Universal Verification Methodology
(UVM) 1.0 Class Reference

February 2011

Copyright© 2010 - 2011 Accellera. All rights reserved.
Accellera Organization, 1370 Trancas Street #163, Napa, CA 94558, USA.

Notices

Accellera Standar ds documents are devel oped within Accellera and the Technical Committees of Accellera
Organization, Inc. Accellera develops its standards through a consensus development process, approved by
its members and board of directors, which brings together volunteers representing varied viewpoints and
interests to achieve the final product. Volunteers are not necessarily members of Accelleraand serve without
compensation. While Accellera administers the process and establishes rules to promote fairness in the con-
sensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any
of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera Standards documents are supplied “AS|1S.”

The existence of an Accellera Standard does not imply that there are no other waysto produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Further-
more, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
mine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellerais not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of acompetent professional in determining the exercise of reasonable
carein any given circumstances.

Interpretations. Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellerawill initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
sus of concerned interests, it isimportant to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
able to provide an instant response to interpretation requests except in those cases where the matter has pre-
viously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
bership affiliation with Accellera. Suggestions for changesin documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Organization
1370 Trancas Street #163
Napa, CA 94558

USA

UVM 1.0 Class Reference Front-2

Note: Attention is called to the possibility that implementation of this standard may require use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rightsin connection therewith. Accellera shall not
be responsible for identifying patents for which alicense may be required by an Accellera standard
or for conducting inquiriesinto the legal validity or scope of those patents that are brought to its
attention.

Accellerais the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individua standard for internal or personal use must be granted
by Accellera Organization, Inc., provided that permission is obtained from and any required fee is paid to
Accellera. To arrange for authorization please contact Lynn Horobin, Accellera, 1370 Trancas Street #163,
Napa, CA 94558, phone (707) 251-9977, e-mail lynn@accellera.org. Permission to photocopy portions of
any individual standard for educational classroom use can aso be obtained from Accellera.

Suggestions for improvements to the UVM 1.0 Class Reference are welcome. They should be sent to the
VIP emalil reflector

vip-tc@lists.accellera.org
The current Working Group’s website addressis

www.accellera.org/activities/vip

UVM 1.0 Class Reference Front-3

Contents

UVM 1.0 Class Reference

L0 Y= = 1
00 - 1
PUNDOSE . .o e e 1

NOrMative REFEIENCESttt e e 2

Definitions, Acronyms, and Abbreviations 2
DEfiNITIONS. . . .\ttt 2
Acronymsand Abbreviations e 3

Classesand UtIlITIESot 5

B . . 8
OV IV BV . . . oottt e e e e 8
UVITLVOIO. ottt et e e e e e e e e e e e e e e e 9
UVIT OB Ot . . oo 10
UVIM_EFANSACION . ..ottt e e e e e e e e e e e e e 24
017 0 T 0 30
UVIM POM DaSe o 33
PRaSI NG . e 41

REDOItING . . ot 65
OVEIVIBIV . . . oottt e e e e e e e e e e e 65
UVIM_report_ObjeCt. 66
uvmereport_handler 75
01V T = oo A== Y 78
UVIM_FEPOI_CaICNEr . . o oot e e e 82

At OrY . o e e 88
@Y= < 88
01V ¢ I =01 Y/ 89
UV FaCtOrY. . oo 95

Configuration and RESOUICES. oo i ittt e e e ettt 106
L@ Y= < 106
01V T =50 0! 107
UVIM_IeSoUrce Ab . ..o e 125
uvm_config db 128

SOgUE IO S .« o vttt et et e e e 131
L@ Y= < 131
UVIM SEOUENCEN _DaSE. . o .ttt et ettt e e e e e e e e 133
UVM_SeqUENCEr_Param_base. e 139

Front-4

UVM 1.0 Class Reference

UV SEOUEBNCES .« v vt vttt ettt et e et et e e e e et e 143

UV PUSH SBOUENCEY . .ottt ittt ettt ettt e 145
SBOUENICES. . . v ot vttt ettt e e e 147
OV IV BV . .. ottt e e e 147
UV SEOUENCE 11O . ottt e ettt et e 148
UV SEQUENCE DaSe . . .ot e e e 153
UV SEOUEBNCE . .« v vt vttt et ettt et e e e e e e et e 165
SYNCHIONIZAliONo e 167
OV IV BV . . . oottt e e e e 167
U1V =Y | 168
uvm event callback 172
01V 0 T o = 174
UV OB Ot ON. . . oo e 177
UVM_heartbeat 187
(0000117 1= £ 190
L@ Y= < 190
UV P00L .ttt e e 191
UVIML _QUEUE .« . ottt ettt et e et e e e e e e e e e e e e et 196
... 199
OV IV BV . . sttt e e e e 199
T . e 201
L@ Y= < 201
T eSS oo 209
POt o 213
EXPOI S, .« et 216
DS ot 219
ANAlYSIS PO S . . o 222
FIRO o e 225
FIFO BaSE . . o oottt 229
Request-Response Channel e e 232
T M L 237
L0 Y= < 237
GENENiC Payload.ot e 239
I aCES . . . ot 253
SOCKELS. . . vttt 257
POt S, . 264

Front-5

UVM 1.0 Class Reference

DS, et e e 268
MaCrOS. . o 272
SOCKEL BaSE . . . o .ttt 273
Temporal Decouplingt e 277
SEOUENCEN POITS . . .ottt e e e e 282
uvm_seq item pull_port. . ..o e 282
UV SOr i baSE . .. o 284
L]0/ o0 T o S 288
OV IV BV . . . ottt e e e 288
UVIMN_COMIPONENE & ettt ettt e e e e e e et et e e 289
UV CallbaCK ... 317
UV S o 325
L8110 0 = 01 327
81V =0 < | 328
01Y7 4T 0070 0 (o) 330
UVIM_SCOrED0AIA . ..ottt e 331
UV ANV e et e e e e 332
UV PUSH AFVEr . . o e 334
uvm_random StMUIUSo e 336
UV SUDSCII DB .« o 338
LO00] 101072 =1 [0 1= 340
L@ Y= < 340
UVIM_iN_Order _COMPAIatoro vttt ettt e et e e ettt ettt e e e 341
uvm_algorithmiC_Comparatorot e et e e 344
0177 4 1o 7= 347
UVIM POl CIES ..ot 349
1Y "o = 352
REPOI MaCIOS. . . oo ot ettt e e e e 352
Component and ObJeCtot e 355
Sequenceand DO ACHIONttt e 377
CallbaCKS . .. 382
T T L 386
REgI SN S o ot 391

Front-6

UVM 1.0 Class Reference

POlICIES. . .t e 392

OV IV BV . . . ettt e e e 392
01V 0 T o T 1= 393
U1V oo 0] = 404
017 T = o0 ([408
UV PBCK T . . .o e e 411
REgIS e LAy el ..o 416
OV IV BV .« . . ettt e e 416
GlobalS. . . . 417
Register MOElo 424
BIOCKS . . oo 424
AdAreSS M aDS . . .ot 439
Register Files ... 448
RO S OIS . .ottt e 452
IS, . o 469
Y= 0o = 480
INIrECt REGISIErS. . . vttt et e e 495
FIFO REgISI NS . ottt e e e e 497
VinUal REgISI S . . .ot 501
Virtual Fields. 513
CaAllbaCKS . . . 521
Memory AllOCation Mgl e 529
DUT INtegratiON. . ..ottt e e e e e e e e e e e 539
Generic Register Operation DesCriptOrS . . . v v vttt et et 539
Register Model Adaptort e 545
REIStEr SEOUENCES vt ettt ettt 549
BaCKAOOrS 560
HDL ACCESS . . ittt et e e e e e e e 564
TS SEgUENCES . . ottt ettt e e 566
RUN AL BUIE-IN. . e 566
RESEt . . o 568
Register Bit Bash. e 570
RO ST A CCESS . it vttt et ittt e e 573
Shared ACCESSot 577
M EIMOIY A CCESS. . . oottt e e 582

Front-7

UVM 1.0 Class Reference

Memory WalK e 585

HDL Paths Checking.o e e e e et e e 589
Command LiNe PrOCESSOottt et e et e e e 591
OV IV BV . . . oottt et e e e 591
UV CMAIINE PrOCESSON & . o v vttt ettt e ettt et ettt et 592
GlobalS 599
Types, Enums, PoliCIES 599
GlobalS. . .. 607
Bibl Ography 612
30 613

Front-8

Overview

Verification has evolved into a complex project that often spans internal and external teams, but the
discontinuity associated with multiple, incompatible methodologies among those teams has limited
productivity. The Universal Verification Methodology (UVM) 1.0 Class Reference addresses verification
complexity and interoperability within companies and throughout the electronics industry for both novice
and advanced teams while also providing consistency. While UVM is revolutionary, being the first
verification methodology to be standardized, it is also evolutionary, as it is built on the Open Verification
Methodology (OV M), which combined the Advanced Verification Methodology (AVM) with the Universal
Reuse Methodology (URM) and concepts from the e Reuse Methodology (eRM). Furthermore, UVM also
infuses concepts and code from the Verification Methodology Manua (VMM), plus the collective
experience and knowledge of the 300+ members of the Accellera Verification IP Technical Subcommittee
(VIP-TSC) to help standardize verification methodol ogy.

Scope

The UVM application programming interface (API) defines a standard for the creation, integration, and
extension of UVM Verification Components (UVCs) and verification environments that scale from block to
system. The UVM 1.0 Class Reference is independent of any specific design processes and is complete for
the construction of verification environments. The generator to connect register abstractions, many of which
are captured using IP-XACT (IEEE Std 1685™), is not part of the standard, although a register package is.

Purpose

The purpose of the UVM 1.0 Class Reference is to enable verification interoperability throughout the
electronics ecosystem. To further that goal, a reference implementation will be made available, along with
the UVM 1.0 User’s Guide. While these materials are neither required to implement UVM, nor considered
part of the standard, they help provide consistency when the UVM 1.0 Class Referenceis applied and further
enable UVM to achieve its purpose.

UVM 1.0 Class Reference

Normative References

The following referenced documents are indispensable for the application of this specification (i.e., they
must be understood and used, so each referenced document is cited in text and its relationship to this
document is explained). For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments or corrigenda) applies.

IEEE Std 1800™, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Verifica-
tion Language.L 2

Definitions, Acronyms, and Abbreviations

For the purposes of this document, the following terms and definitions apply. The IEEE Sandards
Dictionary: Glossary of Terms & Defi nitions® should be referenced for terms not defined in this chapter.

Definitions

agent: An abstract container used to emulate and verify DUT devices, agents encapsulate a driver,
sequencer, and monitor.

blocking: An interface where tasks block execution until they complete. See also: non blocking.
component: A piece of VIP that provides functionality and interfaces. Also referred to as atransactor.
consumer: A verification component that receives transactions from another component.

driver: A component responsible for executing or otherwise processing transactions, usually interacting
with the device under test (DUT) to do so.

environment: The container object that defines the testbench topology.

export: A transaction level modeling (TLM) interface that provides the implementation of methods used for
communication. Used in UVM to connect to a port.

factory method: A classic software design pattern used to create generic code by deferring, until run time,
the exact specification of the object to be created.

foreign methodology: A verification methodology that is different from the methodology being used for the
majority of the verification environment.

generator: A verification component that provides transactions to another component. Also referred to asa
producer.

monitor: A passive entity that samples DUT signals, but does not drive them.

non blocking: A call that returnsimmediately. See also: blocking.

1| EEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).

2The |EEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
3The |IEEE Standards Dictionary: Glossary of Terms & Definitionsis available at http://shop.ieee.org/.

UVM 1.0 Class Reference

port: A TLM interface that defines the set of methods used for communication. Used in UVM to connect to
an export.

primary (host) methodology: The methodology that manages the top-level operation of the verification
environment and with which the user/integrator is presumably more familiar.

request: A transaction that provides information to initiate the processing of a particular operation.
response: A transaction that provides information about the completion or status of a particular operation.

scoreboard: The mechanism used to dynamically predict the response of the design and check the observed
response against the predicted response. Usually refers to the entire dynamic response-checking structure.

sequence: An UVM object that procedurally defines a set of transactionsto be executed and/or controls the
execution of other sequences.

sequencer: An advanced stimulus generator which executes sequences that define the transactions pro-
vided to the driver for execution.

test: Specific customization of an environment to exercise required functionality of the DUT.

testbench: The structural definition of a set of verification components used to verify aDUT. Also referred
to as a verification environment.

transaction: A class instance that encapsulates information used to communicate between two or more
components.

transactor : See component.

virtual sequence: A conceptua term for a sequence that controls the execution of sequences on other
sequencers.

Acronyms and Abbreviations

AP application programming interface
CDV coverage-driven verification
CBCL common base class library

CLI command line interface

DUT device under test

DUV device under verification

EDA electronic design automation

FIFO first-in, first-out

HDL hardware description language

HVL high-level verification language

UVM 1.0 Class Reference

OSClI

TLM

uvC

UVM

VIP

UVM 1.0 Class Reference

intellectual property

Open SystemC Initiative

transaction level modeling

UVM Verification Component
Universal Verification Methodol ogy

verification intellectual property

UVM Class Reference

The UVM Class Library provides the building blocks needed to quickly develop well-
constructed and reusable verification components and test environments in
SystemVerilog.

This UVM Class Reference provides detailed reference information for each user-visible
class in the UVM library. For additional information on using UVM, see the UVM User’s
Guide located in the top level directory within the UVM Kkit.

We divide the UVM classes and utilities into categories pertaining to their role or
function. A more detailed overview of each category-- and the classes comprising them--
can be found in the menu at left.

Globals This category defines a small list of types,
variables, functions, and tasks defined in the
uvm_pkg scope. These items are accessible
from any scope that imports the uvm_pkg. See
Types and Enumerations and Globals for details.

Base This basic building blocks for all environments
are components, which do the actual work,
transactions, which convey information between
components, and ports, which provide the
interfaces used to convey transactions. The
UVM’s core base classes provide these building
blocks. See Core Base Classes for more
information.

Reporting The reporting classes provide a facility for
issuing reports (messages) with consistent
formatting and configurable side effects, such
as logging to a file or exiting simulation. Users
can also filter out reports based on their
verbosity , unique ID, or severity. See
Reporting Classes for more information.

Factory As the name implies, the UVM factory is used to
manufacture (create) UVM objects and
components. Users can configure the factory to
produce an object of a given type on a global
or instance basis. Use of the factory allows
dynamically configurable component hierarchies
and object substitutions without having to
modify their code and without breaking
encapsulation. See Factory Classes for details.

Configuration and Resources The Configuration and Resource Classes are a
set of classes which provide a configuration
database. The configuration database is used to
store and retrieve both configuration time and
run time properties.

Sychronization The UVM provides event and barrier
synchronization classes for process
synchronization. See Synchronization Classes
for more information.

Containers The Container Classes are type parameterized
datastructures which provide queue and pool
services. The class based queue and pool types
allow for efficient sharing of the datastructures
compared with their SystemVerilog built-in

UVM 1.0 Class Reference

Policies

TLM

Components

Sequencers

Sequences

Macros

Register Layer

Command Line Processor

UVM 1.0 Class Reference

counterparts.

Each of UVM's policy classes perform a specific
task for uvm_object-based objects: printing,
comparing, recording, packing, and unpacking.
They are implemented separately from
uvm_object so that users can plug in different
ways to print, compare, etc. without modifying
the object class being operated on. The user
can simply apply a different printer or compare
“policy” to change how an object is printed or
compared. See Policy Classes for more
information.

The UVM TLM library defines several abstract,
transaction-level interfaces and the ports and
exports that facilitate their use. Each TLM
interface consists of one or more methods used
to transport data, typically whole transactions
(objects) at a time. Component designs that
use TLM ports and exports to communicate are
inherently more reusable, interoperable, and
modular. See TLM Interfaces for details.

Components form the foundation of the UVM.
They encapsulate behavior of drivers,
scoreboards, and other objects in a testbench.
The UVM library provides a set of predefined
component types, all derived directly or
indirectly from uvm_component. See
Predefined Component Classes for more
information.

The sequencer serves as an arbiter for
controlling transaction flow from multiple
stimulus generators. More specifically, the
sequencer controls the flow of
uvm_sequence_item-based transactions
generated by one or more uvm_sequence
#(REQ,RSP)-based sequences. See Sequencer
Classes for more information.

Sequences encapsulate user-defined procedures
that generate multiple uvm_sequence_item-
based transactions. Such sequences can be
reused, extended, randomized, and combined
sequentially and hierarchically in interesting
ways to produce realistic stimulus to your DUT.
See Sequence Classes for more information.

The UVM provides several macros to help
increase user productivity. See the set of
macro categories in the main menu for a
complete list of macros for Reporting,
Components, Objects, Sequences, Callbacks,
TLM and Registers.

The Register abstraction classes, when properly
extended, abstract the read/write operations to
registers and memories in a design-under-
verification. See Register Layer for more
information.

The command line processor provides a general
interface to the command line arguments that

were provided for the given simulation. The
capabilities are detailed in the
uvm_cmdline_processor section.

Summary

UVM Class Reference

The UVM Class Library provides the building blocks needed to quickly develop
well-constructed and reusable verification components and test environments in
SystemVerilog.

UVM 1.0 Class Reference

Core Base Classes

The UVM library defines a set of base classes and utilities that facilitate the design of
modular, scalable, reusable verification environments.

The basic building blocks for all environments are components and the transactions they
use to communicate. The UVM provides base classes for these, as shown below.

[uvm_vioid |
| uvm_object |
Iu-.-rn_regmt_nbject | [uym_transaction

| uvm_component | user transaction

User component

e uvm_object - All components and transactions derive from uvm_object, which
defines an interface of core class-based operations: create, copy, compare, print,
sprint, record, etc. It also defines interfaces for instance identification (name, type
name, unique id, etc.) and random seeding.

e uvm_component - The uvm_component class is the root base class for all UVYM
components. Components are quasi-static objects that exist throughout
simulation. This allows them to establish structural hierarchy much like modules
and program blocks. Every component is uniquely addressable via a hierarchical
path name, e.g. “envl.pcil.master3.driver”. The uvm_component also defines a
phased test flow that components follow during the course of simulation. Each
phase-- build, connect, run, etc.-- is defined by a callback that is executed in
precise order. Finally, the uvm_component also defines configuration, reporting,
transaction recording, and factory interfaces.

e uvm_transaction - The uvm_transaction is the root base class for UVM
transactions, which, unlike uvm_components, are transient in nature. It extends
uvm_object to include a timing and recording interface. Simple transactions can
derive directly from uvm_transaction, while sequence-enabled transactions derive
from uvm_sequence_item.

e uvm_root - The uvm_root class is special uvm_component that serves as the top-
level component for all UVM components, provides phasing control for all UVM
components, and other global services.

Summary
Core Base Classes

The UVM library defines a set of base classes and utilities that facilitate the
design of modular, scalable, reusable verification environments.

UVM 1.0 Class Reference

The uvm_void class is the base class for all UVM classes. It is an abstract class with no
data members or functions. It allows for generic containers of objects to be created,
similar to a void pointer in the C programming language. User classes derived directly
from uvm_void inherit none of the UVM functionality, but such classes may be placed in
uvm_void-typed containers along with other UVM objects.

Summary

uvm_void

The uvm_void class is the base class for all UVM classes.

UVM 1.0 Class Reference

The uvm_object class is the base class for all UVM data and hierarchical classes. Its
primary role is to define a set of methods for such common operations as create, copy,
compare, print, and record. Classes deriving from uvm_object must implement the pure
virtual methods such as create and get_type_name.

Summary

uvm_object

The uvm_object class is the base class for all UVM data and hierarchical classes.

CLass HIERARCHY

uvm_void

uvm_object

CLass DECLARATION

virtual class uvm_object extends uvm void

new

SEEDING
use_uvm_seeding

reseed

IDENTIFICATION
set_name

get_name

get_full_name
get_inst_id
get_inst_count

get_type
get_object_type
get_type_name

CREATION
create

clone

PRINTING
print

sprint

do_print

UVM 1.0 Class Reference

Creates a new uvm_object with the given instance name.

This bit enables or disables the UVM seeding
mechanism.

Calls srandom on the object to reseed the object using
the UVM seeding mechanism, which sets the seed based
on type name and instance name instead of based on
instance position in a thread.

Sets the instance name of this object, overwriting any
previously given name.

Returns the name of the object, as provided by the
name argument in the new constructor or set_name
method.

Returns the full hierarchical name of this object.

Returns the object’s unique, numeric instance identifier.
Returns the current value of the instance counter, which
represents the total nhumber of uvm_object-based
objects that have been allocated in simulation.

Returns the type-proxy (wrapper) for this object.
Returns the type-proxy (wrapper) for this object.

This function returns the type name of the object, which
is typically the type identifier enclosed in quotes.

The create method allocates a new object of the same
type as this object and returns it via a base uvm_object
handle.

The clone method creates and returns an exact copy of
this object.

The print method deep-prints this object’s properties in
a format and manner governed by the given printer
argument; if the printer argument is not provided, the
global uvm_default_printer is used.

The sprint method works just like the print method,
except the output is returned in a string rather than
displayed.

The do_print method is the user-definable hook called
by print and sprint that allows users to customize what
gets printed or sprinted beyond the field information

10

provided by the "uvm_field_* macros, Utility and Field
Macros for Components and Objects.

convert2string This virtual function is a user-definable hook, called
directly by the user, that allows users to provide object
information in the form of a string.

RECORDING
record The record method deep-records this object’s properties
according to an optional recorder policy.
do_record The do_record method is the user-definable hook called
by the record method.
CorYING
copy The copy method returns a deep copy of this object.
do_copy The do_copy method is the user-definable hook called
by the copy method.
COMPARING
compare Deep compares members of this data object with those

of the object provided in the rhs (right-hand side)
argument, returning 1 on a match, 0 othewise.

do_compare The do_compare method is the user-definable hook
called by the compare method.

PAckinG
pack
pack_bytes
pack_ints The pack methods bitwise-concatenate this object’s
properties into an array of bits, bytes, or ints.
do_pack The do_pack method is the user-definable hook called
by the pack methods.
UNPACKING
unpack
unpack_bytes
unpack_ints The unpack methods extract property values from an
array of bits, bytes, or ints.
do_unpack The do_unpack method is the user-definable hook called
by the unpack method.
CONFIGURATION

set_int_local

set_string_local

set_object_local These methods provide write access to integral, string,
and uvm_object-based properties indexed by a
field_name string.

new

function new (string name)

Creates a new uvm_object with the given instance name. If name is not supplied, the
object is unnamed.

SEEDING

use_uvm_seeding

static bit use_uvm_seeding = 1

This bit enables or disables the UVM seeding mechanism. It globally affects the
operation of the reseed method.

UVM 1.0 Class Reference 11

When enabled, UVM-based objects are seeded based on their type and full hierarchical
name rather than allocation order. This improves random stability for objects whose
instance names are unique across each type. The uvm_component class is an example
of a type that has a unique instance name.

reseed

function void reseed ()

Calls srandom on the object to reseed the object using the UVM seeding mechanism,
which sets the seed based on type name and instance name instead of based on
instance position in a thread.

If the use_uvm_seeding static variable is set to 0, then reseed() does not perform any
function.

IDENTIFICATION

set_name

virtual function void set_name (string name)

Sets the instance name of this object, overwriting any previously given name.

get_name

virtual function string get _name

Returns the name of the object, as provided by the name argument in the new
constructor or set_name method.

get_full_name

virtual function string get_full_name

Returns the full hierarchical name of this object. The default implementation is the same
as get_name, as uvm_objects do not inherently possess hierarchy.

Objects possessing hierarchy, such as uvm_components, override the default
implementation. Other objects might be associated with component hierarchy but are
not themselves components. For example, uvm_sequence #(REQ,RSP) classes are
typically associated with a uvm_sequencer #(REQ,RSP). In this case, it is useful to
override get_full_name to return the sequencer’s full name concatenated with the
sequence’s name. This provides the sequence a full context, which is useful when
debugging.

get_inst_id

virtual function int get_inst_id O

UVM 1.0 Class Reference 12

Returns the object’s unique, numeric instance identifier.

get_inst_count

static function int get_inst_count()

Returns the current value of the instance counter, which represents the total number of
uvm_object-based objects that have been allocated in simulation. The instance counter
is used to form a unique numeric instance identifier.

get_type

static function uvm_object wrapper get type

Returns the type-proxy (wrapper) for this object. The uvm_factory’s type-based override
and creation methods take arguments of uvm_object_wrapper. This method, if
implemented, can be used as convenient means of supplying those arguments.

The default implementation of this method produces an error and returns null. To enable
use of this method, a user’s subtype must implement a version that returns the
subtype’s wrapper.

For example

class cmd extends uvm_object;
typedef uvm _object_registry #(cmd) type_id;
static function type_id get_type();
return_type_id::zget();
endfunction
endclass

Then, to use

factory.set_type_override(cmd: :get_type(),subcmd: :get_type());
This function is implemented by the “uvm_*_utils macros, if employed.

get_object_type
virtual function uvm_object wrapper get _object_type (O

Returns the type-proxy (wrapper) for this object. The uvm_factory’s type-based override
and creation methods take arguments of uvm_object_wrapper. This method, if
implemented, can be used as convenient means of supplying those arguments. This
method is the same as the static get_type method, but uses an already allocated object
to determine the type-proxy to access (instead of using the static object).

The default implementation of this method does a factory lookup of the proxy using the
return value from get_type_name. If the type returned by get_type_name is not
registered with the factory, then a null handle is returned.

UVM 1.0 Class Reference

13

For example

class cmd extends uvm_object;)
typedef uvm _object_registry #(cmd) type_id;
static function type_id get_type();
return_type_id::zget();
endfunction i})
virtual function type_id get_object_type();
return_type_id::getQ;
endfunction
endclass

This function is implemented by the uvm_*_utils macros, if employed.

get_type_name
virtual function string get_type name

This function returns the type name of the object, which is typically the type identifier
enclosed in quotes. It is used for various debugging functions in the library, and it is
used by the factory for creating objects.

This function must be defined in every derived class.

A typical implementation is as follows

class mytype extends uvm_object;
const static string type_name = "mytype';
virtual function string get type name();

return_type_name;
endfunction

We define the type name static variable to enable access to the type name without need
of an object of the class, i.e., to enable access via the scope operator,
mytype::type_name.

