Boot
processor

Modem
CPU

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ether
net

PHY

CPU CPU

L2 cache

CPU

Cache coherent fabric

41

© 2017 Cadence Design Systems, Inc. All rights reserved. 42

The Solution: Perspec™ System Verifier

Diverse Platforms

Virtual Platform Simulation Emulation FPGA Prototype Silicon Board

Diverse Users

Architect HW
Developer

SW
Developer

Verification
Engineer

SW Test
Engineer

Post-Silicon
Validation
Engineer

V
er

tic
al

 R
eu

se

Horizontal Reuse

Use Case Reuse

Diverse Scopes
(Integration)

IP

Sub-System

OS & Drivers

Bare Metal SW

System on Chip

(HW + SW)

Middleware
(Graphics, Audio,

etc..)

Abstract Model

3D
GFX

DSP
A/V

Boot
Proc

Comm
Procs

Multi-Cluster
Apps Processors

Many cores

Powerful
Solvers

Multi-Core Verification OS

C test SV test C test Scripts

Mapping to Targets
Perspec™
System Verifier

Reusable Use Cases

Library provides built in content (e.g., coherency stressing)

Generated code Tests capture user intent and use cases

Delivers 10x Productivity Gain

Test
Creation

Self
Checking

Coverage

Debug

Revolution in:

All measurements as compared to hand-generated testcases on previous projects

© 2017 Cadence Design Systems, Inc. All rights reserved. 43

Modeling Abstract System Behavior

TB

SoC

USB controller

USB
VIP

CPU

Bus

GPX Audio

Display controller

Camera controller

CPU
CPU CPU

DDR Controller

DMA MODEM SRAM

Speaker Microphone

action capture {
 output out_mem: mem_buff_t to mem;
 constraint out_mem.data.kind in [IMAGE, VIDEO];
 constraint out_mem.data.resolution in [LOW..MED];
};

SLN

// Mapping to C
extend capture {
 exec body C #:
 capture_video(<(out_mem.addr)>, <(out_mem.length)>);
 end #;
};

C

// Mapping to SV
extend capture {
 exec body SV #:
 `uvm_do_on_with(capture_video, p_sequencer.ace_sequencer,
 {capture_video.addr ==(<(out_mem.addr)>;
 capture_video.length == <(out_mem.length)>;});
 end #;
};

SV

Realization #1 (C):
call existing SW drivers

Realization #2 (SV):
call existing SW drivers

© 2017 Cadence Design Systems, Inc. All rights reserved. 44

Modeling Abstract System Behavior

TB

SoC

USB controller

USB
VIP

CPU

Bus

GPX Audio

Display controller

Camera controller

CPU
CPU CPU

DDR Controller

DMA MODEM SRAM

Speaker Microphone

child channel_l: lock[2];

action transfer {
 input in_mem: mem_buff_t from mem;
 output out_mem: mem_buff_t to mem;
 channel_busy: to channel_l;
 constraint default in_mem.data.* == out_mem.data.*;
};

SLN

© 2017 Cadence Design Systems, Inc. All rights reserved. 45

Productivity for System Verification

Automatically and exhaustively complete
the goals into full legal scenarios

TB

SoC

USB
controller

USB
VIP

CPU

Bus

GPX Audio

Display
controller

Camera
controller

CPU CPU CPU
DDR Controller

DMA MODEM SRAM

Speaker Microphone

Desired scenario:
Decode video from the DDR
and show on the display

SLN
Models

UML-like view
of all paths for scenario,
created by solver

Perspec solver checks
feasibility of goals

statically

Auto-Completion of Partial Scenarios

© 2017 Cadence Design Systems, Inc. All rights reserved. 46

Use-Case Creation with Operators
Scenario Creation

4 buffer initializations

50 data mover actions:
- either CPU copy ops
- or DMA transfers

Solver: check feasibility
 and randomize
data and control flow

Schedule elements
Data elements

User scenario
specification

Check the 4 buffers at
their final locations

Achieve massive high-quality
system scenarios

© 2017 Cadence Design Systems, Inc. All rights reserved. 47

Runtime (RT) Control Flow

•  Motivation
–  In post-silicon and ICE, we may need to run billions of actions
–  On all platforms, code may need to react to the state of the DUT