CREATION

create

virtual function uvm_object create (string name = ")

The create method allocates a new object of the same type as this object and returns it
via a base uvm_object handle. Every class deriving from uvm_object, directly or
indirectly, must implement the create method.

A typical implementation is as follows

class mytype extends uvm_object;
virtual function uvm_object create(string name=""");

mytype t = new(name);
return t;

UVM 1.0 Class Reference 14

endfunction

clone

virtual function uvm_object clone ()

The clone method creates and returns an exact copy of this object.

The default implementation calls create followed by copy. As clone is virtual, derived
classes may override this implementation if desired.

PRINTING

print
function void print (uvm_printer printer)

The print method deep-prints this object’s properties in a format and manner governed
by the given printer argument; if the printer argument is not provided, the global
uvm_default_printer is used. See uvm_printer for more information on printer output
formatting. See also uvm_line_printer, uvm_tree_printer, and uvm_table_printer for
details on the pre-defined printer “policies,” or formatters, provided by the UVM.

The print method is not virtual and must not be overloaded. To include custom
information in the print and sprint operations, derived classes must override the do_print
method and use the provided printer policy class to format the output.

sprint
function string sprint (uvm_printer printer)

The sprint method works just like the print method, except the output is returned in a
string rather than displayed.

The sprint method is not virtual and must not be overloaded. To include additional fields
in the print and sprint operation, derived classes must override the do_print method and
use the provided printer policy class to format the output. The printer policy will manage
all string concatenations and provide the string to sprint to return to the caller.

do_print

virtual function void do_print (uvm_printer printer)

The do_print method is the user-definable hook called by print and sprint that allows
users to customize what gets printed or sprinted beyond the field information provided
by the “uvm_field_* macros, Utility and Field Macros for Components and Objects.

The printer argument is the policy object that governs the format and content of the
output. To ensure correct print and sprint operation, and to ensure a consistent output
format, the printer must be used by all do_print implementations. That is, instead of
using $display or string concatenations directly, a do_print implementation must call

UVM 1.0 Class Reference

15

through the printer’s API to add information to be printed or sprinted.

An example implementation of do_print is as follows

class mytype extends uvm_object;

data_obj data;

int T1;

virtual function void do_print (uvm_printer printer);
super.do_print(printer); :
printer_print_int("fl", f1, $bits(fl), DEC);
printer.print_object('data™, data);

endfunction

Then, to print and sprint the object, you could write

mytype t = new;
t.print();
uvm_report_info("'Received”,t.sprint());

See uvm_printer for information about the printer API.

convert2string

virtual function string convert2string()

This virtual function is a user-definable hook, called directly by the user, that allows
users to provide object information in the form of a string. Unlike sprint, there is no
requirement to use an uvm_printer policy object. As such, the format and content of the
output is fully customizable, which may be suitable for applications not requiring the
consistent formatting offered by the print/sprint/do_print API.

Fields declared in Utility Macros macros (" uvm_field_*), if used, will not automatically
appear in calls to convert2string.

An example implementation of convert2string follows.

class base extends uvm_object;
string field = "foo";
virtual function string convertZStrin?S ;
convert2string = {"base_field=",fie ;
endfunction
endclass

class obj2 extends uvm_object;
string field = "bar";
virtual function strin _convgrtZstri@gE);
convert2string = {"child_field=",field};
endfunction
endclass
class obj extends base;
int addr = * ;
int data = "h456;
bit write = 1;
obj2 child = new; } }
virtual function string convert2string();
convert2string = _ {super.convert2string(), :
$ﬁ§?r|ntf(" write=%0d addr=%8h data=%8h ' ,write,addr,data),
child.convert2string(Q};
endfunction
endclass

UVM 1.0 Class Reference

16

Then, to display an object, you could write

obj o = new; ; =
uvim_report_info("'BusMaster™,{'Sending:\n " ,o.convert2string(}):

The output will look similar to

UVM_INFO @ O: reporter [BusMaster] Sending:
base_field=foo write=1 addr=00000123 data=00000456 child_field=bar

RECORDING

record

function void record (uvm_recorder recorder)

The record method deep-records this object’s properties according to an optional recorder
policy. The method is not virtual and must not be overloaded. To include additional
fields in the record operation, derived classes should override the do_record method.

The optional recorder argument specifies the recording policy, which governs how
recording takes place. If a recorder policy is not provided explicitly, then the global
uvm_default_recorder policy is used. See uvm_recorder for information.

A simulator’s recording mechanism is vendor-specific. By providing access via a common
interface, the uvm_recorder policy provides vendor-independent access to a simulator’s
recording capabilities.

do_record

virtual function void do_record (uvm_recorder recorder)

The do_record method is the user-definable hook called by the record method. A derived
class should override this method to include its fields in a record operation.

The recorder argument is policy object for recording this object. A do_record
implementation should call the appropriate recorder methods for each of its fields.
Vendor-specific recording implementations are encapsulated in the recorder policy,
thereby insulating user-code from vendor-specific behavior. See uvm_recorder for more
information.

A typical implementation is as follows

class mytype extends uvm_object;
data_obj data;
int T1;
function void do_record (uvm recorder recorder);
recorder.record_field_int("f1", f1, $bits(fl), DEC);
recorder.record_object(*'data’, data);
endfunction

UVM 1.0 Class Reference

17

CoPYING

copy

function void copy (uvm_object rhs)

The copy method returns a deep copy of this object.

The copy method is not virtual and should not be overloaded in derived classes. To copy
the fields of a derived class, that class should override the do_copy method.

do_copy

virtual function void do_copy (uvm_object rhs)

The do_copy method is the user-definable hook called by the copy method. A derived
class should override this method to include its fields in a copy operation.

A typical implementation is as follows

class mytype extends uvm_object;

int f1;

function void do_copy (uvm_object rhs);
mytype rhs_;
super.do_cop K(rhs)
$cast(rhs
field 1 = rhs fleld 1;

endfunctlon

The implementation must call super.do_copy, and it must $cast the rhs argument to the
derived type before copying.

COMPARING

compare

function bit compare (uvm_object rhs,
uvm_comparer comparer)

Deep compares members of this data object with those of the object provided in the rhs
(right-hand side) argument, returning 1 on a match, 0 othewise.

The compare method is not virtual and should not be overloaded in derived classes. To
compare the fields of a derived class, that class should override the do_compare method.

The optional comparer argument specifies the comparison policy. It allows you to control
some aspects of the comparison operation. It also stores the results of the comparison,
such as field-by-field miscompare information and the total number of miscompares. If a
compare policy is not provided, then the global uvm_default_comparer policy is used.
See uvm_comparer for more information.

UVM 1.0 Class Reference

18

do_compare

virtual function bit do_compare (uvm_object rhs,
uvm_comparer comparer)

The do_compare method is the user-definable hook called by the compare method. A
derived class should override this method to include its fields in a compare operation. It
should return 1 if the comparison succeeds, 0 otherwise.

A typical implementation is as follows

class mytype extends uvm_object;
int f1;)) }
virtual function bit do_compare (uvm_object rhs,uvm_comparer comparer);
mytype rhs_;
do_compare = super.do_compare(rhs,comparer);
$cast(rhs_,rhs);))
do_compare &= comparer.compare_field_int("f1", f1, rhs_.T1);
endfunction

A derived class implementation must call super.do_compare() to ensure its base class’
properties, if any, are included in the comparison. Also, the rhs argument is provided as
a generic uvm_object. Thus, you must $cast it to the type of this object before
comparing.

The actual comparison should be implemented using the uvm_comparer object rather
than direct field-by-field comparison. This enables users of your class to customize how
comparisons are performed and how much miscompare information is collected. See
uvm_comparer for more details.

PACKING
pack

function int pack (bit bitstream[],

uvm_packer packer)

pack_bytes

function int pack bytes (unsigned bytestream[],

uvm_packer packer)

pack_ints

function int pack_ints (unsigned intstream[],

uvm_packer packer)

The pack methods bitwise-concatenate this object’s properties into an array of bits,
bytes, or ints. The methods are not virtual and must not be overloaded. To include
additional fields in the pack operation, derived classes should override the do_pack
method.

UVM 1.0 Class Reference 19

The optional packer argument specifies the packing policy, which governs the packing
operation. If a packer policy is not provided, the global uvm_default_packer policy is
used. See uvm_packer for more information.

The return value is the total number of bits packed into the given array. Use the array’s
built-in size method to get the number of bytes or ints consumed during the packing
process.

do_pack

virtual function void do_pack (uvm_packer packer)

The do_pack method is the user-definable hook called by the pack methods. A derived
class should override this method to include its fields in a pack operation.

The packer argument is the policy object for packing. The policy object should be used
to pack objects.

A typical example of an object packing itself is as follows

class mysubtype extends mysupertype;

shortint myshort;
obj_type myobj;
byte myarray[i;

function void do_pack (uvm_packer packer);
super.do_pack(packer); /7 pack mysuper%gpe properties
packer.pack field_int(myarray.size(), 32);
foreach (myarray)

packer.packrfleld_int(mzarray index], 8);

packer.pack_field_int(myshort, $bits(myshort));
packer.pack_object(myob});

endfunction

The implementation must call super.do_pack so that base class properties are packed as
well.

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure when unpacking, you
must include meta-information about the dynamic data when packing as follows.

* For queues, dynamic arrays, or associative arrays, pack the number of elements in
the array in the 32 bits immediately before packing individual elements, as shown
above.

« For string data types, append a zero byte after packing the string contents.
* For objects, pack 4 bits immediately before packing the object. For null objects,
pack 4’b0000. For non-null objects, pack 4'b0001.

When the "uvm_field_* macros are used, Utility and Field Macros for Components and
Objects, the above meta information is included provided the
uvm_packer::use_metadata variable is set for the packer.

Packing order does not need to match declaration order. However, unpacking order must
match packing order.

UNPACKING

UVM 1.0 Class Reference 20

unpack

function int unpack (bit bitstream[],
uvm_packer packer)

unpack_bytes

function int unpack _bytes (unsigned bytestream[],
uvm_packer packer)

unpack_ints

function int unpack_ints (unsigned intstream[],
uvm_packer packer)

The unpack methods extract property values from an array of bits, bytes, or ints. The
method of unpacking must exactly correspond to the method of packing. This is assured
if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking
is the same as the order of packing used to create the input array.

The unpack methods are fixed (non-virtual) entry points that are directly callable by the
user. To include additional fields in the unpack operation, derived classes should override
the do_unpack method.

The optional packer argument specifies the packing policy, which governs both the pack
and unpack operation. If a packer policy is not provided, then the global
uvm_default_packer policy is used. See uvm_packer for more information.

The return value is the actual number of bits unpacked from the given array.

do_unpack

virtual function void do_unpack (uvm_packer packer)

The do_unpack method is the user-definable hook called by the unpack method. A
derived class should override this method to include its fields in an unpack operation.

The packer argument is the policy object for both packing and unpacking. It must be
the same packer used to pack the object into bits. Also, do_unpack must unpack fields
in the same order in which they were packed. See uvm_packer for more information.

The following implementation corresponds to the example given in do_pack.

function void do_unpack (uvm_packer packer);
int sz;
super do_unpack(packer); // unpack super-®s pro erties
sz = packer.unpack field _int(myarray.size(), 32);
myarray . deleteg)
for(int index index<sz; index++)
m array[lndex] = packer.unpack_field_int(8);
myshort = packer.unpack_field |nt($b|ts(myshort))
packer.unpack_object(myobj);
endfunction

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure, you must have
included meta-information about the dynamic data when it was packed.

* For queues, dynamic arrays, or associative arrays, unpack the number of elements
UVM 1.0 Class Reference

21

in the array from the 32 bits immediately before unpacking individual elements, as
shown above.

e For string data types, unpack into the new string until a null byte is encountered.

« For objects, unpack 4 bits into a byte or int variable. If the value is 0, the target
object should be set to null and unpacking continues to the next property, if any.
If the least significant bit is 1, then the target object should be allocated and its
properties unpacked.

CONFIGURATION

set_int_local

virtual function void set_int_local (string field_name,
uvm_brtstream_t value,
bit recurse = 1)

set_string_local

virtual function void set _string_local (string field_name,
string value,
bit recurse = 1)

set_object_local

virtual function void set object local (string field_name,
uvm_object value,
bit clone
bit recurse

i
1)

These methods provide write access to integral, string, and uvm_object-based properties
indexed by a field_name string. The object designer choose which, if any, properties will
be accessible, and overrides the appropriate methods depending on the properties’
types. For objects, the optional clone argument specifies whether to clone the value
argument before assignment.

The global uvm_is_match function is used to match the field names, so field_name may
contain wildcards.

An example implementation of all three methods is as follows.

class mytype extends uvm_object;

local int myint;

local bxte mybyte;

local ortint myshort // no access
local string mystring;

local obj_type myobj;

// provide access to integral properties B
function void set_int local(string field _name, uvm_bitstream_t value);
if (uvm_is_match (field_name, “myint™))
myint = value;
else if (uvm is_match (field_name, "mybyte'))
mybyte = value;
endfunction

// provide access to string properties)
function void set_string_local(string field name, string value);
if (uvm_is_match (Ffield_name, "mystring))
mystring = value;
endfunction

UVM 1.0 Class Reference

22

// provide access to_sub-objects R
function void set_object _local(string field_name, uvm_object value,

blt clone=
|f uvm_is_match (Field_name, "myobj')) bégin
(value I= nu 1) begin
ob f_ype tmp
prOV|ded value iIs not correct type, produce error
|f ('$cast(t@p value))
/* error
else begin
if(clone
cast(myobj, tmp.clone());
else
myobj = tmp;
end
end
else
. myobj = null; // value is null, so simply assign null to myobj
en

endfunction

Although the object designer implements these methods to provide outside access to one
or more properties, they are intended for internal use (e.g., for command-line debugging
and auto-configuration) and should not be called directly by the user.

UVM 1.0 Class Reference

23

uvm_transaction

The uvm_transaction class is the root base class for UVM transactions. Inheriting all the
methods of uvm_object, uvm_transaction adds a timing and recording interface.

Summary

uvim_transaction

The uvm_transaction class is the root base class for UVM transactions.
Crass HIERARCHY
uvm_void

uvm_object

uvm_transaction

CLass DECLARATION

virtual class uvmtransacti on extends uvm object

MeTHODS
new

accept_tr
do_accept_tr
begin_tr

begin_child_tr

do_begin_tr

end_tr
do_end_tr
get_tr_handle

disable_recording
enable_recording

is_recording_enabled
is_active
get_event_pool

set_initiator
get_initiator

get_accept_time
get_begin_time
get_end_time

set_transaction_.id
get_transaction_id

UVM 1.0 Class Reference

Creates a new transaction object.

Calling accept_tr indicates that the transaction has
been accepted for processing by a consumer
component, such as an uvm_driver.

This user-definable callback is called by accept_tr
just before the accept event is triggered.

This function indicates that the transaction has been
started and is not the child of another transaction.
This function indicates that the transaction has been
started as a child of a parent transaction given by
parent_handle.

This user-definable callback is called by begin_tr and
begin_child_tr just before the begin event is
triggered.

This function indicates that the transaction execution
has ended.

This user-definable callback is called by end_tr just
before the end event is triggered.

Returns the handle associated with the transaction,
as set by a previous call to begin_child_tr or
begin_tr with transaction recording enabled.

Turns off recording for the transaction stream.

Turns on recording to the stream specified by
stream, whose interpretation is implementation
specific.

Returns 1 if recording is currently on, 0 otherwise.
Returns 1 if the transaction has been started but has
not yet been ended.

Returns the event pool associated with this
transaction.

Sets initiator as the initiator of this transaction.
Returns the component that produced or started the
transaction, as set by a previous call to set_initiator.

Returns the time at which this transaction was
accepted, begun, or ended, as by a previous call to
accept_tr, begin_tr, begin_child_tr, or end_tr.

Sets this transaction’s numeric identifier to id.
Returns this transaction’s numeric identifier, which is
-1 if not set explicitly by set_transaction_id.

24

V ARIABLES

events The event pool instance for this transaction.

begin_event The event that is triggered when transaction
recording for this transaction begins.

end_event The event that is triggered when transaction

recording for this transaction ends.

MEeTHODS

new

function new (string nane.
uvm conponent initiator)

Creates a new transaction object. The name is the instance name of the transaction. If
not supplied, then the object is unnamed.

accept_tr

function void accept _tr (tine accept_tine)

Calling accept_tr indicates that the transaction has been accepted for processing by a
consumer component, such as an uvm_driver. With some protocols, the transaction may
not be started immediately after it is accepted. For example, a bus driver may have to
wait for a bus grant before starting the transaction.

This function performs the following actions

e The transaction’s internal accept time is set to the current simulation time, or to
accept_time if provided and non-zero. The accept_time may be any time, past or
future.

e The transaction’s internal accept event is triggered. Any processes waiting on the
this event will resume in the next delta cycle.

e The do_accept_tr method is called to allow for any post-accept action in derived
classes.

do_accept_tr
virtual protected function void do_accept _tr ()

This user-definable callback is called by accept_tr just before the accept event is
triggered. Implementations should call super.do_accept_tr to ensure correct operation.

begin_tr
function integer begin_tr (tine begin_tine)
This function indicates that the transaction has been started and is not the child of

another transaction. Generally, a consumer component begins execution of the
transactions it receives.

UVM 1.0 Class Reference

This function performs the following actions

e The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past or
future, but should not be less than the accept time.

o If recording is enabled, then a new database-transaction is started with the same
begin time as above. The record method inherited from uvm_object is then called,
which records the current property values to this new transaction.

» The do_begin_tr method is called to allow for any post-begin action in derived
classes.

+ The transaction’s internal begin event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is
enabled. The meaning of the handle is implementation specific.

begin_child_tr

function integer begin_child_ tr (tinme begin_tine
i nteger parent_handl e)

This function indicates that the transaction has been started as a child of a parent
transaction given by parent_handle. Generally, a consumer component begins execution
of the transactions it receives.

The parent handle is obtained by a previous call to begin_tr or begin_child_tr. If the
parent_handle is invalid (=0), then this function behaves the same as begin_tr.

This function performs the following actions

e The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past or
future, but should not be less than the accept time.

« If recording is enabled, then a new database-transaction is started with the same
begin time as above. The record method inherited from uvm_object is then called,
which records the current property values to this new transaction. Finally, the
newly started transaction is linked to the parent transaction given by
parent_handle.

e The do_begin_tr method is called to allow for any post-begin action in derived
classes.

« The transaction’s internal begin event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is
enabled. The meaning of the handle is implementation specific.

do_begin_tr
virtual protected function void do_begin_tr ()
This user-definable callback is called by begin_tr and begin_child_tr just before the begin

event is triggered. Implementations should call super.do_begin_tr to ensure correct
operation.

end_tr

UVM 1.0 Class Reference

function void end_tr (tinme end_tinme
bit free_handle)

This function indicates that the transaction execution has ended. Generally, a consumer
component ends execution of the transactions it receives.

This function performs the following actions

e The transaction’s internal end time is set to the current simulation time, or to
end_time if provided and non-zero. The end_time may be any time, past or
future, but should not be less than the begin time.

» If recording is enabled and a database-transaction is currently active, then the
record method inherited from uvm_object is called, which records the final
property values. The transaction is then ended. If free_handle is set, the
transaction is released and can no longer be linked to (if supported by the
implementation).

e The do_end_tr method is called to allow for any post-end action in derived classes.

« The transaction’s internal end event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

do_end_tr

virtual protected function void do_end_ tr ()

This user-definable callback is called by end_tr just before the end event is triggered.
Implementations should call super.do_end_tr to ensure correct operation.

get_tr_handle

function integer get _tr_handle ()

Returns the handle associated with the transaction, as set by a previous call to
begin_child_tr or begin_tr with transaction recording enabled.

disable_recording

function void disable recording ()

Turns off recording for the transaction stream. This method does not effect a
uvm_component’s recording streams.

enable_recording

function void enable_recording (string stream

Turns on recording to the stream specified by stream, whose interpretation is
implementation specific.

If transaction recording is on, then a call to record is made when the transaction is
started and when it is ended.

is_recording_enabled

UVM 1.0 Class Reference

27

function bit is_recording_enabl ed()

Returns 1 if recording is currently on, 0 otherwise.

is_active
function bit is_active ()

Returns 1 if the transaction has been started but has not yet been ended. Returns 0 if
the transaction has not been started.

get_event_pool

function uvm event _pool get_event_pool ()

Returns the event pool associated with this transaction.
By default, the event pool contains the events: begin, accept, and end. Events can also

be added by derivative objects. An event pool is a specialization of an <uvm_pool
#(T)>, e.g. a uvm_pool#(uvm_event).

set_initiator
function void set_initiator (uvm.conponent initiator)
Sets initiator as the initiator of this transaction.

The initiator can be the component that produces the transaction. It can also be the
component that started the transaction. This or any other usage is up to the transaction
designer.

get_initiator

function uvm conponent get _initiator ()

Returns the component that produced or started the transaction, as set by a previous call
to set_initiator.

get_accept_time

function tine get_accept_tinme ()

get_begin_time

function time get_begin_tinme ()

get_end_time
function tine get_end tinme ()

UVM 1.0 Class Reference

Returns the time at which this transaction was accepted, begun, or ended, as by a
previous call to accept_tr, begin_tr, begin_child_tr, or end_tr.

set_transaction_id

function void set_transaction_id(integer id)

Sets this transaction’s numeric identifier to id. If not set via this method, the transaction
ID defaults to -1.

When using sequences to generate stimulus, the transaction ID is used along with the
sequence ID to route responses in sequencers and to correlate responses to requests.

get_transaction_id

function integer get_transaction_id()

Returns this transaction’s numeric identifier, which is -1 if not set explicitly by
set_transaction_id.

When using a uvm_sequence #(REQ,RSP) to generate stimulus, the transaction ID is
used along with the sequence ID to route responses in sequencers and to correlate
responses to requests.

V ARIABLES

events

const uvm event_pool events = new

The event pool instance for this transaction.

begin_event
uvm event begi n_event

The event that is triggered when transaction recording for this transaction begins.

end__event

uvm event end_event

The event that is triggered when transaction recording for this transaction ends.

UVM 1.0 Class Reference

The uvm_root class serves as the implicit top-level and phase controller for all UVM
components. Users do not directly instantiate uvm_root. The UVM automatically creates
a single instance of uvm_root that users can access via the global (uvm_pkg-scope)
variable, uvm_ top.

FhEsE GUELH

| = T s T 1 g."
| uvm_root I4.+ uvm_phase |

| uvm_component |

The uvm_top instance of uvm_root plays several key roles in the UVM.

Implicit top-level The uvm_top serves as an implicit top-level
component. Any component whose parent is specified
as NULL becomes a child of uvm_top. Thus, all UVM
components in simulation are descendants of uvm_top.

Phase control uvm_top manages the phasing for all components. TBD

Search Use uvm_top to search for components based on their
hierarchical name. See find and find_all.

Report configuration Use uvm_top to globally configure report verbosity, log
files, and actions. For example,
uvm_top.set_report_verbosity level _hier(UVM_FULL)
would set full verbosity for all components in simulation.

Global reporter Because uvm_top is globally accessible (in uvm_pkg
scope), UVM’s reporting mechanism is accessible from
anywhere outside uvm_component, such as in modules
and sequences. See uvm_report_error,
uvm_report_warning, and other global methods.

Summary

uvm_root

The uvm_root class serves as the implicit top-level and phase controller for all
UVM components.

MEeTHODS
run_test Phases all components through all registered
phases.
V ARIABLES
top_levels This variable is a list of all of the top level
components in UVM.
MEeTHODS
find
find_all Returns the component handle (find) or list of
components handles (find_all) matching a given
string.
print_topology Print the verification environment’s component
topology.
V ARIABLES

enable_print_topology If set, then the entire testbench topology is printed
just after completion of the end_of_elaboration
phase.

UVM 1.0 Class Reference

30

finish_on_completion If set, then run_test will call $finish after all phases
are executed.

MEeTHODS
set_timeout Specifies the timeout for task-based phases.
VARIABLES
uvm_top This is the top-level that governs phase execution
and provides component search interface.
MEeTHODS
run_test
virtual task run_test (string test_name)

Phases all components through all registered phases. If the optional test_name
argument is provided, or if a command-line plusarg, +UVM_TESTNAME=TEST_NAME, is
found, then the specified component is created just prior to phasing. The test may
contain new verification components or the entire testbench, in which case the test and
testbench can be chosen from the command line without forcing recompilation. If the
global (package) variable, finish_on_completion, is set, then $finish is called after
phasing completes.

V ARIABLES

top_levels

uvm conmponent top_| evel s[$]
This variable is a list of all of the top level components in UVM. It includes the

uvm_test_top component that is created by run_test as well as any other top level
components that have been instantiated anywhere in the hierarchy.

MEeTHODS

find

function uvm conmponent find (string conp_natch)

find_all
function void find_all (string conp_nmat ch,
uvm conponent conps[9],
uvm comnponent conp)

Returns the component handle (find) or list of components handles (find_all) matching a
given string. The string may contain the wildcards,

UVM 1.0 Class Reference

31

and ?. Strings beginning with '.’ are absolute path names. If optional comp arg is
provided, then search begins from that component down (default=all components).

print_topology
function void print_topology (uvmprinter printer = null)
Print the verification environment’s component topology. The printer is a uvm_printer

object that controls the format of the topology printout; a null printer prints with the
default output.

V ARIABLES

enable_print_topology

bit enable_print_topology = 0

If set, then the entire testbench topology is printed just after completion of the
end_of_elaboration phase.

finish_on_completion

bit finish_on_conpletion =1

If set, then run_test will call $finish after all phases are executed.

MEeTHODS

set_timeout

function void set_tinmeout(tine tinmeout,
bit overridable = 1)

Specifies the timeout for task-based phases. Default is 0, i.e. ho timeout.

V ARIABLES

uvm_top

const uvmroot uvmtop = uvmroot::get()

This is the top-level that governs phase execution and provides component search
interface. See uvm_root for more information.

UVM 1.0 Class Reference

32

Port Base Classes

Contents

Port Base Classes

uvm_port_component_base This class defines an interface for obtaining a port’s
connectivity lists after or during the
end_of_elaboration phase.

uvm_port_component See description of uvm_port_component_base for
#(PORT) information about this class
uvm_port_base #(IF) Transaction-level communication between

components is handled via its ports, exports, and
imps, all of which derive from this class.

uvim_port_component_base

This class defines an interface for obtaining a port’s connectivity lists after or during the
end_of_elaboration phase. The sub-class, uvm_port_component #(PORT), implements
this interface.

The connectivity lists are returned in the form of handles to objects of this type. This
allowing traversal of any port’s fan-out and fan-in network through recursive calls to
get_connected_to and get_provided_to. Each port’s full name and type name can be
retrieved using get_full_name and get_type_name methods inherited from
uvm_component.

Summary

uvm_port_component_base

This class defines an interface for obtaining a port’s connectivity lists after or
during the end_of_elaboration phase.

CLass HierarcHY
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_port_component_base

CLass DECLARATION

virtual class uvm port_conponent base extends
uvm comnponent

MEeTHODS

get_connected_to For a port or export type, this function fills list with all of
the ports, exports and implementations that this port is
connected to.

get_provided_to For an implementation or export type, this function fills
list with all of the ports, exports and implementations
that this port is provides its implementation to.

UVM 1.0 Class Reference

33

is_port
is_export
is_imp These function determine the type of port.

MEeTHODS

get_connected_to

pure virtual function void get_connected to(ref uvmport list |ist)

For a port or export type, this function fills list with all of the ports, exports and
implementations that this port is connected to.

get_provided_to

pure virtual function void get_provided_ to(ref uvmport list list)

For an implementation or export type, this function fills list with all of the ports, exports
and implementations that this port is provides its implementation to.

is_port

pure virtual function bit is_port()

is_export

pure virtual function bit is_export()

pure virtual function bit is_inp()

These function determine the type of port. The functions are mutually exclusive; one will
return 1 and the other two will return 0.

uvm_port_component #(PORT)

See description of uvm_port_component_base for information about this class

Summary

uvm_port_component #(PORT)

See description of uvm_port_component_base for information about this class

UVM 1.0 Class Reference 34

CLass HierarcHy
uvm_void
uvm_object
uvm_report_object
uvm_component

uvm_port_component_base

uvm_port_component#(PORT) |

CLass DECLARATION

cl ass uvm port_conponent #(
type PORT = uvm obj ect
) extends uvm port_conponent base

MEeTHODS
get_port Retrieve the actual port object that this proxy refers to.

MEeTHODS

get_port

function PORT get_port()

Retrieve the actual port object that this proxy refers to.

uvim_port_base #(IF)

Transaction-level communication between components is handled via its ports, exports,
and imps, all of which derive from this class.

The uvm_port_base extends IF, which is the type of the interface implemented by
derived port, export, or implementation. IF is also a type parameter to uvm_port_base.

IF The interface type implemented by the subtype to this base port

The UVM provides a complete set of ports, exports, and imps for the OSCI- standard TLM
interfaces. They can be found in the ../src/tim/ directory. For the TLM interfaces, the IF
parameter is always uvm_tim_if _base #(T1,T2).

Just before <uvm_component::end_of elaboration>, an internal
uvm_component::resolve_bindings process occurs, after which each port and export
holds a list of all imps connected to it via hierarchical connections to other ports and
exports. In effect, we are collapsing the port’s fanout, which can span several levels up
and down the component hierarchy, into a single array held local to the port. Once the
list is determined, the port’s min and max connection settings can be checked and
enforced.

uvm_port_base possesses the properties of components in that they have a hierarchical
instance path and parent. Because SystemVerilog does not support multiple inheritance,
uvm_port_base can not extend both the interface it implements and uvm_component.

Thus, uvm_port_base contains a local instance of uvm_component, to which it delegates

UVM 1.0 Class Reference

35

such commands as get_name, get_full_name, and get_parent.

Summary

uvm_port_base #(IF)

Transaction-level communication between components is handled via its ports,
exports, and imps, all of which derive from this class.

CLass HIERARCHY

IF

uvm_port_base#(IF) |

CLass DECLARATION

virtual class uvm port_ base #(
type IF
) extends IF

get_type_name

MEeTHODS

new The first two arguments are the normal
uvm_component constructor arguments.

get_name Returns the leaf name of this port.

get_full_name Returns the full hierarchical name of this port.

get_parent Returns the handle to this port’s parent, or null if it
has no parent.

get_comp Returns a handle to the internal proxy component

representing this port.
Returns the type name to this port.

min_size Returns the mininum number of implementation ports
that must be connected to this port by the
end_of_elaboration phase.

max_size Returns the maximum number of implementation

is_unbounded

ports that must be connected to this port by the
end_of_elaboration phase.

Returns 1 if this port has no maximum on the number
of implementation ports this port can connect to.

is_port

is_export

is_imp Returns 1 if this port is of the type given by the
method name, 0 otherwise.

size Gets the number of implementation ports connected

set_default_index

connect

debug_connected_to

debug_provided_to

resolve_bindings

to this port.

Sets the default implementation port to use when
calling an interface method.

Connects this port to the given provider port.
The debug_connected_to method outputs a visual
text display of the port/export/imp network to which
this port connects (i.e., the port’s fanout).

The debug_provided_to method outputs a visual
display of the port/export network that ultimately
connect to this port (i.e., the port’s fanin).

This callback is called just before entering the
end_of_elaboration phase.

get_if Returns the implementation (imp) port at the given
index from the array of imps this port is connected
to.
METHODS

UVM 1.0 Class Reference

36

new

function new (string nane,
uvm conponent parent,
uvm port_type_e port_type,
i nt nmn_size
i nt nax_si ze

’

1)

The first two arguments are the normal uvm_component constructor arguments.
The port_type can be one of UVM_PORT, UVM_EXPORT, or UVM_IMPLEMENTATION.

The min_size and max_size specify the minimum and maximum number of
implementation (imp) ports that must be connected to this port base by the end of
elaboration. Setting max_size to UVYM_UNBOUNDED_CONNECTIONS sets no maximum,
i.e., an unlimited number of connections are allowed.

By default, the parent/child relationship of any port being connected to this port is not
checked. This can be overridden by configuring the port’s check_connection_relationships
bit via set_config_int. See connect for more information.

get_name

function string get_name()

Returns the leaf name of this port.

get_full_name

virtual function string get_full _nanme()

Returns the full hierarchical name of this port.

get_parent

virtual function uvm conponent get_parent()

Returns the handle to this port’s parent, or null if it has no parent.

get_comp
virtual function uvm port_conponent _base get_conp()

Returns a handle to the internal proxy component representing this port.

Ports are considered components. However, they do not inherit uvm_component.
Instead, they contain an instance of uvm_port_component #(PORT) that serves as a
proxy to this port.

get_type_name

virtual function string get_type_nane()
Returns the type name to this port. Derived port classes must implement this method to

UVM 1.0 Class Reference

37

return the concrete type. Otherwise, only a generic “uvm_port”, “uvm_export” or
“uvm_implementation” is returned.

min_size

Returns the mininum number of implementation ports that must be connected to this
port by the end_of_elaboration phase.

max_size

Returns the maximum number of implementation ports that must be connected to this
port by the end_of_elaboration phase.

is_unbounded

function bit is_unbounded ()
Returns 1 if this port has no maximum on the number of implementation ports this port

can connect to. A port is unbounded when the max_size argument in the constructor is
specified as UVM_UNBOUNDED_CONNECTIONS.

is_port

function bit is_port ()

is_export

function bit is_export ()

function bit is_inp ()

Returns 1 if this port is of the type given by the method name, 0 otherwise.

size
function int size ()

Gets the number of implementation ports connected to this port. The value is not valid
before the end_of_elaboration phase, as port connections have not yet been resolved.

set_default_index

function void set_default _index (int index)

Sets the default implementation port to use when calling an interface method. This

UVM 1.0 Class Reference

38

method should only be called on UVM_EXPORT types. The value must not be set before
the end_of_elaboration phase, when port connections have not yet been resolved.

connect

virtual function void connect (this_type provider)

Connects this port to the given provider port. The ports must be compatible in the
following ways

e Their type parameters must match

e The provider’s interface type (blocking, non-blocking, analysis, etc.) must be
compatible. Each port has an interface mask that encodes the interface(s) it
supports. If the bitwise AND of these masks is equal to the this port’'s mask, the
requirement is met and the ports are compatible. For example, an
uvm_blocking_put_port #(T) is compatible with an uvm_put_export #(T) and
uvm_blocking_put_imp #(T) because the export and imp provide the interface
required by the uvm_blocking_put_port.

e Ports of type UVM_EXPORT can only connect to other exports or imps.
e Ports of type UVM_IMPLEMENTATION can not be connected, as they are bound to
the component that implements the interface at time of construction.

In addition to type-compatibility checks, the relationship between this port and the
provider port will also be checked if the port’s check connection_relationships
configuration has been set. (See new for more information.)

Relationships, when enabled, are checked are as follows

« If this port is an UVM_PORT type, the provider can be a parent port, or a sibling
export or implementation port.

o If this port is an UVM_EXPORT type, the provider can be a child export or
implementation port.

If any relationship check is violated, a warning is issued.

Note- the <uvm_component::connect> method is related to but not the same as this
method. The component’s connect method is a phase callback where port’s connect
method calls are made.

debug_connected_to

function void debug_connected_to (int |evel
int max_| evel)

The debug_connected_to method outputs a visual text display of the port/export/imp
network to which this port connects (i.e., the port’s fanout).

This method must not be called before the end_of_elaboration phase, as port connections
are not resolved until then.

debug_provided_to

function void debug_provided_ to (int |evel
int max_| evel)

The debug_provided_to method outputs a visual display of the port/export network that

UVM 1.0 Class Reference

39

ultimately connect to this port (i.e., the port’s fanin).

This method must not be called before the end_of_elaboration phase, as port connections
are not resolved until then.

resolve_bindings

virtual function void resolve_bindings()

This callback is called just before entering the end_of_elaboration phase. It recurses
through each port’s fanout to determine all the imp destina- tions. It then checks
against the required min and max connections. After resolution, size returns a valid
value and get_if can be used to access a particular imp.

This method is automatically called just before the start of the end_of_elaboration
phase. Users should not need to call it directly.

get_if

function uvm port_base #(1F) get _if(int index=0)
Returns the implementation (imp) port at the given index from the array of imps this
port is connected to. Use size to get the valid range for index. This method can only be

called at the end_of_elaboration phase or after, as port connections are not resolved
before then.

UVM 1.0 Class Reference

40

UVM implements an automated mechanism for phasing the execution of the various
components in a testbench.

Contents

Phasing

Pre-Defined Phases
User-Defined Phases

Phasing
Implementation

uvm_phase
uvm_domain
uvm_bottomup_phase
uvm_topdown_phase

uvm_task_phase

UVM implements an automated mechanism for phasing
the execution of the various components in a testbench.

This section describes the set of pre-defined phases
provided as a standard part of the UVM library.

To defined your own custom phase, use the following
pattern

The API described here provides a general purpose
testbench phasing solution, consisting of a phaser
machine, traversing a master schedule graph, which is
built by the integrator from one or more instances of
template schedules provided by UVM or by 3rd-party VIP,
and which supports implicit or explicit synchronization,
runtime control of threads and jumps.

This base class defines everything about a phase:
behavior, state, and context

Phasing schedule node representing an independent
branch of the schedule.

Virtual base class for function phases that operate
bottom-up.

Virtual base class for function phases that operate top-
down.

Base class for all task phases.

Pre-Defined Phases

This section describes the set of pre-defined phases provided as a standard part of the

UVM library.

Summary

Pre-Defined Phases

This section describes the set of pre-defined phases provided as a standard part

of the UVM library.

Common PHases GLoBAL

The common phases are the set of function and task

VARIABLES phases that all uvm_components execute together.
build_ph Create and configure of testbench structure
connect_ph Establish cross-component connections.
end_of_elaboration_ph Fine-tune the testbench.
start_of_simulation_ph Get ready for DUT to be simulated.
run_ph Stimulate the DUT.
extract_ph Extract data from different points of the verficiation
environment.

check_ph Check for any unexpected conditions in the
verification environment.

report_ph Report results of the test.

final_ph Tie up loose ends.

Run-TiIME ScHEDULE

UVM 1.0 Class Reference

The run-time schedule is the pre-defined phase

41

GLoBAL VARIABLES

pre_reset_ph
reset_ph
post_reset_ph
pre_configure_ph
configure_ph
post_configure_ph
pre_main_ph
main_ph
post_main_ph
pre_shutdown_ph
shutdown_ph
post_shutdown_ph

schedule which runs concurrently to the run_ph

global run phase.

Before reset is asserted.

Reset is asserted.

After reset is de-asserted.

Before the DUT is configured by the SW.
The SW configures the DUT.

After the SW has configured the DUT.
Before the primary test stimulus starts.
Primary test stimulus.

After enough of the primary test stimulus.
Before things settle down.

Letting things settle down.

After things have settled down.

CoMmMON PHAses GLoBAL VARIABLES

The common phases are the set of function and task phases that all uvm_components
execute together. All uvm_components are always synchronized with respect to the
common phases.

The common phases are executed in the sequence they are specified below.

build_ph
Create and configure of testbench structure

uvm_topdown_phase that calls the uvm_component::build_phase method.
Upon entry

¢ The top-level components have been instantiated under uvm_root.

o Current simulation time is still equal to 0 but some “delta cycles” may have
occurred

Typical Uses
¢ Instantiate sub-components.
« Instantiate register model.
+ Get configuration values for the component being built.
* Set configuration values for sub-components.

Exit Criteria
e All uvm_components have been instantiated.

connect_ph

Establish cross-component connections.

uvm_bottomup_phase that calls the uvm_component::connect_phase method.
Upon Entry

+ All components have been instantiated.
¢ Current simulation time is still equal to 0 but some “delta cycles” may have

UVM 1.0 Class Reference

occurred.

Typical Uses
e Connect TLM ports and exports.
+ Connect TLM initiator sockets and target sockets.
+ Connect register model to adapter components.
e Setup explicit phase domains.

Exit Criteria
« All cross-component connections have been established.
+ All independent phase domains are set.

end_of_elaboration_ph
Fine-tune the testbench.

uvm_bottomup_phase that calls the uvm_component::end_of_elaboration_phase method.

Upon Entry
« The verification environment has been completely assembled.

« Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses
+ Display environment topology.
* Open files.
+ Define additional configuration settings for components.

Exit Criteria
« None.

start_of_simulation_ph
Get ready for DUT to be simulated.

uvm_bottomup_phase that calls the uvm_component::start_of_simulation_phase method.

Upon Entry

+ Other simulation engines, debuggers, hardware assisted platforms and all other
run-time tools have been started and synchronized.

e The verification environment has been completely configured and is ready to start.

¢ Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses
+ Display environment topology
+ Set debugger breakpoint
e Set initial run-time configuration values.

UVM 1.0 Class Reference 43

Exit Criteria
« None.

run_ph
Stimulate the DUT.

This uvm_task_phase calls the uvm_component::run_phase virtual method. This phase
runs in parallel to the runtime phases, <uvm_pre_reset_ph> through
<uvm_post_shutdown_ph>. All components in the testbench are synchronized with
respect to the run phase regardles of the phase domain they belong to.

Upon Entry
+ Indicates that power has been applied.

« There should not have been any active clock edges before entry into this phase
(e.g. x->1 transitions via initial blocks).

o Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses

« Components implement behavior that is exhibited for the entire run-time, across
the various run-time phases.

» Backward compatibility with OVM.

Exit Criteria
« The DUT no longer needs to be simulated, and
e The <uvm_post_shutdown_ph> is ready to end

The run phase terminates in one of four ways.

1. Explicit call to global_stop_request

When global_stop_request is called, an ordered shut-down for the run phase begins.
First, all enabled components’ uvm_component::stop tasks are called bottom-up, i.e.,
childrens’ uvm_component::stop tasks are called before the parent’s.

Stopping a component is enabled by its uvm_component::enable_stop_interrupt bit.

Each component can implement uvm_component::stop to allow completion of in-progress
transactions, flush queues, and other shut-down activities. Upon return from
uvm_component::stop by all enabled components, the run phase becomes ready to end
pending completion of the runtime phases (i.e. the <uvm_post_shutdown_ph> being
ready to end.

If any component raised a phase objection in uvm_component::run_phase(), this
stopping procedure is deferred until all outstanding objections have been dropped.

2. All run phase objections have been dropped after having been raised

When all objections on the run phase objection have been dropped by the
uvm_component::run_phase() methods, global_stop_request is called automatically, thus
kicking off the stopping procedure described above.

If no component ever raises a phase objection, this termination mechanism never
happens.

3. Explicit call to uvm_component::kill or uvm_component::do_kill_all

UVM 1.0 Class Reference 44

When uvm_component::Kill is called, that component’s uvm_component::run_phase
processes are killed immediately. The uvm_component::do_kill_all methods applies to
the component and all its descendants.

Use of this method is not recommended. It is better to use the stopping mechanism,
which affords a more ordered, safer shut-down. If an immediate termination is desired,
a <uvm_component::jump> to the <uvm_extract_ph> phase is recommended as this
will cause both the run phase and the parallel runtime phases to immediately end and
go to extract.

4. Timeout

The phase ends if the timeout expires before an explicit call to global_stop_request or
uvm_component::Kkill. By default, the timeout is set to 0, which is no timeout. You may
override this via set_global_timeout.

If a timeout occurs in your simulation, or if simulation never ends despite completion of
your test stimulus, then it usually indicates a missing call to global_stop_request.

extract_ph
Extract data from different points of the verficiation environment.

uvm_bottomup_phase that calls the uvm_component::extract_phase method.

Upon Entry
+ The DUT no longer needs to be simulated.
« Simulation time will no longer advance.

Typical Uses

« Extract any remaining data and final state information from scoreboard and
testbench components

¢ Probe the DUT (via zero-time hierarchical references and/or backdoor accesses)
for final state information.

o Compute statistics and summaries.
« Display final state information
¢ Close files.

Exit Criteria
o All data has been collected and summarized.

check_ph
Check for any unexpected conditions in the verification environment.

uvm_bottomup_phase that calls the uvm_component::check_phase method.

Upon Entry
o All data has been collected.

Typical Uses
e Check that no unaccounted-for data remain.

UVM 1.0 Class Reference 45

Exit Criteria
e Test is known to have passed or failed.

report_ph
Report results of the test.
uvm_bottomup_phase that calls the uvm_component::report_phase method.

Upon Entry
e Test is known to have passed or failed.

Typical Uses
e Report test results.
« Write results to file.

Exit Criteria
e End of test.

final_ph
Tie up loose ends.

uvm_topdown_phase that calls the uvm_component::final_phase method.

Upon Entry
o All test-related activity has completed.

Typical Uses
e Close files.
« Terminate co-simulation engines.

Exit Criteria
+ Ready to exit simulator.

Run-TiMe ScHEDULE GLOBAL VARIABLES

The run-time schedule is the pre-defined phase schedule which runs concurrently to the
run_ph global run phase. By default, all uvm_components using the run-time schedule
are synchronized with respect to the pre-defined phases in the schedule. It is possible
for components to belong to different domains in which case their schedules can be
unsynchronized.

pre_reset_ph
Before reset is asserted.

uvm_task_phase that calls the uvm_component::pre_reset_phase method. This phase
starts at the same time as the <uvm_run_ph> unless a user defined phase is inserted in

UVM 1.0 Class Reference 46

front of this phase.

Upon Entry
« Indicates that power has been applied but not necessarily valid or stable.
e There should not have been any active clock edges before entry into this phase.

Typical Uses
+ Wait for power good.
+ Components connected to virtual interfaces should initialize their output to X’s or
Z's.
« Initialize the clock signals to a valid value
¢ Assign reset signals to X (power-on reset).
« Wait for reset signal to be asserted if not driven by the verification environment.

Exit Criteria
* Reset signal, if driven by the verification environment, is ready to be asserted.
+ Reset signal, if not driven by the verification environment, is asserted.

reset_ph
Reset is asserted.

uvm_task_phase that calls the uvm_component::reset_phase method.

Upon Entry
« Indicates that the hardware reset signal is ready to be asserted.

Typical Uses
¢ Assert reset signals.

 Components connected to virtual interfaces should drive their output to their
specified reset or idle value.

e Components and environments should initialize their state variables.
+ Clock generators start generating active edges.

+ De-assert the reset signal(s) just before exit.

+ Wait for the reset signal(s) to be de-asserted.

Exit Criteria
+ Reset signal has just been de-asserted.
* Main or base clock is working and stable.
* At least one active clock edge has occurred.
¢ Output signals and state variables have been initialized.

post_reset_ph
After reset is de-asserted.

uvm_task_phase that calls the uvm_component::post_reset phase method.

UVM 1.0 Class Reference

47

Upon Entry
+ Indicates that the DUT reset signal has been de-asserted.

Typical Uses

« Components should start behavior appropriate for reset being inactive. For
example, components may start to transmit idle transactions or interface training
and rate negotiation. This behavior typically continues beyond the end of this
phase.

Exit Criteria
e The testbench and the DUT are in a known, active state.

pre_configure_ph
Before the DUT is configured by the SW.
uvm_task_phase that calls the uvm_component::pre_configure_phase method.

Upon Entry
» Indicates that the DUT has been completed reset and is ready to be configured.

Typical Uses

* Procedurally modify the DUT configuration information as described in the
environment (and that will be eventually uploaded into the DUT).

+ Wait for components required for DUT configuration to complete training and rate
negotiation.

Exit Criteria
« DUT configuration information is defined.

configure_ph
The SW configures the DUT.

uvm_task_phase that calls the uvm_component::configure_phase method.

Upon Entry
« Indicates that the DUT is ready to be configured.

Typical Uses
« Components required for DUT configuration execute transactions normally.

+ Set signals and program the DUT and memories (e.g. read/write operations and
sequences) to match the desired configuration for the test and environment.

Exit Criteria
« The DUT has been configured and is ready to operate normally.

post_configure_ph
After the SW has configured the DUT.

UVM 1.0 Class Reference

48

uvm_task_phase that calls the uvm_component::post_configure_phase method.

Upon Entry
» Indicates that the configuration information has been fully uploaded.

Typical Uses
« Wait for configuration information to fully propagate and take effect.
« Wait for components to complete training and rate negotiation.
+ Enable the DUT.
« Sample DUT configuration coverage.

Exit Criteria

+ The DUT has been fully configured and enabled and is ready to start operating
normally.

pre_main_ph
Before the primary test stimulus starts.
uvm_task_phase that calls the uvm_component::pre_main_phase method.

Upon Entry
¢ Indicates that the DUT has been fully configured.

Typical Uses
« Wait for components to complete training and rate negotiation.

Exit Criteria
« All components have completed training and rate negotiation.
* All components are ready to generate and/or observe normal stimulus.

main_ph
Primary test stimulus.

uvm_task_phase that calls the uvm_component::main_phase method.

Upon Entry
» The stimulus associated with the test objectives is ready to be applied.

Typical Uses
» Components execute transactions normally.
« Data stimulus sequences are started.

« Wait for a time-out or certain amount of time, or completion of stimulus
sequences.

Exit Criteria

+ Enough stimulus has been applied to meet the primary stimulus objective of the
test.

UVM 1.0 Class Reference

post_main_ph
After enough of the primary test stimulus.

uvm_task_phase that calls the uvm_component::post_main_phase method.

Upon Entry
e The primary stimulus objective of the test has been met.

Typical Uses
¢ Included for symmetry.

Exit Criteria
« None.

pre_shutdown_ph
Before things settle down.
uvm_task_phase that calls the uvm_component::pre_shutdown_phase method.

Upon Entry
* None.

Typical Uses
e Included for symmetry.

Exit Criteria
e None.

shutdown_ph
Letting things settle down.
uvm_task_phase that calls the uvm_component::shutdown_phase method.

Upon Entry
¢ None.

Typical Uses
e Wait for all data to be drained out of the DUT.

o Extract data still buffered in the DUT, usually through read/write operations or
sequences.

Exit Criteria
e All data has been drained or extracted from the DUT.
o All interfaces are idle.

UVM 1.0 Class Reference

50

post_shutdown_ph
After things have settled down.

uvm_task_phase that calls the uvm_component::post_shutdown_phase method. The end
of this phase is synchronized to the end of the <uvm_run_ph> phase unless a user
defined phase is added after this phase.

Upon Entry
+ No more “data” stimulus is applied to the DUT.

Typical Uses

» Perform final checks that require run-time access to the DUT (e.g. read accounting
registers or dump the content of memories).

Exit Criteria
o All run-time checks have been satisfied.
e The <uvm_run_ph> phase is ready to end.

User-Defined Phases

To defined your own custom phase, use the following pattern

1. extend the appropriate base class for your phase type

class nmy_PHASE phase extends uvmtask phase("PHASE"):
cl ass my_PHASE phase extends uvm topdown_phase(" PHASE)
cl ass nmy_ PHASE phase extends uvm bottonup_phase(" PHASE)

2. implement your exec_task or exec_func method

task exec_task(uvm conponent conp, uvm phase schedul e);
function void exec_func(uvm conponent conp, uvm phase schedul e);

3. the implementation usually calls the related method on the component

conp. PHASE phase(uvm phase phase);

4. after declaring your phase singleton class, instantiate one for global use

static ny_" "PHASE ° _phase ny_""PHASE ° _ph = new();
5. insert the phase in a schedule using the uvm_phase::add_phase.method in side your
VIP base class’s definition of the <uvm_phase::define_phase_schedule> method.

Summary

UVM 1.0 Class Reference

51

User-Defined Phases

To defined your own custom phase, use the following pattern

Phasing Implementation

The API described here provides a general purpose testbench phasing solution, consisting
of a phaser machine, traversing a master schedule graph, which is built by the integrator
from one or more instances of template schedules provided by UVM or by 3rd-party VIP,
and which supports implicit or explicit synchronization, runtime control of threads and
jumps.

Each schedule leaf node refers to a single phase that is compatible with that VIP’s
components and which executes the required behavior via a functor or delegate
extending the phase into component context as required. Execution threads are tracked
on a per-component basis and various thread semantics available to allow defined phase
control and responsibility.