•  RT operators enable scalability of tests for fast platforms
–  Combine intelligent solving with RT variations to achieve large scenarios
–  Reactivity and control flow in run-time
–  Stress condensed scenarios with minimal code size

•  Enhanced ROI for user’s fast platforms

action cond_test {
 compound {
 > s: sample_state;
 > runtime_if (s.val > 10) {
 > then: serial {
 > A;
 > B;
 };
 > else: serial {
 > C;
 > D;
 };
 };
 };
};

solve

Sub-activities under
conditional execution

branches

Rules are statically
guaranteed for all
possible execution

flows

Example:

runtime if

© 2017 Cadence Design Systems, Inc. All rights reserved. 48

Portable Stimulus Usage Flow

Abstract Debug
Environment

Debuggers
(C/Design debuggers, etc.) Abstract Use-Case

Composer

Perspec™ Engine

Spec-Driven
 Model

Resources,
actions, C code

templates

C Test

SV/e/C Test

C Test

C Test

Perspec
Libraries

Coverage Analysis
Of Use Case

Use Case

Modeling 1

 Scenarios 2

 Test generation 3

 Run on multiple
 platforms 4

 Debug 5

© 2017 Cadence Design Systems, Inc. All rights reserved. 49

Productivity from Built-In Content Libraries

•  Requirements/opportunities:
– Much of the SoC’s logic is modeled the same way

–  It is possible to model the generic aspects of an SoC
– Consistent coding style and methodology can improve readability and

reuse
– Can build libraries for cache, distributed virtual memory and low

power logic

•  Cadence libraries

© 2017 Cadence Design Systems, Inc. All rights reserved. 50

Tutorial Agenda

•  Industry Status and Need for Change
•  Integration Verification with Formal Technology
•  Kicking Verification up a Notch with Multi-Core Simulation
•  Leveraging Hardware: Acceleration, Emulation, and FPGA

Prototyping
•  Automating Test Creation with Portable Stimulus
•  Bringing It All Together: Planning, Management,

Coverage and Debug

© 2017 Cadence Design Systems, Inc. All rights reserved. 51

Debug Strategic Direction

•  Provide the most productive debug
tool in the industry by innovating
–  Patented Root Cause Analysis (RCA)
–  Smartlog identifies point of failure and

more …
–  Leveraging market leading JasperGold®

Formal technology in RTL debug
–  Optimized debug solution for multi-core

simulation debug

•  Significantly reduces debug effort
via faster time to root cause
–  Full context views with one-click to point

of interest
–  Synchronized waveform and source

views
–  RCA to identify most likely causes

RCA
Debug Sim Code

Faster time to bug found

Debug Flow

Bug found
DB

Root Cause Analysis (RCA):
Guided debug process and
easy navigation to points of
interest

© 2017 Cadence Design Systems, Inc. All rights reserved. 52

Saving debug time using innovative technologies

•  Patented root cause analysis and data
exploration speeds debug

•  Formal technology powers expression calculator
for “signal/assertion prototyping”

•  Modern multi-threaded GUI prevents freezing on
single operations

•  Auto recognition of UVM errors to set debug
starting point

•  Pre-indexed, dedicated debug database for
performance and scalability

•  Smartlog of both SV and $display messages SV
with single-click navigation to source and
execution location

© 2017 Cadence Design Systems, Inc. All rights reserved. 53

Processor Trace

ARM
Tarmac

ARM
Tarmac

SW

1. Compile and run

HWTrace

R
est of the D

esign

Waveform
Database

Indago DB

Indago
ESWD
Engine

2. Generate Indago
ESWD Database

ESW Trace

3. Indago ESWD App

Embedded Software Debug Flow and Important
Features

•  Complete Context of SW execution
–  Timed view of SW source code execution by line