Class hierarchy

A single class represents both the definition, the state, and the context of a phase. It is
instantiated once as a singleton IMP and one or more times as nodes in a graph which
represents serial and parallel phase relationships and stores current state as the phaser
progresses, and the phase implementation which specifies required component behavior
(by extension into component context if non-default behavior required.)

| uvin_ohject |

wm_component

[overtides]

uvm_tasktopdownl uvm_domnain [damain]

battomip_phase
ry F

| v _MAME_phass | I custom compansnt |

- - -
1

The following classes related to phasing are defined herein

uvm_phase : The base class for defining a phase’s behavior, state, context
uvm_bottomup_phase : A phase implemenation for bottom up function phases.
uvm_topdown_phase : A phase implemenation for topdown function phases.

uvm_task_phase : A phase implemenation for task phases.

Summary

UVM 1.0 Class Reference

52

Phasing Implementation

The API described here provides a general purpose testbench phasing solution,
consisting of a phaser machine, traversing a master schedule graph, which is built
by the integrator from one or more instances of template schedules provided by
UVM or by 3rd-party VIP, and which supports implicit or explicit synchronization,
runtime control of threads and jumps.

This base class defines everything about a phase: behavior, state, and context

To define behavior, it is extended by UVM or the user to create singleton objects which
capture the definition of what the phase does and how it does it. These are then cloned
to produce multiple nodes which are hooked up in a graph structure to provide context:
which phases follow which, and to hold the state of the phase throughout its lifetime.
UVM provides default extensions of this class for the standard runtime phases. VIP
Providers can likewise extend this class to define the phase functor for a particular
component context as required.

Phase Definition

Singleton instances of those extensions are provided as package variables. These
instances define the attributes of the phase (not what state it is in) They are then cloned
into schedule nodes which point back to one of these implementations, and calls it's
virtual task or function methods on each participating component. It is the base class
for phase functors, for both predefined and user-defined phases. Per-component
overrides can use a customized imp.

To create custom phases, do not extend uvm_phase directly: see the three predefined
extended classes below which encapsulate behavior for different phase types: task,
bottom-up function and top-down function.

Extend the appropriate one of these to create a uvm_YOURNAME_phase class (or
YOURPREFIX_NAME_phase class) for each phase, containing the default implementation
of the new phase, which must be a uvm_component-compatible delegate, and which may
be a null implementation. Instantiate a singleton instance of that class for your code to
use when a phase handle is required. If your custom phase depends on methods that
are not in uvm_component, but are within an extended class, then extend the base
YOURPREFIX_NAME_phase class with parameterized component class context as required,
to create a specialized functor which calls your extended component class methods. This
scheme ensures compile-safety for your extended component classes while providing
homogeneous base types for APIs and underlying data structures.

Phase Context

A schedule is a coherent group of one or mode phase/state nodes linked together by a
graph structure, allowing arbitrary linear/parallel relationships to be specified, and
executed by stepping through them in the graph order. Each schedule node points to a
phase and holds the execution state of that phase, and has optional links to other nodes
for synchronization.

The main build operations are: construct, add phases, and instantiate hierarchically
within another schedule.

Structure is a DAG (Directed Acyclic Graph). Each instance is a node connected to
others to form the graph. Hierarchy is overlaid with m_parent. Each node in the graph

UVM 1.0 Class Reference

53

has zero or more successors, and zero or more predecessors. No nodes are completely
isolated from others. Exactly one node has zero predecessors. This is the root node.
Also the graph is acyclic, meaning for all nodes in the graph, by following the forward
arrows you will never end up back where you started but you will eventually reach a
node that has no successors.

Phase State

A given phase may appear multiple times in the complete phase graph, due to the
multiple independent domain feature, and the ability for different VIP to customize their
own phase schedules perhaps reusing existing phases. Each node instance in the graph
maintains its own state of execution.

Phase Handle

Handles of this type uvm_phase are used frequently in the API, both by the user, to
access phasing-specific API, and also as a parameter to some APIs. In many cases, the
singleton package-global phase handles can be used (eg. connect_ph, run_ph) in APIs.
For those APIs that need to look up that phase in the graph, this is done automatically.

Summary

uvm_phase

This base class defines everything about a phase: behavior, state, and context
CiLass HierarcHy
uvm_void

uvm_object

uvm_phase

CLass DECLARATION
cl ass uvm phase extends uvm obj ect

CONSTRUCTION

new Create a new phase node, with a name and a note of
its type name - name of this phase type - task,
topdown func or bottomup func

get_phase_type Returns the phase type as defined by
uvm_phase_type

STATE
get_state Accessor to return current state of this phase
get_run_count Accessor to return the integer number of times this
phase has executed
find Locate a phase node with the specified name and
return its handle.
is returns 1 if the containing uvm_phase refers to the
same phase as the phase argument, 0 otherwise
is_before Returns 1 if the containing uvm_phase refers to a
phase that is earlier than the phase argument, 0
otherwise
is_after returns 1 if the containing uvm_phase refers to a
phase that is later than the phase argument, 0
otherwise
CALLBACKS
exec_func Implements the functor/delegate functionality for a

function phase type comp - the component to execute
the functionality upon phase - the phase schedule that
originated this phase call

exec_task Implements the functor/delegate functionality for a
task phase type comp - the component to execute the

UVM 1.0 Class Reference

54

functionality upon phase - the phase schedule that
originated this phase call

phase_started Generic notification function called prior to
exec_func()/exec_task() phase - the phase schedule
that originated this phase call

phase_ended Generic notification function called after
exec_func()/exec_task() phase - the phase schedule
that originated this phase call

SCHEDULE
add_phase Build up a schedule structure inserting phase by
phase, specifying linkage
add_schedule Build up schedule structure by adding another
schedule flattened within it.
get_parent Returns the parent schedule node, if any, for
hierarchical graph traversal
get_schedule Returns the topmost parent schedule node, if any, for
hierarchical graph traversal
get_schedule_name Accessor to return the schedule name associated with
this schedule
SYNCHRONIZATION
get_objection Return the uvm_objection that gates the termination
of the phase.
raise_objection Raise an objection to ending this phase Provides
components with greater control over the phase flow
for processes which are not implicit objectors to the
phase.
drop_objection Drop an objection to ending this phase
sync Synchonize two domains, fully or partially
unsync Remove synchonization between two domains, fully or
partially
wait_for_state Wait until this phase compares with the given state
and op operand.
JumpPING
jump Jump to a specified phase.
jump_all Make all schedules jump to a specified phase, even if
the jump target is local.
get_jump_target Return handle to the target phase of the current
jump, or null if no jump is in progress.
CONSTRUCTION

new

function new(stri nﬂ name,
uvm phase_t ype phase_type,
uvm phase par ent)

Create a new phase node, with a nhame and a note of its type name - name of this phase
type - task, topdown func or bottomup func

get_phase_type

function uvm phase_type get_phase_type()

Returns the phase type as defined by uvm_phase_type

UVM 1.0 Class Reference

55

STATE

get_state

function uvm phase_state get_state()

Accessor to return current state of this phase

get_run_count

function int get_run_count ()

Accessor to return the integer number of times this phase has executed

find
function uvm phase find(string nane)

Locate a phase node with the specified name and return its handle. Look first within the
current schedule, then current domain, then global

IS

function bit is(uvm phase phase)

returns 1 if the containing uvm_phase refers to the same phase as the phase argument,
0 otherwise

is_before

function bit is_before(uvm phase phase)

Returns 1 if the containing uvm_phase refers to a phase that is earlier than the phase
argument, 0 otherwise

is_after

function bit is_after(uvm phase phase)

returns 1 if the containing uvm_phase refers to a phase that is later than the phase
argument, 0 otherwise

CALLBACKS

exec_func

virtual function void exec_func(uvm conponent conp,

UVM 1.0 Class Reference 56

uvm phase phase)
Implements the functor/delegate functionality for a function phase type comp - the

component to execute the functionality upon phase - the phase schedule that originated
this phase call

exec_task

virtual task exec_task(uvm conponent conp,
uvm phase phase)

Implements the functor/delegate functionality for a task phase type comp - the

component to execute the functionality upon phase - the phase schedule that originated
this phase call

phase_started

virtual function void phase_started(uvm phase phase)

Generic notification function called prior to exec_func()/exec_task() phase - the phase
schedule that originated this phase call

phase_ended

virtual function void phase_ended(uvm phase phase)

Generic notification function called after exec_func()/exec_task() phase - the phase
schedule that originated this phase call

SCHEDULE

add_phase

function void add_phase(uvm phase phase,
uvm phase w th_phase
uvm phase after_phase
uvm phase before_phase)

Build up a schedule structure inserting phase by phase, specifying linkage

Phases can be added anywhere, in series or parallel with existing nodes

phase handle of singleton derived imp containing actual functor. by
default the new phase is appended to the schedule
with_phase specify to add the new phase in parallel with this one
after_phase specify to add the new phase as successor to this one
before_phase specify to add the new phase as predecessor to this one

add_schedule

function void add_schedul e(uvm phase schedul e,

UVM 1.0 Class Reference 57

uvm phase with_phase
uvm phase after_phase
uvm phase before_phase)

Build up schedule structure by adding another schedule flattened within it.

Inserts a schedule structure hierarchically within the enclosing schedule’s graph. It is
essentially flattened graph-wise, but the hierarchy is preserved by the ‘m_parent’
handles which point to that schedule’s begin node.

schedule handle of new schedule to insert within this one

with_phase specify to add the schedule in parallel with this phase node

after_phase specify to add the schedule as successor to this phase node

before_phase specify to add the schedule as predecessor to this phase node
get_parent

function uvm phase get_parent()

Returns the parent schedule node, if any, for hierarchical graph traversal

get_schedule

functi on uvm phase get_schedul e()

Returns the topmost parent schedule node, if any, for hierarchical graph traversal

get_schedule_name

function string get_schedul e_nane()

Accessor to return the schedule name associated with this schedule

SYNCHRONIZATION

get_objection

function uvm obj ecti on get_objection()

Return the uvm_objection that gates the termination of the phase.

raise_objection

virtual function void raise_objection (uvmobject obj,
string descri ption
i nt count)

Raise an objection to ending this phase Provides components with greater control over
the phase flow for processes which are not implicit objectors to the phase.

UVM 1.0 Class Reference

58

whil e(1) begin
sone_phase. rai se_obj ection(this);

ébhe_phase. drop_obj ection(this);
end

drop_objection

virtual function void drop_objection (uvmobject obj,
string descri ption
i nt count)

Drop an objection to ending this phase

The drop is expected to be matched with an earlier raise.

sync

function void sync(uvmdonain target,
uvm phase phase
uvm phase w th_phase)

Synchonize two domains, fully or partially

target handle of target domain to synchronize this one to

phase optional single phase to synchronize, otherwise all

with_phase optional different target-domain phase to synchronize with
unsync

function void unsync(uvm domain target,
uvm phase phase
uvm phase wi th_phase)

Remove synchonization between two domains, fully or partially

target handle of target domain to remove synchronization from
phase optional single phase to un-synchronize, otherwise all
with_phase optional different target-domain phase to un-synchronize with

wait_for_state

task wait_for_state(uvm phase_state state,
uvm wai t _op op)

Wait until this phase compares with the given state and op operand. For UVM_EQ and
UVM_NE operands, several uvm_phase_states can be supplied by ORing their enum

constants, in which case the caller will wait until the phase state is any of (UVM_EQ) or
none of (UVM_NE) the provided states.

To wait for the phase to be at the started state or after

wai t _for_state(U/M PHASE STARTED, UVM GT);

UVM 1.0 Class Reference 59

To wait for the phase to be either started or executing

wai t_for_state(U/M PHASE_STARTED | UVM PHASE_EXECUTI NG, WM EQ);

JUMPING

jump
function void junp(uvm phase phase)

Jump to a specified phase. If the destination phase is within the current phase schedule,
a simple local jump takes place. If the jump-to phase is outside of the current schedule
then the jump affects other schedules which share the phase.

jump_all

static function void junp_all (uvm phase phase)

Make all schedules jump to a specified phase, even if the jump target is local. The jump
happens to all phase schedules that contain the jump-to phase, i.e. a global jump.

get_jump_target
function uvm phase get_junp_target ()

Return handle to the target phase of the current jump, or null if no jump is in progress.
Valid for use during the phase_ended() callback

Phasing schedule node representing an independent branch of the schedule. Handle used
to assign domains to components or hierarchies in the testbench

Summary

uvm_domain

Phasing schedule node representing an independent branch of the schedule.
CLass HieraRcHY
uvm_void
uvm_object

uvm_phase

UVM 1.0 Class Reference

60

uvm_domain

CLASS DECLARATION
cl ass uvm domai n ext ends uvm phase

MeTHODS
get_common_domain Get the common domain objection which consists of
the common phases that all components executed
together (build, connect, ..., report, final).
METHODS

get_common_domain

static function uvmdomain get _conmmon_donai n()

Get the common domain objection which consists of the common phases that all
components executed together (build, connect, ..., report, final).

uvm_bottomup_phase

Virtual base class for function phases that operate bottom-up. The pure virtual function
execute() is called for each component. This is the default traversal so is included only
for naming.

A bottom-up function phase completes when the execute() method has been called and
returned on all applicable components in the hierarchy.

Summary

uvm_bottomup_phase

Virtual base class for function phases that operate bottom-up.
CLass HierarRcHY
uvm_void
uvm_object

uvm_phase

uvm_bottomup_phase

CLass DEcCLARATION
virtual class uvm bottormup_phase extends uvm phase

MEeTHODS
new Create a new instance of a bottom-up phase.
traverse Traverses the component tree in bottom-up order, calling execute
for each component.
execute Executes the bottom-up phase phase for the component comp.

UVM 1.0 Class Reference

61

MEeTHODS

new

function new string name)

Create a new instance of a bottom-up phase.

traverse

virtual function void traverse(uvm conponent conp,
uvm phase phase,
uvm phase_state state)

Traverses the component tree in bottom-up order, calling execute for each component.

execute

protected virtual function void execute(uvm conponent conp,
uvm phase phase)

Executes the bottom-up phase phase for the component comp.

uvm_topdown_phase

Virtual base class for function phases that operate top-down. The pure virtual function
execute() is called for each component.

A top-down function phase completes when the execute() method has been called and
returned on all applicable components in the hierarchy.

Summary

uvm_topdown_phase

Virtual base class for function phases that operate top-down.
CLass HierarcHY
uvm_void
uvm_object

uvm_phase

uvm_topdown_phase

CLass DECLARATION
virtual class uvm topdown_phase extends uvm phase

MEeTHODS
new Create a new instance of a top-down phase
traverse Traverses the component tree in top-down order, calling execute

UVM 1.0 Class Reference

62

for each component.
execute Executes the top-down phase phase for the component comp.

MEeTHODS

new

function new string nane)

Create a new instance of a top-down phase

traverse

virtual function void traverse(uvm conponent conp,
uvm phase phase,
uvm phase_state state)

Traverses the component tree in top-down order, calling execute for each component.

execute

protected virtual function void execute(uvm conponent conp,
uvm phase phase)

Executes the top-down phase phase for the component comp.

uvim_task_phase

Base class for all task phases. It forks a call to uvm_phase::exec_task() for each
component in the hierarchy.

A task phase completes when there are no raised objections to the end of phase. The
completion of the task does not imply, nor is it required for, the end of phase. Once the
phase completes, any remaining forked uvm_phase::exec_task() threads are forcibly and
immediately killed.

The only way for a task phase to extend over time is if there is at least one component
that raises an objection.

class ny_conp extends uvm conponent;
task mai n_phase(uvm phase phase);))
phase.rai se_objection(this, "Applying stinulus")

bhése. drop_objection(this, "Applied enough stinulus")
endt ask
endcl ass

Summary

UVM 1.0 Class Reference

63

uvm_task_phase

Base class for all task phases.
CLass HieraRrcHY
uvm_void
uvm_object

uvm_phase

uvm_task_phase

CLass DECLARATION
virtual class uvmtask phase extends uvm phase

MEeTHODS
new Create a new instance of a task-based phase
traverse Traverses the component tree in bottom-up order, calling execute
for each component.
execute Fork the task-based phase phase for the component comp.
MEeTHODS

new

function new string nane)

Create a new instance of a task-based phase

traverse

virtual function void traverse(uvm conmponent conp,
uvm phase phase,
uvm phase_state state)

Traverses the component tree in bottom-up order, calling execute for each component.

The actual order for task-based phases doesn’t really matter, as each component task is
executed in a separate process whose starting order is not deterministic.

execute

protected virtual function void execute(uvm conponent conp,
uvm phase phase)

Fork the task-based phase phase for the component comp.

UVM 1.0 Class Reference

64

REePORTING CLASSES

The reporting classes provide a facility for issuing reports with consistent formatting.
Users can configure what actions to take and what files to send output to based on
report severity, ID, or both severity and ID. Users can also filter messages based on
their verbosity settings.

The primary interface to the UVM reporting facility is the uvm_report_object from which
all uvm_components extend. The uvm_report_object delegates most tasks to its internal
uvm_report_handler. If the report handler determines the report is not filtered based
the configured verbosity setting, it sends the report to the central uvm_report_server for
formatting and processing.

Reporting Classes

uvm_object

oo .
! uvm_report_handler L

uvm_report_server

kA

¥

uvm_report_object

UV component

user-defined
companant

Summary
Reporting Classes

The reporting classes provide a facility for issuing reports with consistent
formatting.

UVM 1.0 Class Reference

65

uvm_report_object

The uvm_report_object provides an interface to the UVM reporting facility. Through this
interface, components issue the various messages that occur during simulation. Users
can configure what actions are taken and what file(s) are output for individual messages
from a particular component or for all messages from all components in the
environment. Defaults are applied where there is no explicit configuration.

Most methods in uvm_report_object are delegated to an internal instance of an
uvm_report_handler, which stores the reporting configuration and determines whether an
issued message should be displayed based on that configuration. Then, to display a
message, the report handler delegates the actual formatting and production of messages
to a central uvm_report_server.

A report consists of an id string, severity, verbosity level, and the textual message
itself. They may optionally include the filename and line number from which the
message came. If the verbosity level of a report is greater than the configured
maximum verbosity level of its report object, it is ignored. If a report passes the
verbosity filter in effect, the report’s action is determined. If the action includes output
to a file, the configured file descriptor(s) are determined.

Actions can be set for (in increasing priority) severity, id, and
(severity,id) pair. They include output to the screen
UVM_DISPLAY, whether the message counters should be
incremented UVM_COUNT, and whether a $finish should
occur UVM_EXIT.

Default Actions The following provides the default actions assigned to each
severity. These can be overridden by any of the set_*_action
methods.

UVM_| NFO - UVM DI SPLAY
UVM_WARNI NG - UVM DI SPLAY
UVM_ERROR - UVM DI SPLAY | UVM_COUNT
UVM_FATAL - UMD SPLAY | UWMEX T
File descriptors These can be set by (in increasing priority) default,

severity level, an id, or (severity,id) pair. File descriptors
are standard verilog file descriptors; they may refer to
more than one file. It is the user’s responsibility to open
and close them.

Default file handle The default file handle is 0, which means that reports are
not sent to a file even if an UVM_LOG attribute is set in
the action associated with the report. This can be
overridden by any of the set_*_file methods.

Summary

uvm_report_object

The uvm_report_object provides an interface to the UVM reporting facility.

CLass HIERARCHY
uvm_void

uvm_object

uvm_report_object

UVM 1.0 Class Reference

66

CLass DEecLARATION

class uvmreport_object extends uvm object

new

REPORTING
uvm_report_info
uvm_report_warning
uvm_report_error
uvm_report_fatal

CALLBACKS

report_info_hook
report_error_hook
report_warning_hook
report_fatal_hook
report_hook

report_header
report_summarize

die

CONFIGURATION
set_report_verbosity_level

set_report_id_verbosity

set_report_severity_id_verbosity

set_report_severity_action
set_report_id_action
set_report_severity_id_action

set_report_severity_override
set_report_severity_id_override

set_report_default_file
set_report_severity_file
set_report_id_file
set_report_severity_id_file
get_report_verbosity_level
get_report_action

get_report_file_handle

uvm_report_enabled

set_report_max_quit_count

SETUP
set_report_handler

UVM 1.0 Class Reference

Creates a new report object with the given
name.

These are the primary reporting methods
in the UVM.

These hook methods can be defined in
derived classes to perform additional
actions when reports are issued.

Prints version and copyright information.
Outputs statistical information on the
reports issued by the central report
server.

This method is called by the report server
if a report reaches the maximum quit
count or has an UVM_EXIT action
associated with it, e.g., as with fatal
errors.

This method sets the maximum verbosity
level for reports for this component.

These methods associate the specified
verbosity with reports of the given
severity, id, or severity-id pair.

These methods associate the specified
action or actions with reports of the given
severity, id, or severity-id pair.

These methods provide the ability to
upgrade or downgrade a message in
terms of severity given severity and id.

These methods configure the report
handler to direct some or all of its output
to the given file descriptor.

Gets the verbosity level in effect for this
object.

Gets the action associated with reports
having the given severity and id.

Gets the file descriptor associated with
reports having the given severity and id.
Returns 1 if the configured verbosity for
this severity/id is greater than verbosity
and the action associated with the given
severity and id is not UVYM_NO_ACTION,
else returns 0.

Sets the maximum quit count in the
report handler to max_count.

Sets the report handler, overwriting the

67

default instance.

get_report_handler Returns the underlying report handler to
which most reporting tasks are
delegated.

reset_report_handler Resets the underlying report handler to
its default settings.

get_report_server Returns the uvm_report_server instance
associated with this report object.

dump_report_state This method dumps the internal state of

the report handler.

new

function new(string name = "")

Creates a new report object with the given name. This method also creates a new
uvm_report_handler object to which most tasks are delegated.

REPORTING

uvm_report_info

virtual function void uvmreport_info(string id,
string message,

int verbosity = UVM VEDI UM
string filename = ""
int line =0)
uvm_report_warning
virtual function void uvmreport_warning(string id,
string message,
int verbosity = UVM VEDI UV
string filename = ""
i nt l'ine =0)
uvim_report_error
virtual function void uvmreport_error(string id,
string message,
int verbosity = UYM LOW
string filenamre = ""
i nt line =0)
uvm_report_fatal
virtual function void uvmreport_fatal (string id,
string nessage,
int verbosity = UVM NONE
string filename = ""
i nt l'ine =0)

These are the primary reporting methods in the UVM. Using these instead of $display
and other ad hoc approaches ensures consistent output and central control over where

UVM 1.0 Class Reference

output is directed and any actions that result. All reporting methods have the same
arguments, although each has a different default verbosity:

id

message

verbosity

filename/line

CALLBACKS

a unique id for the report or report group that can be used for
identification and therefore targeted filtering. You can configure
an individual report’s actions and output file(s) using this id
string.

the message body, preformatted if necessary to a single string.

the verbosity of the message, indicating its relative
importance. If this number is less than or equal to the
effective verbosity level, see set_report_verbosity_level, then
the report is issued, subject to the configured action and file
descriptor settings. Verbosity is ignored for warnings, errors,
and fatals. However, if a warning, error or fatal is demoted to
an info message using the uvm_report_catcher, then the
verbosity is taken into account.

(Optional) The location from which the report was issued. Use
the predefined macros, *__ FILE_ and *__ LINE__. If specified,
it is displayed in the output.

report_info_hook

virtual function bit report_info_hook(string id,

string nessage,

int verbosity,
string fil enane,
i nt line)

report_error_hook

virtual function bit report_error_hook(string id,

string message,

int verbosity,
string filenane,
i nt line)

report_warning_hook

virtual function bit report_warning_hook(string id,

string nmessage,

int verbosity,
string fil enane,
i nt line)

report_fatal_hook

virtual function bit report_fatal hook(string id,

UVM 1.0 Class Reference

string message,

int verbosity,
string filenane,
i nt line

69

report_hook

virtual function bit report_hook(string id,
string nessage,

int verbosity,
string filenane,
i nt l'ine)

These hook methods can be defined in derived classes to perform additional actions when
reports are issued. They are called only if the UVM_CALL_HOOK bit is specified in the
action associated with the report. The default implementations return 1, which allows
the report to be processed. If an override returns 0, then the report is not processed.

First, the hook method associated with the report’s severity is called with the same
arguments as the given the report. If it returns 1, the catch-all method, report_hook, is
then called. If the severity-specific hook returns 0, the catch-all hook is not called.

report_header

virtual function void report_header (UYM FILE file)

Prints version and copyright information. This information is sent to the command line if
file is 0, or to the file descriptor file if it is not 0. The uvm_root::run_test task calls this
method just before it component phasing begins.

report_summarize

virtual function void report_sumarize(U/M FILE file)

Outputs statistical information on the reports issued by the central report server. This
information will be sent to the command line if file is 0, or to the file descriptor file if it
is not O.

The run_test method in uvm_top calls this method.

die
virtual function void die()

This method is called by the report server if a report reaches the maximum quit count or
has an UVM_EXIT action associated with it, e.g., as with fatal errors.

If this report object is an uvm_component and we’re in a task-based phase (e.g. run),
then die will issue a global_stop_request, which ends the phase and allows simulation to
continue to the next phase.

If not a component, die calls report_summarize and terminates simulation with $finish.

CONFIGURATION

set_report_verbosity_level

function void set_report_verbosity level (int verbosity_|evel)

UVM 1.0 Class Reference

70

This method sets the maximum verbosity level for reports for this component. Any
report from this component whose verbosity exceeds this maximum will be ignored.

set_report_id_verbosity

function void set_report_id _verbosity (string id,
i nt verbosity)

set_report_severity_id_verbosity

function void set_report_severity_id_verbosity (uvmseverity jsgveri ty,
string id,
i nt ver bosity)

These methods associate the specified verbosity with reports of the given severity, id, or
severity-id pair. An verbosity associated with a particular severity-id pair takes
precedence over an verbosity associated with id, which take precedence over an an
verbosity associated with a severity.

The verbosity argument can be any integer, but is most commonaly a predefined
uvm_verbosity value, UVYM_NONE, UVM_LOW, UVM_MEDIUM, UVM_HIGH, UVM_FULL.

set_report_severity_action

function void set_report_severity_action (uvmseverity severity,
uvm action action

set_report_id_action

function void set_report_id_action (string id,
uvm action action)

set_report_severity_id_action

function void set_report_severity_id_action (uvmseverity _sgveri ty,
string id,
uvm action action)

These methods associate the specified action or actions with reports of the given
severity, id, or severity-id pair. An action associated with a particular severity-id pair
takes precedence over an action associated with id, which takes precedence over an an
action associated with a severity.

The action argument can take the value UVM_NO_ACTION, or it can be a bitwise OR of
any combination of UVM_DISPLAY, UVM_LOG, UVM_COUNT, UVM_STOP, UVM_EXIT, and
UVM_CALL_HOOK.

set_report_severity_override

function void set_report_severity_override(uvmseverity cur_severity,
uvm severity new severity)

UVM 1.0 Class Reference

71

set_report_severity_id_override

function void set_report_severity_id_override(uvmseverity pgr_severi ty,
string i

uvm severity new severity)

These methods provide the ability to upgrade or downgrade a message in terms of
severity given severity and id. An upgrade or downgrade for a specific id takes
precedence over an upgrade or downgrade associated with a severity.

set_report_default_file

function void set_report_default file (UM FILE file)

set_report_severity_file

function void set_report_severity file (uvmseverity severity,
UVM_FI LE file

set_report_id_file

function void set _report_id file (st

ring
UVM_FI

1 d,
LE file)

set_report_severity_id_file

function void set_report_severity_id_file (uvmseverity sgveri ty,
string id,
UVM FI LE file)

These methods configure the report handler to direct some or all of its output to the
given file descriptor. The file argument must be a multi-channel descriptor (mcd) or file
id compatible with $fdisplay.

A FILE descriptor can be associated with with reports of the given severity, id, or
severity-id pair. A FILE associated with a particular severity-id pair takes precedence
over a FILE associated with id, which take precedence over an a FILE associated with a
severity, which takes precedence over the default FILE descriptor.

When a report is issued and its associated action has the UVM_LOG bit set, the report
will be sent to its associated FILE descriptor. The user is responsible for opening and
closing these files.

get_report_verbosity_level

function int get_report_verbosity_| evel (uvm severity severity

UVM | NFO,
string id "

Gets the verbosity level in effect for this object. Reports issued with verbosity greater
than this will be filtered out. The severity and tag arguments check if the verbosity level
has been modified for specific severity/tag combinations.

UVM 1.0 Class Reference

72

get_report_action

function int get_report_action(uvmseverity severity,
string id

Gets the action associated with reports having the given severity and id.

get_report_file_handle

function int get_report_file_handl e(uvm severity severity,
string id

Gets the file descriptor associated with reports having the given severity and id.

uvm_report_enabled

function int uvmreport_enabl ed(int) verbosity,
uvm severity severity = UVM_I NFQ,
string id S B¢

Returns 1 if the configured verbosity for this severity/id is greater than verbosity and the
action associated with the given severity and id is not UVM_NO_ACTION, else returns 0.

See also get_report_verbosity_level and get_report_action, and the global version of
uvm_report_enabled.

set_report_max_quit_count

function void set_report_max_quit_count(int max_count)

Sets the maximum quit count in the report handler to max_count. When the number of
UVM_COUNT actions reaches max_count, the die method is called.

The default value of 0 indicates that there is no upper limit to the number of
UVM_COUNT reports.

SETUP

set_report_handler

function void set_report_handl er(uvm report _handl er handl er)

Sets the report handler, overwriting the default instance. This allows more than one
component to share the same report handler.

get_report_handler

function uvmreport_handl er get _report_handl er ()

Returns the underlying report handler to which most reporting tasks are delegated.

UVM 1.0 Class Reference

73

reset_report_handler

function void reset_report_handl er

Resets the underlying report handler to its default settings. This clears any settings
made with the set_report_* methods (see below).

get_report_server

function uvmreport_server get_report_server()

Returns the uvm_report_server instance associated with this report object.

dump_report_state

function void dunp_report_state()
This method dumps the internal state of the report handler. This includes information

about the maximum quit count, the maximum verbosity, and the action and files
associated with severities, ids, and (severity, id) pairs.

UVM 1.0 Class Reference

74

uvm_report_handler

The uvm_report_handler is the class to which most methods in uvm_report_object
delegate. It stores the maximum verbosity, actions, and files that affect the way reports
are handled.

The report handler is not intended for direct use. See uvm_report_object for information
on the UVM reporting mechanism.

The relationship between uvm_report_object (a base class for uvm_component) and
uvm_report_handler is typically one to one, but it can be many to one if several
uvm_report_objects are configured to use the same uvm_report_handler_object. See
uvm_report_object::set_report_handler.

The relationship between uvm_report_handler and uvm_report_server is many to one.

Summary

uvm_report_handler

The uvm_report_handler is the class to which most methods in
uvm_report_object delegate.

MEeTHODS

new Creates and initializes a new uvm_report_handler
object.

run_hooks The run_hooks method is called if the
UVM_CALL_HOOK action is set for a report.

get_verbosity_level Returns the verbosity associated with the given
severity and id.

get_action Returns the action associated with the given severity
and id.

get_file_handle Returns the file descriptor associated with the given
severity and id.

report This is the common handler method used by the four
core reporting methods (e.g., uvm_report_error) in
uvm_report_object.

format_action Returns a string representation of the action, e.g.,
“DISPLAY".

MEeTHODS

new

function new()

Creates and initializes a new uvm_report_handler object.

run_hooks

virtual function bit run_hooks(uvmreport_object client,

uvm severity severity,
string id,

string nessage,

i nt verbosity,

UVM 1.0 Class Reference

75

enane,

string }‘il
i ne

I nt

The run_hooks method is called if the UVM_CALL_HOOK action is set for a report. It first
calls the client’s uvm_report_object::report_hook method, followed by the appropriate
severity-specific hook method. If either returns 0, then the report is not processed.

get_verbosity_level

function int get_verbosity_| evel (uvmseverity severity
string id)

Returns the verbosity associated with the given severity and id.

First, if there is a verbosity associated with the (severity,id) pair, return that. Else, if
there is an verbosity associated with the id, return that. Else, return the max verbosity
setting.

get_action

function uvm action get_action(uvm severity severity,
string id

Returns the action associated with the given severity and id.

First, if there is an action associated with the (severity,id) pair, return that. Else, if
there is an action associated with the id, return that. Else, if there is an action
associated with the severity, return that. Else, return the default action associated with
the severity.

get_file_handle

function UYMFILE get_file_handl e(uvm severity severity,
string id

Returns the file descriptor associated with the given severity and id.

First, if there is a file handle associated with the (severity,id) pair, return that. Else, if
there is a file handle associated with the id, return that. Else, if there is an file handle
associated with the severity, return that. Else, return the default file handle.

report

virtual function void report(uvmseverity severity,
string narre,
string id,
string nmessage,
i nt verbosity_| evel,
string fil enane,
i nt l'ine,
uvm report_object client)

This is the common handler method used by the four core reporting methods (e.g.,
uvm_report_error) in uvm_report_object.

format_action

UVM 1.0 Class Reference

76

function string format_acti on(uvm acti on action)

Returns a string representation of the action, e.g., “"DISPLAY".

UVM 1.0 Class Reference

77

uvim_report_server

uvm_report_server is a global server that processes all of the reports generated by an
uvm_report_handler. None of its methods are intended to be called by normal testbench
code, although in some circumstances the virtual methods process_report and/or
compose_uvm_info may be overloaded in a subclass.

Summary

uvim_report_server

uvm_report_server is a global server that processes all of the reports generated
by an uvm_report_handler.

V ARIABLES
id_count An associative array holding the number of
occurences for each unique report ID.
MEeTHODS
new Creates the central report server, if not already
created.
set_server Sets the global report server to use for reporting.
get_server Gets the global report server.

set_max_quit_count
get_max_quit_count

Get or set the maximum number of COUNT actions

that can be tolerated before an UVM_EXIT action is

taken.
set_quit_count
get_quit_count
incr_quit_count
reset_quit_count Set, get, increment, or reset to 0 the quit count,
i.e., the number of COUNT actions issued.
is_quit_count_reached If is_quit_count_reached returns 1, then the quit

counter has reached the maximum.
set_severity_count
get_severity_count
incr_severity_count
reset_severity_counts Set, get, or increment the counter for the given
severity, or reset all severity counters to 0.
set_id_count
get_id_count

incr_id_count Set, get, or increment the counter for reports with
the given id.
process_report Calls compose_message to construct the actual

message to be output.

Constructs the actual string sent to the file or
command line from the severity, component name,
report id, and the message itself.

compose_message

summarize See uvm_report_object::report_summarize
method.
dump_server_state Dumps server state information.
get_server Returns a handle to the central report server.
V ARIABLES
id_count

protected int id_count[string]

UVM 1.0 Class Reference

78

An associative array holding the number of occurences for each unique report ID.

MEeTHODS

new

function new()

Creates the central report server, if not already created. Else, does nothing. The
constructor is protected to enforce a singleton.

set_server

static function void set_server(uvm.report_server server)

Sets the global report server to use for reporting. The report server is responsible for
formatting messages.

get_server

static function uvmreport_server get_server()

Gets the global report server. The method will always return a valid handle to a report
server.

set_max_quit_count

function void set_max_quit_count(int count,
bit overridable = 1)

get_max_quit_count

function int get_nmax_quit_count()

Get or set the maximum number of COUNT actions that can be tolerated before an
UVM_EXIT action is taken. The default is 0, which specifies no maximum.

set_quit_count

function void set_quit_count(int quit_count)

get_quit_count

function int get_quit_count()

UVM 1.0 Class Reference

79

incr_quit_count

function void incr_quit_count()

reset_quit_count

function void reset_quit_count()

Set, get, increment, or reset to 0 the quit count, i.e., the number of COUNT actions
issued.

is_quit_count_reached

function bit is_quit_count_reached()

If is_quit_count_reached returns 1, then the quit counter has reached the maximum.

set_severity_count

function void set_severity_count(uvmseverity severity,
i nt count)

get_severity_count

function int get_severity_count(uvmseverity severity)

incr_severity_count

function void incr_severity_count(uvmseverity severity)

reset_severity_counts

function void reset_severity_counts()

Set, get, or increment the counter for the given severity, or reset all severity counters to

0.

set_id_count

function void set_id_count(string id,
i nt count)

get_id_count

function int get_id _count(string id)

UVM 1.0 Class Reference

80

incr_id_count

function void incr_id count(string id)

Set, get, or increment the counter for reports with the given id.

process_report

virtual function void process_report(uvmseverity severity,
string nare,
string id,
string nmessage,
uvm acti on action,
UVM FI LE file,
string fil enane,
i nt I'ine,
string conposed_nessage,
i nt verbosity | evel,

uvm report _object client

Calls compose_message to construct the actual message to be output. It then takes the
appropriate action according to the value of action and file.

This method can be overloaded by expert users to customize the way the reporting
system processes reports and the actions enabled for them.

compose_message

virtual function string conpose_nessage(uvm severity severity,

string name,
string id,
string nmessage,
string fil enane,
i nt line

Constructs the actual string sent to the file or command line from the severity,
component name, report id, and the message itself.

Expert users can overload this method to customize report formatting.

summarize

virtual function void summari ze(UYM FILE file =)

See uvm_report_object::report_summarize method.

dump_server_state

function void dunp_server_state()

Dumps server state information.

get_server

function uvmreport_server get_server()

Returns a handle to the central report server.

UVM 1.0 Class Reference

uvm_report_catcher

The uvm_report_catcher is used to catch messages issued by the uvm report server.
Catchers are uvm_callbacks#(uvm_report_object,uvm_report_catcher) objects, so all
factilities in the uvm_callback and uvm_callbacks#(T,CB) classes are available for
registering catchers and controlling catcher state. The
uvm_callbacks#(uvm_report_object,uvm_report_catcher) class is aliased to
uvm_report_cb to make it easier to use. Multiple report catchers can be registered with
a report object. The catchers can be registered as default catchers which catch all
reports on all uvm_report_object reporters, or catchers can be attached to specific report
objects (i.e. components).

User extensions of uvm_report_catcher must implement the catch method in which the
action to be taken on catching the report is specified. The catch method can return
CAUGHT, in which case further processing of the report is immediately stopped, or return
THROW in which case the (possibly modified) report is passed on to other registered
catchers. The catchers are processed in the order in which they are registered.

On catching a report, the catch method can modify the severity, id, action, verbosity or
the report string itself before the report is finally issued by the report server. The report
can be immediately issued from within the catcher class by calling the issue method.

The catcher maintains a count of all reports with FATAL,ERROR or WARNING severity and
a count of all reports with FATAL, ERROR or WARNING severity whose severity was
lowered. These statistics are reported in the summary of the uvm_report_server.

This example shows the basic concept of creating a report catching callback and
attaching it to all messages that get emitted:

class ny_error_denoter extends uvmreport_catcher;
function new(string nanme="my_error_denoter");
super . new(nane) ;
endf unction]
[/ This exanple demptes "My_ID' errors to an info nessage
function action_e cat chgv;]
i f(get_severi ty(U)v == M ERROR && get_id() == "MY_ID")
set _severity(UVM I NFO);
return THROW
endf unction
endcl ass

ny_error_denoter denmpter = new,

initial begin

/1 Catchers are call backs on report objects (conponents are report
/'l objects, so catchers can be attached to conponents).

/1l To affect all reporters, use null for the object
uvmreport _ch::add(null, demoter);

/1 To affect sone specific object use the specific reporter
uvm report _ch::add(nytest. myenv. myagent. nydriver, denoter);

// To affect sone set of conponents using the conponent name
ua/m_r eport _cb::add_by name("*.*driver", denoter);
en

Summary

uvm_report_catcher

The uvm_report_catcher is used to catch messages issued by the uvm report
server.

CLAss DEcLARATION
typedef class uvmreport _catcher

UVM 1.0 Class Reference

82

new

CURRENT MESSAGE STATE
get_client

get_severity
get_verbosity
get_id
get_message
get_action

get_fname
get_line

CHANGE MESSAGE STATE
set_severity

set_verbosity
set_id

set_message
set_action

DeBuG

get_report_catcher
print_catcher

CaLLBack INTERFACE
catch

REPORTING
uvm_report_fatal

uvm_report_error
uvm_report_warning
uvm_report_info
issue

summarize_report_catcher

new

Create a new report object.

Returns the uvm_report_object that has
generated the message that is currently being
processes.

Returns the uvm_severity of the message that
is currently being processed.

Returns the verbosity of the message that is
currently being processed.

Returns the string id of the message that is
currently being processed.

Returns the string message of the message
that is currently being processed.

Returns the uvm_action of the message that is
currently being processed.

Returns the file name of the message.

Returns the line number of the message.

Change the severity of the message to
severity.

Change the verbosity of the message to
verbosity.

Change the id of the message to id.

Change the text of the message to message.
Change the action of the message to action.

Returns the first report catcher that has name.
Prints information about all of the report
catchers that are registered.

This is the method that is called for each
registered report catcher.

Issues a fatal message using the current
messages report object.

Issues a error message using the current
messages report object.

Issues a warning message using the current
messages report object.

Issues a info message using the current
messages report object.

Immediately issues the message which is
currently being processed.

This function is called automatically by
uvm_report_server::summarize().

function newstring name = "uvmreport catcher")

Create a new report object. The name argument is optional, but should generally be

provided to aid in debugging.

CURRENT MESSAGE STATE

get_client

UVM 1.0 Class Reference

83

function uvmreport_object get_client()

Returns the uvm_report_object that has generated the message that is currently being
processes.

get_severity

function uvm severity get_severity()

Returns the uvm_severity of the message that is currently being processed. If the
severity was modified by a previously executed report object (which re-threw the
message), then the returned severity is the modified value.

get_verbosity

function int get_verbosity()
Returns the verbosity of the message that is currently being processed. If the verbosity

was modified by a previously executed report object (which re-threw the message), then
the returned verbosity is the modified value.

get_id
function string get _id()
Returns the string id of the message that is currently being processed. If the id was

modified by a previously executed report object (which re-threw the message), then the
returned id is the modified value.

get_message

function string get_nessage()
Returns the string message of the message that is currently being processed. If the

message was modified by a previously executed report object (which re-threw the
message), then the returned message is the modified value.

get_action

functi on uvm action get_action()
Returns the uvm_action of the message that is currently being processed. If the action

was modified by a previously executed report object (which re-threw the message), then
the returned action is the modified value.

get_fname

function string get_fnane()

Returns the file name of the message.

UVM 1.0 Class Reference

84

get_line
function int get_line()

Returns the line number of the message.

CHANGE MESSAGE STATE

set_severity

protected function void set_severity(uvmseverity severity)

Change the severity of the message to severity. Any other report catchers will see the
modified value.

set_verbosity

protected function void set_verbosity(int verbosity)

Change the verbosity of the message to verbosity. Any other report catchers will see
the modified value.

set_id
protected function void set_id(string id)

Change the id of the message to id. Any other report catchers will see the modified
value.

set_message

protected function void set_nessage(string nessage)

Change the text of the message to message. Any other report catchers will see the
modified value.

set_action

protected function void set_action(uvm action action)

Change the action of the message to action. Any other report catchers will see the
modified value.

DEeBuG

UVM 1.0 Class Reference

85

get_report_catcher

static function uvmreport_catcher get _report_catcher(string nane)

Returns the first report catcher that has name.

print_catcher

static function void print_catcher(U/MFILE file =)
Prints information about all of the report catchers that are registered. For finer grained

detail, the uvm_callbacks #(T,CB)::display method can be used by calling
uvm_report_cb::display(uvm_report_object).

CaLLBACK INTERFACE

catch

pure virtual function action_e catch()
This is the method that is called for each registered report catcher. There are no

arguments to this function. The Current Message State interface methods can be used to
access information about the current message being processed.

REPORTING

uvm_report_fatal

protected function void uvmreport_fatal (string id,
string message,

int verbosity,
string fnanme =",
i nt line =0)

Issues a fatal message using the current messages report object. This message will
bypass any message catching callbacks.

uvm_report_error

protected function void uvmreport_error(string id,
string nmessage,

int verbosity,
string fnane =",
i nt l'ine =0)

Issues a error message using the current messages report object. This message will
bypass any message catching callbacks.

uvm_report_warning

UVM 1.0 Class Reference

86

protected function void uvmreport_warning(string id,
string nmessage,

int verbosity,
string fnane ="",
i nt l'ine =0)

Issues a warning message using the current messages report object. This message will
bypass any message catching callbacks.

uvm_report_info

protected function void uvmreport_info(string id,
string message,

int verbosity,
string fnane ="",
i nt line =0)

Issues a info message using the current messages report object. This message will
bypass any message catching callbacks.

issue

protected function void issue()

Immediately issues the message which is currently being processed. This is useful if the
message is being CAUGHT but should still be emitted.

Issuing a message will update the report_server stats, possibly multiple times if the
message is not CAUGHT.

summarize_report_catcher

static function void sunmmari ze_report_catcher(UYM FILE file)

This function is called automatically by uvm_report_server::summarize(). It prints the
statistics for the active catchers.

UVM 1.0 Class Reference

87

Factory Classes

As the name implies, the uvm_factory is used to manufacture (create) UVM objects and
components. Only one instance of the factory is present in a given simulation.

User-defined object and component types are registered with the factory via typedef or
macro invocation, as explained in uvm_factory::Usage. The factory generates and stores
lightweight proxies to the user-defined objects and components: uvm_object_registry
#(T,Tname) for objects and uvm_component_registry #(T,Tname) for components. Each
proxy only knows how to create an instance of the object or component it represents,
and so is very efficient in terms of memory usage.

When the user requests a new object or component from the factory (e.g.
uvm_factory::create_object_by_type), the factory will determine what type of object to
create based on its configuration, then ask that type’s proxy to create an instance of the
type, which is returned to the user.

Factory Classes

uvm_factory ! > uvm_object_wrapper
7T Trame | |7 Trame |
______ I
uvm_component_registry uvim_object_registry
Summary

Factory Classes

As the name implies, the uvm_factory is used to manufacture (create) UVM
objects and components.

UVM 1.0 Class Reference

88

Factory Component and Object Wrappers

This section defines the proxy component and object classes used by the factory. To
avoid the overhead of creating an instance of every component and object that get
registered, the factory holds lightweight wrappers, or proxies. When a request for a new
object is made, the factory calls upon the proxy to create the object it represents.

Contents

Factory Component This section defines the proxy component and object
and Object Wrappers classes used by the factory.

uvm_component_registry The uvm_component_registry serves as a lightweight

#(T,Tname) proxy for a component of type T and type name
Tname, a string.

uvm_object_registry The uvm_object_registry serves as a lightweight proxy

#(T,Tname) for an uvm_object of type T and type name Tname, a
string.

uvm_component_registry #(T,Tname)

The uvm_component_registry serves as a lightweight proxy for a component of type T
and type name Tname, a string. The proxy enables efficient registration with the
uvm_factory. Without it, registration would require an instance of the component itself.

See Usage section below for information on using uvm_component_registry.

Summary

uvm_component_registry #(T,Tname)

The uvm_component_registry serves as a lightweight proxy for a component of
type T and type name Tname, a string.

CLass HIERARCHY

uvm_object_wrapper

uvm_component_registry#(T,Thame) |

CLass DEcCLARATION
cl ass uvm conponent _registry #(

type T = uvm_conponent,
string Tname = "<unknown>"
) extends uvm object_wrapper
MEeTHODS
create_component Creates a component of type T having the provided
name and parent.
get_type_name Returns the value given by the string parameter,
Tname.
get Returns the singleton instance of this type.
create Returns an instance of the component type, T,
represented by this proxy, subject to any factory
overrides based on the context provided by the parent’s
full name.
set_type_override Configures the factory to create an object of the type

UVM 1.0 Class Reference

89

represented by override_type whenever a request is
made to create an object of the type, T, represented by
this proxy, provided no instance override applies.

set_inst_override Configures the factory to create a component of the
type represented by override_type whenever a request
is made to create an object of the type, T, represented
by this proxy, with matching instance paths.

MEeTHODS

create_component

virtual function uvm conponent create_conponent (string nane,
uvm conponent parent)

Creates a component of type T having the provided name and parent. This is an
override of the method in uvm_object_wrapper. It is called by the factory after
determining the type of object to create. You should not call this method directly. Call
create instead.

get_type_name
virtual function string get_type_nane()

Returns the value given by the string parameter, Tname. This method overrides the
method in uvm_object_wrapper.

get

static function this_type get()

Returns the singleton instance of this type. Type-based factory operation depends on
there being a single proxy instance for each registered type.

Create
static function T create(string nane,
uvm conponent parent,
string cont xt)

Returns an instance of the component type, T, represented by this proxy, subject to any
factory overrides based on the context provided by the parent’s full name. The contxt
argument, if supplied, supercedes the parent’s context. The new instance will have the
given leaf name and parent.

set_type_override

static function void set_type_override (uvm object_w apper override_type,
bi t repl ace

UVM 1.0 Class Reference 90

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type, T, represented by this
proxy, provided no instance override applies. The original type, T, is typically a super
class of the override type.

set_inst_override

static function void set_inst_override(uvm object_w apper override_ type,
string i nst _path,
uvm comnponent par ent = nL

Configures the factory to create a component of the type represented by override_type
whenever a request is made to create an object of the type, T, represented by this
proxy, with matching instance paths. The original type, T, is typically a super class of
the override type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which
enables instance overrides to be set from outside component classes. If parent is
specified, inst_path is interpreted as being relative to the parent’s hierarchical instance
path, i.e. {parent.get_full name(),”.”,inst_path} is the instance path that is registered
with the override. The inst_path may contain wildcards for matching against multiple
contexts.

uvim_object_registry #(T,Tname)

The uvm_object_registry serves as a lightweight proxy for an uvm_object of type T and
type name Tname, a string. The proxy enables efficient registration with the
uvm_factory. Without it, registration would require an instance of the object itself.

See Usage section below for information on using uvm_component_registry.

Summary

uvm_object_registry #(T,Tname)

The uvm_object_registry serves as a lightweight proxy for an uvm_object of type
T and type name Tname, a string.

CLass HIErRARCHY

uvm_object_wrapper

uvm_object_registry#(T,Tname) |

CLass DEcLARATION
cl ass uvm object_registry #(

type T = uvm obj ect,
string Tname = "<unknown>"
) extends uvm obj ect _wrapper
create_object Creates an object of type T and returns it as a handle to
an uvm_object.

get_type_name Returns the value given by the string parameter, Tname.
get Returns the singleton instance of this type.
create Returns an instance of the object type, T, represented by

this proxy, subject to any factory overrides based on the
context provided by the parent’s full name.
set_type_override Configures the factory to create an object of the type

UVM 1.0 Class Reference

91

represented by override_type whenever a request is made
to create an object of the type represented by this proxy,
provided no instance override applies.

set_inst_override Configures the factory to create an object of the type
represented by override_type whenever a request is made
to create an object of the type represented by this proxy,
with matching instance paths.

UsaGe This section describes usage for the uvm_*_registry
classes.

create_object

virtual function uvmobject create_object(string nane)

Creates an object of type T and returns it as a handle to an uvm_object. This is an
override of the method in uvm_object_wrapper. It is called by the factory after
determining the type of object to create. You should not call this method directly. Call
create instead.

get_type_name

virtual function string get_type_nane()

Returns the value given by the string parameter, Tname. This method overrides the
method in uvm_object_wrapper.

get

static function this_type get()

Returns the singleton instance of this type. Type-based factory operation depends on
there being a single proxy instance for each registered type.

Ccreate
static function T create (string name
uvm conponent parent
string cont xt)

Returns an instance of the object type, T, represented by this proxy, subject to any
factory overrides based on the context provided by the parent’s full name. The contxt
argument, if supplied, supercedes the parent’s context. The new instance will have the
given leaf name, if provided.

set_type_override

static function void set_type_override (uvm object_w apper override_type,
bi t repl ace

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy,
provided no instance override applies. The original type, T, is typically a super class of

UVM 1.0 Class Reference

92

the override type.

set_inst_override

static function void set_inst_override(uvm object_w apper override_ type,
string i nst _path,
uvm comnponent par ent

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy,
with matching instance paths. The original type, T, is typically a super class of the
override type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which
enables instance overrides to be set from outside component classes. If parent is
specified, inst_path is interpreted as being relative to the parent’s hierarchical instance
path, i.e. {parent.get_full name(),”.”,inst_path} is the instance path that is registered
with the override. The inst_path may contain wildcards for matching against multiple
contexts.