–  For all cores and all images

–  Source code lines executed
–  Navigate to next or last execution

•  View of Memory from SW perspective
–  Memory view recorded based on processor

register, instruction and memory transactions

•  Ability to create custom visualization for
faster debug
–  Calculated message – custom print of values and

expressions on execution of any line of code
–  Color coded data patterns show in all source

displays and waveform displays

CPU

CPU

© 2017 Cadence Design Systems, Inc. All rights reserved. 54

Protocol Debug Flow and Important Features

•  Hierarchy view
–  Visibility into errors and warnings on

all VIP instances
–  One-click navigation to error or

warning location

•  Smartlog
–  Messages have full execution scope

and filtering

•  Channel viewer
–  Visualization of protocol traffic
–  Highlight data resulting from specific

command

•  Life Story
–  How object changes during

simulation
–  For transactions or statemachines

© 2017 Cadence Design Systems, Inc. All rights reserved. 55

Portable Stimulus Debug Flow and Important Features

•  UML activity Diagram visualization of multi-threaded test scenarios

•  Waveform visualization of action executions in time by core

•  Smartlog of all all action activations and completions

© 2017 Cadence Design Systems, Inc. All rights reserved. 56

Indago Vision: The most productive debug tool in
the industry

•  4 apps exist today

•  Common platform with apps addressing specific debug tasks
•  Indago is core design debug (RTL,GL,TB, LP, MCE) and common

debug GUI

… with more features and apps on the way

more planned …

Palladium®
EMULATION

Xcelium™
SIMULATION

Protium™
FPGA PROTOTYPE

Indago

Embedded
SW

Debug

Protocol
Debug

Portable
Stimulus
Debug

Debug
Analyzer

aka
Indago

Mixed
Signal
Debug

Existing Apps
TB, RTL/GL,

LP (EA)

Embedded SW with
synchronized HW

Interface protocol
functional validation

SoC-level software
scenario debugging

MCE
Debug
[EA Q2]

Palladium
Debug

© 2017 Cadence Design Systems, Inc. All rights reserved. 57

•  Quickly establish
test area

•  Take credit / track
designers work

•  Effective test
driven verification
environment

Getting Started with Metric-Driven Verification

MDV Investment Options

Constrained
Random

Coverage
Driven

A
ut

om
at

io
n

Ef
fo

rt

Productivity Benefits

Test
Coverage

Code
Coverage

Plan
Based

Weeks Months

x

2x

3x

Functional
Testing

Advanced
Verification

DUT

Functional

Code Test

Test Driven
Verification

Days

•  More effort, but
more effective if
resources permit

•  Leverages
advanced planning
technology

•  Greater ROI

Users can invest incrementally
or all at once when over-

hauling the complete
verification environment

© 2017 Cadence Design Systems, Inc. All rights reserved. 58

Metric-Driven Signoff
Quality via multi-engine metrics aggregated in vManager, IP to SoC

Verification
Plan

Construct

Execute

Measure &
Analysis

Signoff
?

Done

•  Code coverage
•  Assertions
•  IP integration
•  Mixed signal integration

Design
quality •  Power management

•  Interconnect performance
•  Protocol compliance
•  Requirement traceability

System
quality •  Web-based dashboard

•  Feature based vPlans
•  Automated rollup / tracking

Management
visibility

© 2017 Cadence Design Systems, Inc. All rights reserved. 59

vPlan

Construct

Execute

Measure
&

Analysis

Plan-Based Multi-Engine Verification from
Cadence – Complete!

Metrics
properties

checks
assertions

coverage

Hardware

Software

Interconnect
Workbench

Palladium® HW
Assisted

AMS - DMS
Verification

CPF / UPF LP
Verification

JasperGold ®
Formal

Xcelium™
Simulation

Stratus™ HLS
Verification

IFSS
Functional Safety

faults

IndagoTM

Signoff
?

vManager™
Reports

Don
e

VDB

Verification
Database

Perspec

© 2017 Cadence Design Systems, Inc. All rights reserved. 60

What an Integrated Metric-Driven Signoff
Portal Looks Like

SIMULATION FORMAL MIXED SIGNAL ACCELERATION

Multiple
Projects

Multiple
Engines

Multiple Users

Bugs
Failures
Regressions
Coverage
User Defined

Verification Signoff Data
across Multiple Sites

© 2017 Cadence Design Systems, Inc. All rights reserved. 61

Cadence Verification Suite

•  Best-in-class engines

•  Flow-driven engine
integrations

•  Differentiated and

comprehensive solutions

© 2017 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks
are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks are the property of their respective owners.