UsAGE

This section describes usage for the uvm_*_registry classes.
The wrapper classes are used to register lightweight proxies of objects and components.

To register a particular component type, you need only typedef a specialization of its
proxy class, which is typically done inside the class.

For example, to register an UVM component of type mycomp

cl ass nyconp extends uvm conponent;

tylpedef uvm conponent _regi stry #(myconp, "nyconp") type_id;
endcl ass

However, because of differences between simulators, it is necessary to use a macro to
ensure vendor interoperability with factory registration. To register an UVM component
of type mycomp in a vendor-independent way, you would write instead:

class nyconp extends uvm conponent;
uvm conponent _uti |l s(nmyconp);

endcl ass

The "uvm_component_utils macro is for non-parameterized classes. In this example, the
typedef underlying the macro specifies the Tname parameter as "mycomp”, and
mycomp’s get_type_name() is defined to return the same. With Tname defined, you can
use the factory’s name-based methods to set overrides and create objects and
components of non-parameterized types.

For parameterized types, the type name changes with each specialization, so you can not
specify a Tname inside a parameterized class and get the behavior you want; the same
type name string would be registered for all specializations of the class! (The factory
would produce warnings for each specialization beyond the first.) To avoid the warnings

UVM 1.0 Class Reference

93

and simulator interoperability issues with parameterized classes, you must register
parameterized classes with a different macro.

For example, to register an UVM component of type driver #(T), you would write:

class driver #(type T=int) extends uvm conponent;
“uvm conponent “_param util s(driver #(T));

endcl ass

The "uvm_component_param_utils and “uvm_object_param_utils macros are used to
register parameterized classes with the factory. Unlike the the non-param versions,
these macros do not specify the Tname parameter in the underlying
uvm_component_registry typedef, and they do not define the get_type_name method for
the user class. Consequently, you will not be able to use the factory’s name-based
methods for parameterized classes.

The primary purpose for adding the factory’s type-based methods was to accommodate
registration of parameterized types and eliminate the many sources of errors associated
with string-based factory usage. Thus, use of name-based lookup in uvm_factory is no
longer recommended.

UVM 1.0 Class Reference

94

UVM Factory

This page covers the classes that define the UVM factory facility.

Contents
UVM Factory This page covers the classes that define the UVM factory
facility.
uvm_factory As the name implies, uvm_factory is used to manufacture

(create) UVM objects and components.
uvm_object_wrapper The uvm_object_wrapper provides an abstract interface for
creating object and component proxies.

uvm_factory

As the name implies, uvm_factory is used to manufacture (create) UVM objects and
components. Only one instance of the factory is present in a given simulation (termed a
singleton). Object and component types are registered with the factory using lightweight
proxies to the actual objects and components being created. The uvm_object_registry
#(T,Tname) and uvm_component_registry #(T,Tname) class are used to proxy
uvm_objects and uvm_components.

The factory provides both name-based and type-based interfaces.

type-based The type-based interface is far less prone to errors in usage.
When errors do occur, they are caught at compile-time.

name-based The name-based interface is dominated by string arguments
that can be misspelled and provided in the wrong order. Errors
in name-based requests might only be caught at the time of the
call, if at all. Further, the name-based interface is not portable
across simulators when used with parameterized classes.

See Usage section for details on configuring and using the factory.

Summary

uvm_factory

As the name implies, uvm_factory is used to manufacture (create) UVM objects
and components.

CLass DECLARATION
class uvmfactory

REeGisTerING TYPES

register Registers the given proxy object, obj, with
the factory.

Type & INsTANCE OVERRIDES
set_inst_override_by_type
set_inst_override_by_name Configures the factory to create an object of
the override’s type whenever a request is
made to create an object of the original type
using a context that matches full_inst_path.
set_type_override_by_type

UVM 1.0 Class Reference

95

set_type_override_by_name Configures the factory to create an object of
the override’s type whenever a request is
made to create an object of the original type,
provided no instance override applies.

CREATION
create_object_by_type
create_component_by_type
create_object_by_name
create_component_by_name Creates and returns a component or object of
the requested type, which may be specified
by type or by name.

DeBuc
debug_create_by_type
debug_create_by_name These methods perform the same search
algorithm as the create_* methods, but they
do not create new objects.
find_override_by_type

find_override_by_name These methods return the proxy to the
object that would be created given the
arguments.

print Prints the state of the uvm_factory, including

registered types, instance overrides, and
type overrides.

UsaGe Using the factory involves three basic
operations

REeGIsSTERING TYPES

register

function void register (uvm.object_w apper obj)

Registers the given proxy object, obj, with the factory. The proxy object is a lightweight
substitute for the component or object it represents. When the factory needs to create
an object of a given type, it calls the proxy’s create_object or create_component method
to do so.

When doing name-based operations, the factory calls the proxy’s get_type_name method
to match against the requested_type name argument in subsequent calls to
create_component_by_name and create_object_by_name. If the proxy object’s
get_type_name method returns the empty string, name-based lookup is effectively
disabled.

TyrPe & INsTANCE OVERRIDES

set_inst_override_by_type

function void set_inst_override_by_type (uvm object_w apper original _type,
uvm obj ect _wrapper override_type,
string full _i nst_path)

UVM 1.0 Class Reference

96

set_inst_override_by_name

function void set_inst_override_by_name (string original_type_nane,
string override_type_nane,
string full _inst _path

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type using a context that matches
full_inst_path. The original type is typically a super class of the override type.

When overriding by type, the original _type and override_type are handles to the types’
proxy objects. Preregistration is not required.

When overriding by name, the original_type_name typically refers to a preregistered type
in the factory. It may, however, be any arbitrary string. Future calls to any of the
create_* methods with the same string and matching instance path will produce the type
represented by override_type_name, which must be preregistered with the factory.

The full_inst_path is matched against the contentation of {parent_inst_path, “.”, name}
provided in future create requests. The full_inst_path may include wildcards (* and ?)
such that a single instance override can be applied in multiple contexts. A full_inst_path
of "*” is effectively a type override, as it will match all contexts.

When the factory processes instance overrides, the instance queue is processed in order
of override registrations, and the first override match prevails. Thus, more specific
overrides should be registered first, followed by more general overrides.

set_type_override_by_type

function void set_type_override_by_type (uvm object_w apper original _type,
uvm obj ect _wrapper override_type,
bi t repl ace

set_type_override_by_name

function void set_type_override_by_name (string original_type_nane,
string override_type_nane,
bi t repl ace)

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type, provided no instance override applies. The
original type is typically a super class of the override type.

When overriding by type, the original _type and override_type are handles to the types’
proxy objects. Preregistration is not required.

When overriding by name, the original_type_name typically refers to a preregistered type
in the factory. It may, however, be any arbitrary string. Future calls to any of the
create_* methods with the same string and matching instance path will produce the type
represented by override_type_name, which must be preregistered with the factory.

When replace is 1, a previous override on original_type _name is replaced, otherwise a
previous override, if any, remains intact.

CREATION

UVM 1.0 Class Reference

97

create_object_by_type

function uvm obj ect create_object_by_type (uvm object_w apper requested_type,
string parent _i nst_pat
string nane

create_component_by_type

function uvm conponent create_conponent_by_type (
uvm obj ect _wrapper requested_type,

string parent _inst _path
string nane,
uvm conponent par ent

create_object_by_ name

function uvm obj ect create_object_by_name (string requested_type_nane,
string parent_inst_path

string name)
create_component_by_name
function uvm conponent create_conponent_by_nanme (string request ed_type
string parent _inst_pa
string nane,

uvm conponent par ent

Creates and returns a component or object of the requested type, which may be
specified by type or by name. A requested component must be derived from the
uvm_component base class, and a requested object must be derived from the
uvm_object base class.

When requesting by type, the requested_type is a handle to the type’s proxy object.
Preregistration is not required.

When requesting by name, the request_type_name is a string representing the requested
type, which must have been registered with the factory with that name prior to the
request. If the factory does not recognize the requested_type name, an error is
produced and a null handle returned.

If the optional parent_inst_path is provided, then the concatenation, {parent_inst_path,
“.", ~name~}, forms an instance path (context) that is used to search for an instance
override. The parent_inst_path is typically obtained by calling the

uvm_component::get_full_name on the parent.
If no instance override is found, the factory then searches for a type override.

Once the final override is found, an instance of that component or object is returned in
place of the requested type. New components will have the given name and parent.
New objects will have the given name, if provided.

Override searches are recursively applied, with instance overrides taking precedence over
type overrides. If foo overrides bar, and xyz overrides foo, then a request for bar will
produce xyz. Recursive loops will result in an error, in which case the type returned will
be that which formed the loop. Using the previous example, if bar overrides xyz, then

UVM 1.0 Class Reference

98

bar is returned after the error is issued.

DeBuc

debug_create_by_type

function void debug_create_by_type (uvm object_w apper requested_type,
string parent _inst_path
string nane

debug_create_by_name

function void debug_create_by_nanme (string requested_type_nane,
string parent_inst_path
string name)

These methods perform the same search algorithm as the create_* methods, but they do
not create new objects. Instead, they provide detailed information about what type of
object it would return, listing each override that was applied to arrive at the result.
Interpretation of the arguments are exactly as with the create_* methods.

find_override_by_type

function uvm obj ect _wapper find override by type (
uvm obj ect _wr apper requested_type,
string full _inst_path

find_override_by_name

function uvm obj ect_wapper find override by nane (string requested_type_name

string full _inst_path

These methods return the proxy to the object that would be created given the
arguments. The full_inst_path is typically derived from the parent’s instance path and

the leaf name of the object to be created, i.e. { parent.get_full_name(), *.”, name }.

print

function void print (int all_types)

Prints the state of the uvm_factory, including registered types, instance overrides, and
type overrides.

When all_types is 0, only type and instance overrides are displayed. When all_types is 1
(default), all registered user-defined types are printed as well, provided they have names
associated with them. When all_types is 2, the UVM types (prefixed with uvm_) are
included in the list of registered types.

UVM 1.0 Class Reference

99

UsAGE

Using the factory involves three basic operations

1 Registering objects and components types with the factory
2 Designing components to use the factory to create objects or components
3 Configuring the factory with type and instance overrides, both within and

outside components

We'll briefly cover each of these steps here. More reference information can be found at

Utility Macros, uvm_component_registry #(T,Tname), uvm_object_registry #(T,Tname),
uvm_component.

1 -- Registering objects and component types with the factory

When defining uvm_object and uvm_component-based classes, simply invoke the
appropriate macro. Use of macros are required to ensure portability across different
vendors’ simulators.

Objects that are not parameterized are declared as

cl ass packet extends uvm object;
uvm obj ect _util s(packet)
endcl ass

class packetD extends packet;
uvm obj ect _uti |l s(packet D)
endcl ass

Objects that are parameterized are declared as

class packet #(type T=int, int WDIH=32) extends uvm object;
(ljjvlm obj ect _param uti | s(packet #(T, WDTH))
endcl ass

Components that are not parameterized are declared as

class conp extends uvm conponent;
uvm conponent _uti |l s(conp)
endcl ass

Components that are parameterized are declared as

class conp #(type T=int, int WDTH=32) extends uvm conponent;
dulvm conponent _par am | util s(conp #(T,WDTH))
endcl ass

The “uvm_*_utils macros for simple, non-parameterized classes will register the type

with the factory and define the get_type, get_type_name, and create virtual methods

inherited from uvm_object. It will also define a static type_name variable in the class,
which will allow you to determine the type without having to allocate an instance.

The “uvm_*_param_utils macros for parameterized classes differ from “uvm_*_utils
classes in the following ways:

UVM 1.0 Class Reference

100

+ The get_type_name method and static type_name variable are not defined. You
will need to implement these manually.

* A type name is not associated with the type when registeriing with the factory, so
the factory’s *_by_name operations will not work with parameterized classes.

e The factory’s print, debug_create_by_type, and debug_create_by_name methods,
which depend on type names to convey information, will list parameterized types
as <unknown>.

It is worth noting that environments that exclusively use the type-based factory methods
(*_by_type) do not require type registration. The factory’s type-based methods will
register the types involved “on the fly,” when first used. However, registering with the
“uvm_*_utils macros enables name-based factory usage and implements some useful
utility functions.

2 -- Desighing components that defer creation to the factory

Having registered your objects and components with the factory, you can now make
requests for new objects and components via the factory. Using the factory instead of
allocating them directly (via new) allows different objects to be substituted for the
original without modifying the requesting class. The following code defines a driver class
that is parameterized.

class driverB #(type T=uvm object) extends uvmdriver;

[l paraneterized classes nmust use the paramutils version
uvm conponent _param utils(driverB #(T))

/1 Eur packet type; this can be overridden via the factory
T pkt;

/1 standard conponent constructor

function newstring nane, uvm conponent parent=null);
super . new(nane, parent);

endf unction

/1 get_type_name not inplenented by macro for paraneterized cl asses
const static string type_nanme = {"driverB #(", T::type_name,")"};
virtual function string get_type_nane();

return type_nane;
endf unction

/1 using the factory allows pkt overrides from outside the class
virtual function void build_phase(uvm phase phase);

pkt = packet::type_id::create("pkt",this);
endf unction

/1 print the packet so we can confirmits type when printing

virtual function void do_print(uvmprinter printer);
printer.print_object("pkt", pkt);

endf unction

endcl ass

For purposes of illustrating type and instance overrides, we define two subtypes of the
driverB class. The subtypes are also parameterized, so we must again provide an
implementation for uvm_object::get_type_name, which we recommend writing in terms
of a static string constant.

class driverDl #(type T=uvm object) extends driverB #(T);
“uvm conponent _param utils(driverDl #(T))
function newstring nane, uvm conponent parent=null);
super . new(nane, parent);
endf uncti on
const static string type_nanme = {"driverDl #(",T::type_nane,")"};
virtual function string get_type_ nane();
...return type_nane,
endf unction

endcl ass

UVM 1.0 Class Reference 101

class driverD2 #(type T=uvm object) extends driverB #(T);
“uvm conponent _param utils(driverD2 #(T))

function newstring nane, uvm conponent parent=null);
super . new(nane, parent);
endf unction

const static string type_nanme = {"driverD2 #(",T::type_nane,")"},;
virtual function string get_type_nane();

return type_nang;
endf unction

endcl ass

/1 typedef some specializations for convenience]

typedef driverB #(packet) B driver; /1 the base driver
typedef driverDl #(packet) DI driver; // a derived driver
typedef driverD2 #(packet) D2 driver; // another derived driver

Next, we'll define a agent component, which requires a utils macro for non-

parameterized types. Before creating the drivers using the factory, we override driverQ’s

packet type to be packetD.

cl ass agent extends uvm agent;
“uvm conponent _util s(agent)

B'_'dri ver driverO0;
B driver driveril;

function newstring nane, uvm conponent parent=null);

super . new(nane, parent);
endf uncti on

virtual function void build_phase(uvm phase phase);

/'l override the packet type for driver0O and bel ow]
packet::type_id::set_inst_override(packetD::get_type(),"driver0.*");

/1 create using the factory; actual driver types may be different
driverO B_driver::type_id::create("driver0",this);
driverl B driver::type_id::create("driverl",this

endf unction

endcl ass

Finally we define an environment class, also not parameterized. Its build method shows
three methods for setting an instance override on a grandchild component with relative

path name, agentl.driverl, all equivalent.

class env extends uvm env;
“uvm conponent _util s(env)

agent agent0;
agent agent 1,

function newstring nane, uvm conponent parent=null);
super. new(hane, parent);
endf uncti on

virtual function void build_phase(uvm phase phase);

/] three methods to set an instance override for agentl.driverl
/1 - via conponent conveni ence nethod...
set _inst_override_by_type("agentl.driverl",
B_driver::get_type(),
D2_driver::get_type());

// - via the conponent's proxy (same approach as creat eg. .
B driver::type_id::set_inst_override(D2_driver::get_type(),
Tagent1.driverl",this);
/[l - via a direct call to a factory nethod...
factory.set_inst_override_by_type(B_driver::get_type(),
D2_driver::get_type(),

{get _full _nane(),".agentl.driver1"});

UVM 1.0 Class Reference

/| create agents using the factory; actual agent types may be different

102

agent0 = agent::type
= type

cicreate("agent0",this);
agent 1 agent : : : this);

id
“id::create("agent1",
endf unction

/1 at end_of _el aboration, print topology and factory state to verify
virtual function void end_of _el aboration_phase(uvm phase phase);

uvm t op. print _topol ogy();
endf unction

virtual task run_phase(uvm phase phase);
#100 gl obal _stop_request();
endf uncti on

endcl ass

3 -- Configuring the factory with type and instance overrides

In the previous step, we demonstrated setting instance overrides and creating
components using the factory within component classes. Here, we will demonstrate
setting overrides from outside components, as when initializing the environment prior to
running the test.

nodul e top;
env envo;
initial begin
/1 Being registered first, the follow ng overrides take precedence
/] over any overrides nade within env0's construction & build
/1

Repl ace all base drivers with derived drivers...
B driver::type_id::set_type_ override(D driver::get_type());

/1l ...except for agentO.driverO, whose type renmins a base driver.
/1 (Both nethods bel ow have the equivalent result.)
11

- via the conponent's proxy (preferred)
B_driver::type_id::set_inst_override(B_driver::get_type(),
"env0. agent0.driver0");

/1 - via a direct call to a factory nethod
factory.set _inst_override_by_type(B_driver::get_type(),
B driver::get type(),
{get _full_nane(), "env0. agent 0. driver0"});

/] now, create the environnent; our factory configuration wll
/'l govern what topology gets created

envO0 = new("env0");
/1 run the test (will execute build phase)
run_test();
end
endnodul e

When the above example is run, the resulting topology (displayed via a call to
uvm_root::print_topology in env’s uvm_component::end_of_elaboration_phase method)
is similar to the following:

UWM.INFO @O0 RNTS'I&) Running test ...

ﬁ UVMINFO @O [UYMIOP] UVM testbench topol ogy:

ﬁ Narme Type Si ze Val ue
env0 env - envO@
agent 0 agent - agent 0@
driverO driverB #(packet) - driver0O@
pkt packet = . pkt@1
driverl driverD #(packet) - driverl@i4
pkt packet - pkt @3
agentl agent - _agent 1@
driverO driverD #(packet) - drivero@4
pkt packet = ~ pkt @7
driverl driverD2 #(packet) - driver1@0
ﬁ pkt packet - pkt @9

UVM 1.0 Class Reference

103

uvim_object_wrapper

The uvm_object_wrapper provides an abstract interface for creating object and
component proxies. Instances of these lightweight proxies, representing every
uvm_object-based and uvm_component-based object available in the test environment,
are registered with the uvm_factory. When the factory is called upon to create an object
or component, it finds and delegates the request to the appropriate proxy.

Summary

uvm_object_wrapper

The uvm_object_wrapper provides an abstract interface for creating object and
component proxies.

CLass DECLARATION
virtual class uvm object_w apper

MEeTHODS

create_object Creates a new object with the optional name.

create_component Creates a new component, passing to its constructor
the given name and parent.

get_type_name Derived classes implement this method to return the
type name of the object created by create_component
or create_object.

MEeTHODS

create_object

virtual function uvm object create_object (string name = "")
Creates a new object with the optional name. An object proxy (e.g.,

uvm_object_registry #(T,Tname)) implements this method to create an object of a
specific type, T.

create_component

virtual function uvm conponent create_conponent (string nane,
uvm component parent)

Creates a new component, passing to its constructor the given name and parent. A
component proxy (e.g. uvm_component_registry #(T,Tname)) implements this method
to create a component of a specific type, T.

get_type_name

UVM 1.0 Class Reference

104

pure virtual function string get_type nane()
Derived classes implement this method to return the type name of the object created by

create_component or create_object. The factory uses this name when matching against
the requested type in name-based lookups.

UVM 1.0 Class Reference 105

Configuration and Resource Classes

The configuration and resources classes provide access to a centralized database where
type specific information can be stored and recieved. The uvm_resource_db is the low
level resource database which users can write to or read from. The uvm_config_db#(T)
is layered on top of the resoure database and provides a typed intereface for
configuration setting that is consistent with the uvm_component::Configuration Interface.

Information can be read from or written to the database at any time during simulation.
A resource may be associated with a specific hierarchical scope of a uvm_component or it
may be visible to all components regardless of their hierarchical position.

Summary
Configuration and Resource Classes

The configuration and resources classes provide access to a centralized database
where type specific information can be stored and recieved.

UVM 1.0 Class Reference

106

Resources

A resource is a parameterized container that holds arbitrary data. Resources can be used
to configure components, supply data to sequences, or enable sharing of information
across disparate parts of a testbench. They are stored using scoping information so their
visibility can be constrained to certain parts of the testbench. Resource containers can
hold any type of data, constrained only by the data types available in SystemVerilog.
Resources can contain scalar objects, class handles, queues, lists, or even virtual
interfaces.

Resources are stored in a resource database so that each resource can be retrieved by
name or by type. The databse has both a name table and a type table and each
resource is entered into both. The database is globally accessible.

Each resource has a set of scopes over which it is visible. The set of scopes is
represented as a regular expression. When a resource is looked up the scope of the
entity doing the looking up is supplied to the lookup function. This is called the current
scope. If the current scope is in the set of scopes over which a resource is visible then
the resource can be retuned in the lookup.

Resources can be looked up by name or by type. To support type lookup each resource
has a static type handle that uniquely identifies the type of each specialized resource
container.

Mutliple resources that have the same name are stored in a queue. Each resource is
pushed into a queue with the first one at the front of the queue and each subsequent
one behind it. The same happens for multiple resources that have the same type. The
resource queues are searched front to back, so those placed earlier in the queue have
precedence over those placed later.

The precedence of resources with the same name or same type can be altered. One way
is to set the precedence member of the resource container to any arbitrary value. The
search algorithm will return the resource with the highest precedence. In the case where
there are multiple resources that match the search criteria and have the same (highest)
precedence, the earliest one located in the queue will be one returned. Another way to
change the precedence is to use the set_priority function to move a resource to either
the front or back of the queue.

The classes defined here form the low level layer of the resource database. The classes
include the resource container and the database that holds the containers. The following
set of classes are defined here:

uvm_resource_types: A class without methods or members, only typedefs and enums.
These types and enums are used throughout the resources facility. Putting the types in
a class keeps them confined to a specific name space.

uvm_resource_options: policy class for setting options, such as auditing, which effect
resources.

uvm_resource_base: the base (untyped) resource class living in the resource database.
This class includes the interface for locking, setting a resource as read-only, notification,
scope management, altering search priority, and managing auditing.

uvm_resource#(T): parameterized resource container. This class includes the interfaces
for reading and writing each resource. Because the class is parameterized, all the access
functions are type sace.

uvm_resource_pool: the resource database. This is a singleton class object.

Contents

UVM 1.0 Class Reference

107

Resources A resource is a parameterized container that holds
arbitrary data.

uvm_resource_types Provides typedefs and enums used throughout the
resources facility.

uvm_resource_options Provides a namespace for managing options for the
resources facility.

uvm_resource_base Non-parameterized base class for resources.
uvm_resource_pool The global (singleton) resource database.
uvm_resource #(T) Parameterized resource.

uvim_resource_types

Provides typedefs and enums used throughout the resources facility. This class has no
members or methods, only typedefs. It's used in lieu of package-scope types. When
needed, other classes can use these types by prefixing their usage with
uvm_resource_types::. E.g.

uvm resource_types::rsrc_q_t queue;

Summary

uvm_resource_types

Provides typedefs and enums used throughout the resources facility.

CLASS DECLARATION
class uvm resource_types

uvm_resource_options

Provides a namespace for managing options for the resources facility. The only thing
allowed in this class is static local data members and static functions for manipulating
and retrieving the value of the data members. The static local data members represent
options and settings that control the behavior of the resources facility.

Summary

uvm_resource_options

Provides a namespace for managing options for the resources facility.

MEeTHODS
turn_on_auditing Turn auditing on for the resource database.
turn_off_auditing Turn auditing off for the resource database.
is_auditing Returns 1 if the auditing facility is on and 0 if it is off.

UVM 1.0 Class Reference

108

MEeTHODS

turn_on_auditing
static function void turn_on_auditing()

Turn auditing on for the resource database. This causes all reads and writes to the
database to store information about the accesses.

turn_off_auditing

static function void turn_off_auditing()

Turn auditing off for the resource database. If auditing is it is not possible to get extra
information about resource database accesses.

is_auditing
static function bit is_auditing()

Returns 1 if the auditing facility is on and 0 if it is off.

uvm_resource_base

Non-parameterized base class for resources. Supports interfaces for locking/unlocking,
scope matching, and virtual functions for printing the resource and for printing the
accessor list

Summary

uvm_resource_base

Non-parameterized base class for resources.
CiLass HierarRcHY
uvm_void

uvm_object

uvm_resource_base

CLASS DECLARATION
virtual class uvmresource_base extends uvm object

precedence This variable is used to associate a precedence that a
resource has with respect to other resources which
match the same scope and name.

default_precedence The default precedence for an resource that has been

created.
new constructor for uvm_resource_base.
get_type_handle Pure virtual function that returns the type handle of the

UVM 1.0 Class Reference

109

resource container.

LockinGg INTERFACE The task lock and the functions try_lock and unlock form
a locking interface for resources.
lock Retrieves a lock for this resource.
try_lock Retrives the lock for this resource.
unlock Releases the lock held by this semaphore.
REeaD-0ONLY INTERFACE
set_read_only Establishes this resource as a read-only resource.
is_read_only Retruns one if this resource has been set to read-only,
zero otherwise
NorTiFicATION
wait_modified This task blocks until the resource has been modified --
that is, a uvm_resource#(T)::write operation has been
performed.
Score INTERFACE Each resource has a name, a value and a set of scopes
over which it is visible.
set_scope Set the value of the regular expression that identifies
the set of scopes over which this resource is visible.
get_scope Retrieve the regular expression string that identifies the
set of scopes over which this resource is visible.
match_scope Using the regular expression facility, determine if this
resource is visible in a scope.
PrioRITY Functions for manipulating the search priority of
resources.
set priority Change the search priority of the resource based on the

value of the priority enum argument.

UriLity FuncTiOns

do_print Implementation of do_print which is called by print().
Aupit TrRAIL To find out what is happening as the simulation proceeds,
an audit trail of each read and write is kept.
print_accessors Dump the access records for this resource
init_access_record Initalize a new access record
precedence

i nt unsigned precedence

This variable is used to associate a precedence that a resource has with respect to other
resources which match the same scope and name. Resources are set to the
default_precedence initially, and may be set to a higher or lower precedence as desired.

default_precedence

static int unsigned default_precedence = 1000

The default precedence for an resource that has been created. When two resources have
the same precedence, the first resource found has precedence.

new

function new(string nane
string s)

constructor for uvm_resource_base. The constructor takes two arguments, the name of
the resource and a resgular expression which represents the set of scopes over which

UVM 1.0 Class Reference

110

this resource is visible.

get_type_handle

pure virtual function uvmresource_base get_type_handl e()

Pure virtual function that returns the type handle of the resource container.

LockiNG INTERFACE

The task lock and the functions try_lock and unlock form a locking interface for
resources. These can be used for thread-safe reads and writes. The interface methods
write_with_lock and read_with_lock and their nonblocking counterparts in
uvm_resource#(T) (a family of resource subclasses) obey the lock when reading and
writing. See documentation in uvm_resource#(T) for more information on put/get. The
lock interface is a wrapper around a local semaphore.

lock

task | ock()

Retrieves a lock for this resource. The task blocks until the lock is obtained.

try_lock

function bit try_l ock()
Retrives the lock for this resource. The function is nonblocking, so it will return

immediately. If it was successfull in retrieving the lock then a one is returned, otherwise
a zero is returned.

unlock

function void unl ock()

Releases the lock held by this semaphore.

ReaAD-0ONLY INTERFACE

set_read_only

function void set_read_only()

Establishes this resource as a read-only resource. An attempt to call
uvm_resource#(T)::write on the resource will cause an error.

is_read_only

UVM 1.0 Class Reference

function bit is_read_only()

Retruns one if this resource has been set to read-only, zero otherwise

NoTIiFICATION

wait_modified
task wait_nodified()

This task blocks until the resource has been modified -- that is, a
uvm_resource#(T)::write operation has been performed. When a
uvm_resource#(T)::write is performed the modified bit is set which releases the block.
Wait_modified() then clears the modified bit so it can be called repeatedly.

ScopPe INTERFACE

Each resource has a name, a value and a set of scopes over which it is visible. A scope
is a hierarchical entity or a context. A scope name is a multi-element string that
identifies a scope. Each element refers to a scope context and the elements are
separated by dots (.).

t op. env. agent . noni t or

”ow

Consider the example above of a scope name. It consists of four elements: “top”, “env”,
“agent”, and “monitor”. The elements are strung together with a dot separating each
element. top.env.agent is the parent of top.env.agent.monitor, top.env is the parent of
top.env.agent, and so on. A set of scopes can be represented by a set of scope name
strings. A very straightforward way to represent a set of strings is to use regular
expressions. A regular expression is a special string that contains placeholders which can
be substituted in various ways to generate or recognize a particular set of strings. Here
are a few simple examples:

top\..* - all of the scopes whose top-level conponent
is top
top\.env\..*\.nmonitor all of the scopes in env that end in nonitor;
i.e. all the nonitors two |evels down from env
.*\.nmoni t or all of the scopes that end in nmonitor; i.e.
all the nonitors iassun‘i ng a namng convention
was used where all nonitors are nanmed "nonitor")
top\.u[1-5]\.* all of the scopes rooted and nanmed ul, u2, u3,

u4, or u5, and any of their subscopes.

The examples above use posix regular expression notation. This is a very general and
expressive notation. It is not always the case that so much expressiveness is required.
Sometimes an expression syntax that is easy to read and easy to write is useful, even if
the syntax is not as expressive as the full power of posix regular expressions. A popular
substitute for regular expressions is globs. A glob is a simplified regular expression. It
only has three metacharacters -- *, 4+, and ?. Character ranges are not allowed and
dots are not a metacharacter in globs as they are in regular expressions. The following
table shows glob metacharacters.

UVM 1.0 Class Reference

112

char neani ng regul ar expression
equi val ent
*

* 0 or nore characters
+ 1 or nore characters .+
? exactly one character

Of the examples above, the first three can easily be translated into globs. The last one
cannot. It relies on notation that is not available in glob syntax.

regul ar expression gl ob equi val ent
top\..*) top. *)
toe\.eny\..*\.rmmtor top. env. *. noni tor
.*\.nonitor *. noni tor

The resource facility supports both regular expression and glob syntax. Regular
expressions are identified as such when they surrounded by '/’ characters. For example,
/"™top\.*/ is interpreted as the regular expression ~top\.*, where the surrounding '/’
characters have been removed. All other expressions are treated as glob expressions.
They are converted from glob notation to regular expression notation internally. Regular
expression compilation and matching as well as glob-to-regular expression conversion
are handled by three DPI functions:

function int uvmre_match(string re, string str);
function void uvm_dunP_r e_cache();
function string uvmglob_to_re(string glob);

uvm_re_match both compiles and matches the regular expression. It uses internal
caching of compiled information so that each match does not necessarily require a new
compilation of the regular expression string. All of the matching is done using regular
expressions, so globs are converted to regular expressions and then processed.

set_scope

function void set_scope(string s)
Set the value of the regular expression that identifies the set of scopes over which this

resource is visible. If the supplied argument is a glob it will be converted to a regular
expression before it is stored.

get_scope

function string get_scope()

Retrieve the regular expression string that identifies the set of scopes over which this
resource is visible.

match_scope

function bit match_scope(string s)

UVM 1.0 Class Reference

113

Using the regular expression facility, determine if this resource is visible in a scope.
Return one if it is, zero otherwise.

PRIORITY

Functions for manipulating the search priority of resources. The function definitions here
are pure virtual and are implemented in derived classes. The definitons serve as a
priority management interface.

set priority

Change the search priority of the resource based on the value of the priority enum
argument.

UTiLity FuncTIONS

do_print

function void do_print (uvmprinter printer)

Implementation of do_print which is called by print().

Aupit TRrRAIL

To find out what is happening as the simulation proceeds, an audit trail of each read and
write is kept. The read and write methods in uvm_resource#(T) each take an accessor
argument. This is a handle to the object that performed that resource access.

function T read(uvm object accessor = null);
function void wite(T t, uvmobject accessor = null);

The accessor can by anything as long as it is derived from uvm_object. The accessor
object can be a component or a sequence or whatever object from which a read or write
was invoked. Typically the this handle is used as the accessor. For example:

uvm resource#(int) rint;
int i;

Hht.write(?, this);
i = rint.read(this);

The accessor’s get_full_name() is stored as part of the audit trail. This way you can find
out what object performed each resource access. Each audit record also includes the
time of the access (simulation time) and the particular operation performed (read or
write).

Auditting is controlled through the uvm_resource_options class.

UVM 1.0 Class Reference

114

print_accessors

virtual function void print_accessors()

Dump the access records for this resource

init_access_record

function void init_access_record (
i nout uvmresource types::access_t access_record

Initalize a new access record

uvim_resource_pool

The global (singleton) resource database.

Each resource is stored both by primary name and by type handle. The resource pool
contains two associative arrays, one with name as the key and one with the type handle
as the key. Each associative array contains a queue of resources. Each resource has a
regular expression that represents the set of scopes over with it is visible.

docsosc focscscsooooc + fdocccoscososos foososa +

| name | rsrc queue | | rsrc queue | type |
____________ + Fo e e e e e -

T
T +

The above diagrams illustrates how a resource whose name is A and type is T is stored
in the pool. The pool contains an entry in the type map for type T and an entry in the
name map for name A. The queues in each of the arrays each contain an entry for the
resource A whose type is T. The name map can contain in its queue other resources
whose name is A which may or may not have the same type as our resource A.
Similarly, the type map can contain in its queue other resources whose type is T and
whose name may or may not be A.

Resources are added to the pool by calling set; they are retrieved from the pool by
calling get_by_name or get_by_type. When an object creates a new resource and calls
set the resource is made available to be retrieved by other objects outside of itsef; an
object gets a resource when it wants to access a resource not currently available in its
scope.

The scope is stored in the resource itself (not in the pool) so whether you get by name
or by type the resource’s visibility is the same.

As an auditing capability, the pool contains a history of gets. A record of each get,

UVM 1.0 Class Reference

115

whether by get_by_type or get_by_name, is stored in the audit record. Both successful
and failed gets are recorded. At the end of simulation, or any time for that matter, you
can dump the history list. This will tell which resources were successfully located and
which were not. You can use this information to determine if there is some error in
name, type, or scope that has caused a resource to not be located or to be incorrrectly
located (i.e. the wrong resource is located).

Summary

uvm_resource_pool

The global (singleton) resource database.

CLass DECLARATION
cl ass uvm resource_pool

get Returns the singleton handle to the resource pool
spell_check Invokes the spell checker for a string s.
SET

set Add a new resource to the resource pool.

set_override

set_name_override

set_type_override

Lookupr

lookup_name
get_highest_precedence

get_by_name

lookup_type

get_by_type
lookup_regex_names

lookup_regex

lookup_scope

Set PrIORITY
set_priority_type
set_priority_name

set_priority

DeBuc
find_unused_resources

print_resources
dump

UVM 1.0 Class Reference

The resource provided as an argument will be
entered into the pool and will override both by
name and type.

The resource provided as an argument will
entered into the pool using normal precedence in
the type map and will override the name.

The resource provided as an argument will be
entered into the pool using noraml precedence in
the name map and will override the type.

This group of functions is for finding resources in
the resource database.

Lookup resources by name.

Traverse a queue, g, of resources and return the
one with the highest precedence.

Lookup a resource by name and scope.

Lookup resources by type.

Lookup a resource by type_handle and scope.
This utility function answers the question, for a
given name and scope, what are all of the
resources with a matching name (where the
resource name may be a regular expression) and
a matching scope (where the resoucre scope may
be a regular expression).

Looks for all the resources whose name matches
the regular expression argument and whose scope
matches the current scope.

This is a utility function that answers the
question: For a given scope, what resources are
visible to it?

Functions for altering the search priority of
resources.

Change the priority of the rsrc based on the value
of pri, the priority enum argument.

Change the priority of the rsrc based on the value
of pri, the priority enum argument.

Change the search priority of the rsrc based on
the value of pri, the priority enum argument.

Locate all the resources that have at least one
write and no reads

Print the resources that are in a single queue, rq.
dump the entire resource pool.

116

get

static function uvmresource_pool get()

Returns the singleton handle to the resource pool

spell_check

function bit spell _check(string s)

Invokes the spell checker for a string s. The universe of correctly spelled strings -- i.e.
the dictionary -- is the name map.

SET

set

function void set (uvmresource_base rsrc,

Add a new resource to the resource pool. The resource is inserted into both the name
map and type map so it can be located by either.

An object creates a resources and sets it into the resource pool. Later, other objects
that want to access the resource must get it from the pool

Overrides can be specified using this interface. Either a hame override, a type override
or both can be specified. If an override is specified then the resource is entered at the
front of the queue instead of at the back. It is not recommended that users specify the
override paramterer directly, rather they use the set_override, set_name_override, or
set_type_override functions.

set_override

function void set_override(uvmresource_base rsrc)

The resource provided as an argument will be entered into the pool and will override
both by name and type.

set_name_override

function void set_nanme_override(uvm resource_base rsrc)

The resource provided as an argument will entered into the pool using normal
precedence in the type map and will override the name.

set_type_override

function void set_type_override(uvmresource_base rsrc)

UVM 1.0 Class Reference 117

The resource provided as an argument will be entered into the pool using noraml
precedence in the name map and will override the type.

Lookur

This group of functions is for finding resources in the resource database.

lookup_name and lookup_type locate the set of resources that matches the name or
type (respectively) and is visible in the current scope. These functions return a queue of
resources.

get_highest_precedence traverese a queue of resources and returns the one with the
highest precedence -- i.e. the one whose precedence member has the highest value.

get_by_name and get_by_type use lookup_name and lookup_type (respectively) and
get_highest_precedence to find the resource with the highest priority that matches the
other search criteria.

lookup_name

function uvmresource_types::rsrc_q_t |ookup_nane(string scope
string nane,
bit rpterr)

Lookup resources by name. Returns a queue of resources that match the name and
scope. If no resources match the queue is returned empty. If rpterr is set then a
warning is issued if no matches are found, and the spell checker is invoked on name.

get_highest_precedence

functi on uvmresource_base get_hi ghest precedence(
) rsrc_g_t g

Traverse a queue, g, of resources and return the one with the highest precedence. In
the case where there exists more than one resource with the highest precedence value,
the first one that has that precedence will be the one that is returned.

get_by name

function uvm.resource_base get_by_name(string scope
string nane,
bi t rpterr)

Lookup a resource by name and scope. Whether the get succeeds or fails, save a record
of the get attempt. The rpterr flag indicates whether to report errors or not. Essentially,
it serves as a verbose flag. If set then the spell checker will be invoked and warnings
about multiple resources will be produced.

lookup_type

function uvmresource_types::rsrc_qg_t |ookup_type(string scope
uvm resour ce_base type_hand

UVM 1.0 Class Reference 118

Lookup resources by type. Return a queue of resources that match the type_handle and
scope. If no resources match then the returned queue is empty.

get_by_type

function uvmresource_base get_by type(string scope
uvm resour ce_base type_handl e)

Lookup a resource by type handle and scope. Insert a record into the get history list
whether or not the get succeeded.

lookup_regex_names

function uvmresource_types::rsrc_q_t | ookup_regex_nanes(string scope,
string name)

This utility function answers the question, for a given name and scope, what are all of
the resources with a matching name (where the resource name may be a regular
expression) and a matching scope (where the resoucre scope may be a regular
expression). name and scope are explicit values.

lookup_regex

function uvmresource_types::rsrc_qg_t |ookup_regex(string re,
scope)

Looks for all the resources whose name matches the regular expression argument and
whose scope matches the current scope.

lookup_scope

function uvmresource_types::rsrc_qg_t | ookup_scope(string scope)

This is a utility function that answers the question: For a given scope, what resources are
visible to it? Locate all the resources that are visible to a particular scope. This
operation could be quite expensive, as it has to traverse all of the resources in the
database.

SET PRIORITY

Functions for altering the search priority of resources. Resources are stored in queues in
the type and name maps. When retrieving resoures, either by type or by name, the
resource queue is search from front to back. The first one that matches the search
criteria is the one that is returned. The set_priority functions let you change the order in
which resources are searched. For any particular resource, you can set its priority to
UVM_HIGH, in which case the resource is moved to the front of the queue, or to
UVM_LOW in which case the resource is moved to the back of the queue.

set_priority_type

function void set_priority_type(uvm resource_base rsrc,
priority e pri)

UVM 1.0 Class Reference 119

Change the priority of the rsrc based on the value of pri, the priority enum argument.
This function changes the priority only in the type map, leavint the name map
untouched.

set_priority_name
function void set_priority_nanmg(uvm r esour ce_base rsrc,
priority_e pri)

Change the priority of the rsrc based on the value of pri, the priority enum argument.
This function changes the priority only in the name map, leaving the type map
untouched.

set_priority

function void set_priority (uvm resour ce_base rsrc,
priority_e pri

Change the search priority of the rsrc based on the value of pri, the priority enum
argument. This function changes the priority in both the name and type maps.

DEeBuG

find_unused_resources

function uvmresource_types::rsrc_q_t find_unused_resources()

Locate all the resources that have at least one write and no reads

print_resources

function void print_resources(rsrc_q_t rq,
bi t audi t)

Print the resources that are in a single queue, rq. This is a utility function that can be
used to print any collection of resources stored in a queue. The audit flag determines
whether or not the audit trail is printed for each resource along with the name, value,
and scope regular expression.

dump

function void dunp(bit audit)

dump the entire resource pool. The resource pool is traversed and each resource is
printed. The utility function print_resources() is used to initiate the printing. If the audit
bit is set then the audit trail is dumped for each resource.

UVM 1.0 Class Reference 120

uvim_resource #(T)

Parameterized resource. Provides essential access methods to read from and write to
the resource database. Also provides locking access methods including.

Summary

uvm_resource #(T)

Parameterized resource.
CLass HierarcHy
uvm_void
uvm_object

uvm_resource_base

uvm_resource#(T) |

CiLAss DEecLARATION
class uvmresource #(
type T = int
) extends uvm resource_base

Type INTERFACE Resources can be identified by type using a static
type handle.
get_type Static function that returns the static type handle.
get_type_handle Returns the static type handle of this resource in
a polymorphic fashion.
Set/ Get INTERFACE uvm_resource#(T) provides an interface for setting
and getting a resources.

set Simply put this resource into the global resource
pool

set_override Put a resource into the global resource pool as an
override.

get_by_name looks up a resource by name in the name map.

get_by_type looks up a resource by type_handle in the type
map.

Reap/WRiTe INTERFACE read and write provide a type-safe interface for
getting and setting the object in the resource
container.

read Return the object stored in the resource
container.

write Modify the object stored in this resource
container.

PRrioRITY Functions for manipulating the search priority of
resources.

set priority Change the search priority of the resource based
on the value of the priority enum argument, pri.

Locking INTERFACE This interface is optional, you can choose to lock a
resource or not.

read_with_loc; Locking version of read().

try_read_with_lock Nonblocking form of read_with_lock().
write_with_lock Locking form of write().

try_write_with_lock Nonblocking form of write_with_lock().
get_highest_precedence In a queue of resources, locate the first one with

the highest precedence whose type is T.

UVM 1.0 Class Reference 121

Tyre INTERFACE

Resources can be identified by type using a static type handle. The parent class provides
the virtual function interface get_type_handle. Here we implement it by returning the
static type handle.

get_type

static function this_type get_type()

Static function that returns the static type handle. The return type is this_type, which is
the type of the parameterized class.

get_type_handle

function uvmresource_base get_type_handl e()
Returns the static type handle of this resource in a polymorphic fashion. The return type

of get_type_handle() is uvm_resource_base. This function is not static and therefore can
only be used by instances of a parameterized resource.

SeT/ GET INTERFACE

uvm_resource#(T) provides an interface for setting and getting a resources. Specifically,
a resource can insert itself into the resource pool. It doesn’t make sense for a resource
to get itself, since you can't call a funtion on a handle you don’t have. However, a static
get interface is provided as a convenience. This obviates the need for the user to get a
handle to the global resource pool as this is done for him here.

set

function void set()

Simply put this resource into the global resource pool

set_override

function void set_override(

Put a resource into the global resource pool as an override. This means it gets put at
the head of the list and is searched before other existing resources that occupy the same
position in the name map or the type map. The default is to override both the name
and type maps. However, using the override argument you can specify that either the
name map or type map is overridden.

get_by_name

static function this_type get_by nane(string scope,
string nane,
bi t rpterr)

UVM 1.0 Class Reference 122

looks up a resource by name in the name map. The first resource with the specified
name that is visible in the specified scope is returned, if one exists. The rpterr flag
indicates whether or not an error should be reported if the search fails. If rpterr is set
to one then a failure message is issued, including suggested spelling alternatives, based
on resource names that exist in the database, gathered by the spell checker.

get_by_type

static function this_type get_by type(string scope
uvm resour ce_base type_handl e)

looks up a resource by type_handle in the type map. The first resource with the

specified type_handle that is visible in the specified scope is returned, if one exists. Null
is returned if there is no resource matching the specifications.

Reap/WRiITeE INTERFACE

read and write provide a type-safe interface for getting and setting the object in the
resource container. The interface is type safe because the value argument for write and
the return value of read are T, the type supplied in the class parameter. If either of
these functions is used in an incorrect type context the compiler will complain.

read

function T read(uvm object accessor)

Return the object stored in the resource container. If an accessor object is supplied
then also update the accessor record for this resource.

write

function void wite(T) t,
uvm obj ect accessor)

Modify the object stored in this resource container. If the resource is read-only then
issue an error message and return without modifying the object in the container. If the
resource is not read-only and an accessor object has been supplied then also update the
accessor record. Lastly, replace the object value in the container with the value supplied
as the argument, t, and release any processes blocked on
uvm_resource_base::wait_modified.

PRIORITY

Functions for manipulating the search priority of resources. These implementations of
the interface defined in the base class delegate to the resource pool.

set priority

Change the search priority of the resource based on the value of the priority enum
argument, pri.

UVM 1.0 Class Reference

123

LockiNG INTERFACE

This interface is optional, you can choose to lock a resource or not. These methods are
wrappers around the read/write interface. The difference between read/write interface
and the locking interface is the use of a semaphore to guarantee exclusive access.

read_with_loc;

Locking version of read(). Like read(), this returns the contents of the resource
container. In addtion it obeys the lock.

try_read_with_lock

function bit try read_with_lock(output T _ t,
I nput uvm_ obj ect accessor = null)

Nonblocking form of read_with_lock(). If the lock is availble it grabs the lock and returns
one. If the lock is not available then it returns a 0. In either case the return is
immediate with no blocking.

write_with_lock

task wite with_lock (input T) t,
uvm obj ect accessor = null)

Locking form of write(). Like write(), write_with_lock() sets the contents of the resource
container. In addition it locks the resource before doing the write and unlocks it when
the write is complete. If the lock is currently not available write_with_lock() will block
until it is.

try_write_with_lock

function bit try wite with_lock(input T _ t,
uvm obj ect accessor = null)

Nonblocking form of write_with_lock(). If the lock is available then the write() occurs

immediately and a one is returned. If the lock is not available then the write does not
occur and a zero is returned. IN either case try_write_with_lock() returns immediately
with no blocking.

get_highest_precedence

static function this_type get_hi ghest_ precedence(
) ref uvmresource_types::rsrc_qg_t ¢

In a queue of resources, locate the first one with the highest precedence whose type is
T. This function is static so that it can be called from anywhere.

UVM 1.0 Class Reference

124

uvm_resource_db

The uvm_resource_db#(T) class provides a convenience interface for the resources
facility. In many cases basic operations such as creating and setting a resource or
getting a resource could take multiple lines of code using the interfaces in
uvm_resource_base or uvm_resource#(T). The convenience layer in
uvm_resource_db#(T) reduces many of those operations to a single line of code.

All of the functions in uvm_resource_db#(T) are static, so they must be called using the
11 operator. For example:

uvm resource_db#(int)::set("A", "*", 17, this);

The parameter value “int” identifies the resource type as uvm_resource#(int). Thus, the
type of the object in the resource container is int. This maintains the type-safety
characteristics of resource operations.

Summary

uvm_resource_db

The uvm_resource_db#(T) class provides a convenience interface for the
resources facility.

CLASS DECLARATION
class uvmresource_db #(type T = uvm object)

MEeTHODS
get_by_type Get a resource by type.
get_by_name Imports a resource by name.
set_default add a new item into the resources database.
set Create a new resource, write a val to it, and set it into the
database using name and scope as the lookup
parameters.
set_anonymous Create a new resource, write a val to it, and set it into the
database.
read_by_name locate a resource by name and scope and read its value.
read_by_type Read a value by type.
write_by_name write a val into the resources database.
write_by_type write a val into the resources database.
dump Dump all the resources in the resource pool.
MEeTHODS
get_by_type

static function rsrc_t get_by type(string scope)

Get a resource by type. The type is specified in the db class parameter so the only
argument to this function is the scope.

UVM 1.0 Class Reference

125

get_by_ name

static function rsrc_t get_by_name(string scope,
string nane,
bi t rpterr)

Imports a resource by name. The first argument is the name of the resource to be
retrieved and the second argument is the current scope. The rpterr flag indicates
whether or not to generate a warning if no matching resource is found.

set_default

static function rsrc_t set_default(string scope,
string name

add a new item into the resources database. The item will not be written to so it will
have its default value. The resource is created using name and scope as the lookup
parameters.

set
static function void set(string scope,
string namne,
T) val ,
uvm obj ect accessor)

Create a new resource, write a val to it, and set it into the database using name and
scope as the lookup parameters. The accessor is used for auditting.

set_anonymous

static function void set_anonynous(string sc?pe,
T val ,
uvm obj ect accessor)

Create a new resource, write a val to it, and set it into the database. The resource has
no name and therefore will not be entered into the name map. But is does have a scope
for lookup purposes. The accessor is used for auditting.

read_by_name

static function bit read_by_nane(string scope,
string nare,
T val ,
uvm obj ect accessor)

locate a resource by name and scope and read its value. The value is returned through
the ref argument val. The return value is a bit that indicates whether or not the read
was successful. The accessor is used for auditting.

read_by_type

static function bit read_by_ type(string sclope,
T val ,
uvm obj ect accessor)

UVM 1.0 Class Reference 126

Read a value by type. The value is returned through the ref argument val. The scope is
used for the lookup. The return value is a bit that indicates whether or not the read is
successful. The accessor is used for auditting.

write_by_name

static function bit wite_by name(string scope,
string nane,
T val ,
uvm obj ect accessor)

write a val into the resources database. First, look up the resource by name and scope.
If it is not located then add a new resource to the database and then write its value.

Because the scope is matched to a resource which may be a regular expression, and
consequently may target other scopes beyond the scope argument. Care must be taken
with this function. If a get_by_name match is found for name and scope then val will be
written to that matching resource and thus may impact other scopes which also match
the resource.

write_by_type

static function bit wite_by type(string sc?)pe,
T val ,
uvm obj ect accessor)

write a val into the resources database. First, look up the resource by type. If it is not
located then add a new resource to the database and then write its value.

Because the scope is matched to a resource which may be a regular expression, and
consequently may target other scopes beyond the scope argument. Care must be taken
with this function. If a get_by_name match is found for name and scope then val will be
written to that matching resource and thus may impact other scopes which also match
the resource.

dump

static function void dunp()
Dump all the resources in the resource pool. This is useful for debugging purposes. This

function does not use the parameter T, so it will dump the same thing -- the entire
database -- no matter the value of the parameter.

UVM 1.0 Class Reference 127

uvm_config_db#(T)

The uvm_config_db#(T) class provides a convenience interface on top of the
uvm_resource_db to simplify the basic interface that is used for reading and writing into
the resource database.

All of the functions in uvm_config_db#(T) are static, so they must be called using the ::
operator. For example:

uvm config db#(int)::set(this, "*", "A");

The parameter value “int” identifies the configuration type as an int property.

The set and get methods provide the same api and semantics as the set/get_config_*
functions in uvm_component.

Summary

uvm_config_db#(T)

The uvm_config_db#(T) class provides a convenience interface on top of the
uvm_resource_db to simplify the basic interface that is used for reading and
writing into the resource database.

Crass HieraRrcHY

uvm_resource_db#(T)

uvm_config_db#(T) |

CLass DEecLARATION
class uvm confi g_db#(
type T = int
) extends uvm resource_db#(T)

MEeTHODS
get Get the value field_name in inst_name, using component
cntxt as the starting search point.
set Create a new or update an existing configuration setting for
field_name in inst_name from cntxt.
exists Check if a value for field_name is available in inst_name,
using component cntxt as the starting search point.
wait_modified Wait for a configuration setting to be set for field_name in
cntxt and inst_name.
MEeTHODS
get
static function bit get(uvm conponent cntxt,
string i nst _narme,
string field_nane,
ref T val ue

UVM 1.0 Class Reference

128

Get the value field_name in inst_name, using component cntxt as the starting search
point. inst_name is an explicit instance name relative to cntxt and may be an empty
string if the cntxt is the instance that the configuration object applies to. field_name is
the specific field in the scope that is being searched for.

The basic get_config_* methods from uvm_component are mapped to this function as:

get _config_int(...) => uvmconfig_db#(uvmbitstreamt)::get(cntxt,...)
get _config_string(...) => uvmconfig_db#(stri ng) ciget(entxt,...)
get _confi g_obj ect => uvm confi g_db#(uvm object)::get(cntxt,...)

set
static function void set(uvmconponent cntxt,
string i nst_nane,
string field nane,
T val ue

Create a new or update an existing configuration setting for field_name in inst_name
from cntxt. The setting is made at cntxt, with the full name of cntxt added to the
inst_name. If cntxt is null then inst_name provides the complete scope information of
the setting. field_name is the target field. Both inst_name and field_name may be glob
style or regular expression style expressions.

If a setting is made at build time, the cntxt hierarchy is used to determine the setting’s
precedence in the database. Settings from hierarchically higher levels have higher
precedence. Settings from the same level of hierarchy have a last setting wins
semantic. A precedence setting of uvm_resource_base::default_precedence is used for
uvm_top, and each hierarcical level below the top is decremented by 1.

After build time, all settings use the default precedence and thus have a last wins
semantic. So, if at run time, a low level component makes a runtime setting of some
field, that setting will have precedence over a setting from the test level that was made
earlier in the simulation.

The basic set_config_* methods from uvm_component are mapped to this function as:

set_config_int(...) => uvmconfig_db#(uvmbitstreamt)::set(cntxt,...)
set _config_stri ngE. .. g => uvm confi g_db#Est ri ng) ciset(entxt,...)
set _config_object(...) => uvmconfig_db#(uvmobject)::set(cntxt,...)
exists
static function bit exists(uvmconponent cntxt,
string i nst _nane,
string field nane,
bi t spel | _chk)

Check if a value for field_name is available in inst_name, using component cntxt as the
starting search point. inst_name is an explicit instance name relative to cntxt and may
be an empty string if the cntxt is the instance that the configuration object applies to.
field_name is the specific field in the scope that is being searched for. The spell_chk arg
can be set to 1 to turn spell checking on if it is expected that the field should exist in
the database. The function returns 1 if a config parameter exists and 0 if it doesn’t
exist.

UVM 1.0 Class Reference

129

wait_modified

static task wait_nodified(uvm conponent cntxt,
string i nst_nane,
string field _nane)

Wait for a configuration setting to be set for field_name in cntxt and inst_name. The
task blocks until a new configuration setting is applied that effects the specified field.

UVM 1.0 Class Reference

130

Sequencer Classes

The sequencer serves as an arbiter for controlling transaction flow from multiple stimulus
generators. More specifically, the sequencer controls the flow of uvm_sequence_item-
based transactions generated by one or more uvm_sequence #(REQ,RSP)-based
sequences.

[uvm void |
T

| uvm obiect |

| utm_report_object |
T

| U _component |

il

| wm_sequencer_base |

! uvm_sequencer_param_base [~

TiREaREF] L |REQ RSP,
uum_sequ'TalTnaTr'[~ |uvm _push_EﬂLEnEaﬂ

REL] = usnr's reques: sequence tem
RSP = User's responsa sequanca ilem

There are two sequencer variants available.

e uvm_sequencer #(REQ,RSP) - Requests for new sequence items are initiated by
the driver. Upon such requests, the sequencer selects a sequence from a list of
available sequences to produce and deliver the next item to execute. This
sequencer is typically connected to a user-extension of uvm_driver #(REQ,RSP).

e uvm_push_sequencer #(REQ,RSP) - Sequence items (from the currently running
sequences) are pushed by the sequencer to the driver, which blocks item flow
when it is not ready to accept new transactions. This sequencer is typically
connected to a user-extension of uvm_push_driver #(REQ,RSP).

Sequencer-driver communication follows a pull or push semantic, depending on which
sequencer type is used. However, sequence-sequencer communication is always initiated
by the user-defined sequence, i.e. follows a push semantic.

See Sequence Classes for an overview on sequences and sequence items.

Sequence Item Ports

As with all UVYM components, the sequencers and drivers described above use TLM
Interfaces to communicate transactions.

The uvm_sequencer #(REQ,RSP) and uvm_driver #(REQ,RSP) pair also uses a sequence
item pull port to achieve the special execution semantic needed by the sequencer-driver
pair.

UVM 1.0 Class Reference

131

Sequence lterm port, export, and imp

zeq_if base]- —=- UV component

[1 AT
u'u'n'u:lcwt base" ~ Fl 1 | uvm_port_component |_

PORT=uvm_port_base<|F=
IF=geq_il_base<REQ.RIF>

[REQRSP | REQRSP | | REQ.RSP,IMP |

uvi_sed_itam _pull J}ﬂﬂ—l T | uvm_seeq_item _pull a:part—[wm_saq_Itam _pull_imp

Sequencers and drivers use a seq_item_port specifically supports sequencer-driver
communication. Connections to these ports are made in the same fashion as the TLM
ports.

Summary
Sequencer Classes

The sequencer serves as an arbiter for controlling transaction flow from multiple
stimulus generators.

UVM 1.0 Class Reference

132

uvim_sequencer_base

Controls the flow of sequences, which generate the stimulus (sequence item
transactions) that is passed on to drivers for execution.

Summary

uvm_sequencer_base

Controls the flow of sequences, which generate the stimulus (sequence item
transactions) that is passed on to drivers for execution.

CLass HierarcHY
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_sequencer_base

CiLass DEecLARATION
cl ass uvm sequencer _base extends uvm conponent

MEeTHODS

new Creates and initializes an instance of this class
using the normal constructor arguments for
uvm_component: name is the name of the
instance, and parent is the handle to the
hierarchical parent.

is_child Returns 1 if the child sequence is a child of the
parent sequence, 0 otherwise.

user_priority_arbitration When the sequencer arbitration mode is set to

SEQ_ARB_USER (via the set_arbitration method),
the sequencer will call this function each time that
it needs to arbitrate among sequences.

execute_item This task allows the user to supply an item or
sequence to the sequencer and have it be
executed procedurally.

start_phase_sequence
wait_for_grant

wait_for_item_done

is_blocked

has_lock

lock
grab
unlock
ungrab

stop_sequences

UVM 1.0 Class Reference

Start the default sequence for this phase, if any.
This task issues a request for the specified
sequence.

A sequence may optionally call
wait_for_item_done.

Returns 1 if the sequence referred to by
sequence_ptr is currently locked out of the
sequencer.

Returns 1 if the sequence refered to in the
parameter currently has a lock on this sequencer,
0 otherwise.

Requests a lock for the sequence specified by
sequence_ptr.

Requests a lock for the sequence specified by
sequence_ptr.

Removes any locks and grabs obtained by the
specified sequence_ptr.

Removes any locks and grabs obtained by the
specified sequence_ptr.

Tells the sequencer to kill all sequences and child
sequences currently operating on the sequencer,
and remove all requests, locks and responses that
are currently queued.

133

is_grabbed Returns 1 if any sequence currently has a lock or
grab on this sequencer, 0 otherwise.

current_grabber Returns a reference to the sequence that
currently has a lock or grab on the sequence.

has_do_available Returns 1 if any sequence running on this
sequencer is ready to supply a transaction, 0
otherwise.

set_arbitration Specifies the arbitration mode for the sequencer.

get_arbitration Return the current arbitration mode set for this
sequencer.

wait_for_sequences Waits for a sequence to have a new item
available.

send_request Derived classes implement this function to send a

request item to the sequencer, which will forward
it to the driver.

METHODS

new

function new (string nane,
uvm conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent.

is_child

function bit is_child (uvm sequence_base parent,
uvm sequence_base chil d

Returns 1 if the child sequence is a child of the parent sequence, 0 otherwise.

user_priority_arbitration

virtual function integer user_priority_arbitration(integer avail _sequences[$]

When the sequencer arbitration mode is set to SEQ_ARB_USER (via the set_arbitration
method), the sequencer will call this function each time that it needs to arbitrate among
sequences.

Derived sequencers may override this method to perform a custom arbitration policy.
The override must return one of the entries from the avail_sequences queue, which are
indexes into an internal queue, arb_sequence_q. The

The default implementation behaves like SEQ_ARB_FIFO, which returns the entry at
avail_sequences[0].

execute_item

virtual task execute_itenmuvm sequence_itemitem

UVM 1.0 Class Reference 134

This task allows the user to supply an item or sequence to the sequencer and have it be
executed procedurally. The parent sequence for the item or sequence is a temporary
sequence that is automatically created. There is no capability to retrieve responses. The
sequencer will drop responses to items done using this interface.

start_phase_sequence

virtual function void start_phase_sequence(uvm phase phase)

Start the default sequence for this phase, if any. The default sequence is configured
using resources using either a sequence instance or sequence object wrapper.

When setting the resource using set, the 1st argument specifies the context pointer,
usually “this” for components or “null” when executed from outside the component
hierarchy (i.e. in module). The 2nd argument is the instance string, which is a path
name to the target sequencer, relative to the context pointer. The path must include the
name of the phase with a *_phase” suffix. The 3rd argument is the resource name,
which is “default_sequence”. The 4th argument is either an object wrapper for the
sequence type, or an instance of a sequence.

Configuration by instances allows pre-initialization, setting rand_mode, use of inline
constraints, etc.

nyseq_t nyseq = new(nys q");

nyseq. r andoni zeE) h { .]

uvm config_db #(uvm sequence base) set(null "top. agent . rTyseqr. mai n_phase",
"def aul t _sequence'

nyseq) ;

Configuration by type is shorter and can be substituted via the the factory.

uvm config_db #(uvm obj ect vvrapper) :set(null,

"t op. agent . nyseqr. mai n_phase’
"def aul t _sequence”
nyseq_type: :type_ id: cget());

The uvm_resource_db can similarly be used.

nyseq_t nyseq = new("myseq");
nyseq. randoni ze() wth
uvm resource_db #(uvm sequence base) cset({get_full_name(),
. nyseqr. mai n_phase",
"default _sequence",

nyseq, this);

uvm resource_db #(uvm obj ect _wrapper)::set({get_full_name(),
. myseqr. mai n_phase",
"def aul t _sequence",

seq t::type_id::get(),
{%Sq)_; ype_ get ()

wait_for_grant

virtual task wait_for_grant(uvm sequence_base sequence_ptr,

UVM 1.0 Class Reference 135

i nt itempriority
bi t | ock_request)

This task issues a request for the specified sequence. If item_priority is not specified,
then the current sequence priority will be used by the arbiter. If a lock_request is made,
then the sequencer will issue a lock immediately before granting the sequence. (Note
that the lock may be granted without the sequence being granted if is_relevant is not
asserted).

When this method returns, the sequencer has granted the sequence, and the sequence
must call send_request without inserting any simulation delay other than delta cycles.
The driver is currently waiting for the next item to be sent via the send_request call.

wait_for_item_done

virtual task wait_for_itemdone(uvm sequence_base sequence_ptr,
i nt transaction_id)

A sequence may optionally call wait_for_item_done. This task will block until the driver
calls item_done() or put() on a transaction issued by the specified sequence. If no
transaction_id parameter is specified, then the call will return the next time that the
driver calls item_done() or put(). If a specific transaction_id is specified, then the call
will only return when the driver indicates that it has completed that specific item.

Note that if a specific transaction_id has been specified, and the driver has already
issued an item_done or put for that transaction, then the call will hang waiting for that
specific transaction_id.

is_blocked

function bit is_blocked(uvm sequence_base sequence_ptr)

Returns 1 if the sequence referred to by sequence_ptr is currently locked out of the
sequencer. It will return 0 if the sequence is currently allowed to issue operations.

Note that even when a sequence is not blocked, it is possible for another sequence to
issue a lock before this sequence is able to issue a request or lock.

has_lock

function bit has_| ock(uvm sequence_base sequence_ptr)

Returns 1 if the sequence refered to in the parameter currently has a lock on this
sequencer, 0 otherwise.

Note that even if this sequence has a lock, a child sequence may also have a lock, in
which case the sequence is still blocked from issueing operations on the sequencer

lock

virtual task |ock(uvm sequence_base sequence_ptr)

Requests a lock for the sequence specified by sequence_ptr.

A lock request will be arbitrated the same as any other request. A lock is granted after
all earlier requests are completed and no other locks or grabs are blocking this sequence.

UVM 1.0 Class Reference 136

The lock call will return when the lock has been granted.

grab

virtual task grab(uvm sequence_base sequence_ptr)

Requests a lock for the sequence specified by sequence_ptr.

A grab request is put in front of the arbitration queue. It will be arbitrated before any
other requests. A grab is granted when no other grabs or locks are blocking this
sequence.

The grab call will return when the grab has been granted.

unlock

virtual function void unl ock(uvm sequence_base sequence_ptr)

Removes any locks and grabs obtained by the specified sequence_ptr.

ungrab

virtual function void ungrab(uvm sequence_base sequence_ptr)

Removes any locks and grabs obtained by the specified sequence_ptr.

stop_sequences

virtual function void stop_sequences()
Tells the sequencer to kill all sequences and child sequences currently operating on the

sequencer, and remove all requests, locks and responses that are currently queued. This
essentially resets the sequencer to an idle state.

is_grabbed

virtual function bit is_grabbed()

Returns 1 if any sequence currently has a lock or grab on this sequencer, 0 otherwise.

current_grabber

virtual function uvm sequence_base current _grabber()

Returns a reference to the sequence that currently has a lock or grab on the sequence.
If multiple hierarchical sequences have a lock, it returns the child that is currently
allowed to perform operations on the sequencer.

has_do_available

UVM 1.0 Class Reference 137

virtual function bit has_do_avail abl e()
Returns 1 if any sequence running on this sequencer is ready to supply a transaction, 0

otherwise. A sequence is ready if it is not blocked (via grab or lock and is_relevant
returns 1.

set_arbitration

function void set_arbitrati on(SEQ ARB_TYPE val)

Specifies the arbitration mode for the sequencer. It is one of

SEQ_ARB_FIFO Requests are granted in FIFO order (default)
SEQ_ARB_WEIGHTED Requests are granted randomly by weight
SEQ_ARB_RANDOM Requests are granted randomly
SEQ_ARB_STRICT_FIFO Requests at highest priority granted in fifo order
SEQ_ARB_STRICT_RANDOM Requests at highest priority granted in randomly
SEQ_ARB_USER Arbitration is delegated to the user-defined

function, user_priority_arbitration. That function
will specify the next sequence to grant.

The default user function specifies FIFO order.

get_arbitration

function SEQ ARB_TYPE get _arbitration()

Return the current arbitration mode set for this sequencer. See set_arbitration for a list
of possible modes.

wait_for_sequences

virtual task wait_for_sequences()

Waits for a sequence to have a new item available. Uses uvm_wait_for_nba_region to
give a sequence as much time as possible to deliver an item before advancing time.

send_request

virtual function void send_request(uvm sequence_base sequence_ptr,
uvm sequence_item t, _
bi t rer andomi ze)

Derived classes implement this function to send a request item to the sequencer, which
will forward it to the driver. If the rerandomize bit is set, the item will be randomized
before being sent to the driver.

This function may only be called after a wait_for_grant call.

UVM 1.0 Class Reference

138

uvm_sequencer_param_base #(REQ,RSP)

Extends uvm_sequencer_base with an API depending on specific request (REQ) and
response (RSP) types.

Summary

uvm_sequencer_param_base #(REQ,RSP)

Extends uvm_sequencer_base with an API depending on specific request (REQ)
and response (RSP) types.

CLass HierarcHY
uvm_void
uvm_object
uvm_report_object
uvm_component

uvm_sequencer_base

uvm_sequencer_param_base# (REQ,RSP) |

CLass DEecLARATION

cl ass uvm sequencer _param base #(
type REQ = uvm sequence_item
type RSP = REQ
) extends uvm sequencer base
new Creates and initializes an instance of this class using
the normal constructor arguments for

uvm_component: name is the name of the instance,
and parent is the handle to the hierarchical parent,

if any.

send_request The send_request function may only be called after
a wait_for_grant call.

get_current_item Returns the request_item currently being executed

by the sequencer.

REQUESTS

get_num_reqgs_sent

set_num_last_reqgs
get_num_last_reqgs

last_req

REsPONSES
rsp_export

get_num_rsps_received

set_num_last_rsps
get_num_last_rsps

last_rsp

Returns the number of requests that have been
sent by this sequencer.

Sets the size of the last_requests buffer.

Returns the size of the last requests buffer, as set
by set_num_last_reqgs.

Returns the last request item by default.

Drivers or monitors can connect to this port to
send responses to the sequencer.

Returns the number of responses received thus far
by this sequencer.

Sets the size of the last_responses buffer.

Returns the max size of the last responses buffer,
as set by set_num_last_rsps.

Returns the last response item by default.

new
function new (string nane,

UVM 1.0 Class Reference

139

uvm conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

send_request

virtual function void send_request(uvm sequence_base sequence_ptr,
uvm sequence_itemt,]
bit rer andomi ze)

The send_request function may only be called after a wait_for_grant call. This call will
send the request item, t, to the sequencer pointed to by sequence_ptr. The sequencer
will forward it to the driver. If rerandomize is set, the item will be randomized before
being sent to the driver.

get_current_item

function REQ get_current _iten()

Returns the request_item currently being executed by the sequencer. If the sequencer is
not currently executing an item, this method will return null.

The sequencer is executing an item from the time that get_next_item or peek is called
until the time that get or item_done is called.

Note that a driver that only calls get() will never show a current item, since the item is
completed at the same time as it is requsted.

REQUESTS

get_num_reqs_sent

function int get_numreqgs_sent()

Returns the number of requests that have been sent by this sequencer.

set_num_last_reqs

function void set_numlast_reqs(unsi gned max)
Sets the size of the last_requests buffer. Note that the maximum buffer size is 1024. If

max is greater than 1024, a warning is issued, and the buffer is set to 1024. The
default value is 1.

get_num_last_reqgs

function int unsigned get_numlast_reqgs()
Returns the size of the last requests buffer, as set by set_num_last_regs.

UVM 1.0 Class Reference 140

last_req

function REQ last_req(int unsigned n = 0)
Returns the last request item by default. If n is not 0, then it will get the néth before

last request item. If n is greater than the last request buffer size, the function will
return null.

RESPONSES

rsp_export

Drivers or monitors can connect to this port to send responses to the sequencer.
Alternatively, a driver can send responses via its seq_item_port.

seqg_item port.item done(response)
seq_i tem port. put (response)]]
rsp_port.wite(response) <--- via this export

The rsp_port in the driver and/or monitor must be connected to the rsp_export in this
sequencer in order to send responses through the response analysis port.

get_num_rsps_received
function int get_numrsps_received()

Returns the number of responses received thus far by this sequencer.

set_num_last_rsps

function void set_numlast_rsps(int unsigned nax)
Sets the size of the last_responses buffer. The maximum buffer size is 1024. If max is

greater than 1024, a warning is issued, and the buffer is set to 1024. The default value
is 1.

get_num_last_rsps
function int unsigned get_numlast_rsps()

Returns the max size of the last responses buffer, as set by set_num_last_rsps.

last_rsp

function RSP |last_rsp(int unsigned n = 0)

Returns the last response item by default. If n is not O, then it will get the nth-before-

UVM 1.0 Class Reference

141

last response item. If n is greater than the last response buffer size, the function will
return null.

UVM 1.0 Class Reference 142

uvm_sequencer #(REQ,RSP)

Summary

uvm_sequencer #(REQ,RSP)

CiLass HieraRcHY
uvm_void
uvm_object
uvm_report_object
uvm_component
uvm_sequencer_base

uvm_sequencer_param_base#(REQ,RSP)

uvm_sequencer#(REQ,RSP) |

CLass DEecLARATION

cl ass uvm sequencer #(
type REQ = uvm sequence_item
RSP = REQ
) extends uvm sequencer_param base #(REQ RSP)

V ARIABLES
seq_item_export This export provides access to this sequencer’s
implementation of the sequencer interface,
uvm_sqr_if_base #(REQ,RSP), which defines the
following methods:
MEeTHODS
new Standard component constructor that creates an instance
of this class using the given name and parent, if any.
stop_sequences Tells the sequencer to kill all sequences and child
sequences currently operating on the sequencer, and
remove all requests, locks and responses that are
currently queued.
new Standard component constructor that creates an instance
of this class using the given name and parent, if any.
stop_sequences Tells the sequencer to kill all sequences and child
sequences currently operating on the sequencer, and
remove all requests, locks and responses that are
currently queued.
V ARIABLES

seq_item_export

uvm seq_item pul |l _inp #(REQ
RSP,

this type) seq_item export

This export provides access to this sequencer’s implementation of the sequencer
interface, uvm_sqr_if_base #(REQ,RSP), which defines the following methods:

UVM 1.0 Class Reference 143

Request s:

virtual task get _next_item Eout put REQ r equestg ;

virtual task try next_item out put REQ request);

virtual task get out put REQ request);

virtual task peek out put REQ request);
Responses:) o)

virtual function void itemdone (i nput RSP response=nul|);

virtual task put (i nput RSP response);
Sync Control:

virtual task wait_for_sequences ();

virtual function bit has _do available 0);

See uvm_sqr_if_base #(REQ,RSP) for information about this interface.

MEeTHODS

new

function new (string nane,
uvm conponent parent = null)

Standard component constructor that creates an instance of this class using the given
name and parent, if any.

stop_sequences

virtual function void stop_sequences()

Tells the sequencer to kill all sequences and child sequences currently operating on the
sequencer, and remove all requests, locks and responses that are currently queued. This
essentially resets the sequencer to an idle state.

new

function uvm sequencer::new (string nane,
uvm conponent parent = null)

Standard component constructor that creates an instance of this class using the given
name and parent, if any.

stop_sequences

function void uvm sequencer::stop_sequences()
Tells the sequencer to Kkill all sequences and child sequences currently operating on the

sequencer, and remove all requests, locks and responses that are currently queued. This
essentially resets the sequencer to an idle state.

UVM 1.0 Class Reference

144

uvm_push_sequencer #(REQ,RSP)

Summary
uvm_push_sequencer #(REQ,RSP)

CiLass HieraRcHY
uvm_void
uvm_object
uvm_report_object
uvm_component
uvm_sequencer_base

uvm_sequencer_param_base#(REQ,RSP)

uvm_push_sequencer#(REQ,RSP) |

CLass DEecLARATION

cl ass uvm push_sequencer #(
type REQ = uvm sequence_item
RSP = REQ
) extends uvm sequencer_param base #(REQ RSP)

PorTs
req_port The push sequencer requires access to a blocking put interface.
MEeTHODS
new Standard component constructor that creates an instance of
this class using the given name and parent, if any.
run_phase The push sequencer continuously selects from its list of
available sequences and sends the next item from the selected
sequence out its req_port using req_port.put(item).
PoRrTs
req_port

The push sequencer requires access to a blocking put interface. A continuous stream of
sequence items are sent out this port, based on the list of available sequences loaded
into this sequencer.

MEeTHODS

new

function new (string nane,
uvm conponent parent = null)

UVM 1.0 Class Reference

145

Standard component constructor that creates an instance of this class using the given
name and parent, if any.

run_phase

task run_phase(uvm phase phase)

The push sequencer continuously selects from its list of available sequences and sends
the next item from the selected sequence out its req_port using req_port.put(item).
Typically, the reg_port would be connected to the req_export on an instance of an
uvm_push_driver #(REQ,RSP), which would be responsible for executing the item.

UVM 1.0 Class Reference

146

Sequence Classes

Sequences encapsulate user-defined procedures that generate multiple
uvm_sequence_item-based transactions. Such sequences can be reused, extended,
randomized, and combined sequentially and hierarchically in interesting ways to produce
realistic stimulus to your DUT.

With uvm_sequence objects, users can encapsulate DUT initializaton code, bus-based
stress tests, network protocol stacks-- anything procedural-- then have them all execute
in specific or random order to more quickly reach corner cases and coverage goals.

The UVM sequence item and sequence class hierarchy is shown below.

[wvrm_void |

| LT nbject

3 I -
| v repmt object | | uvm_transaction |

[uvm_component | m_| uvm_sequence_item |

ih ip _
UsEr Seqguence item | uvm_sequence_base |

usar Componeant

T [Red REe |
e ——
UWM_Seguence |_

LSEr SegQuence

e uvm_sequence_item - The uvm_sequence_item is the base class for user-defined
transactions that leverage the stimulus generation and control capabilities of the
sequence-sequencer mechanism.

e« uvm_sequence #(REQ,RSP) - The uvm_sequence extends uvm_sequence_item to
add the ability to generate streams of uvm_sequence_items, either directly or by
recursively execting other uvm_sequences.

Summary
Sequence Classes

Sequences encapsulate user-defined procedures that generate multiple
uvm_sequence_item-based transactions.

UVM 1.0 Class Reference 147

uvim_sequence_item

The base class for user-defined sequence items and also the base class for the
uvm_sequence class. The uvm_sequence_item class provides the basic functionality for
objects, both sequence items and sequences, to operate in the sequence mechanism.

Summary

uvm_sequence_item

The base class for user-defined sequence items and also the base class for the
uvm_sequence class.

Crass HierarcHY
uvm_void
uvm_object

uvm_transaction

uvm_sequence_item

CLass DEcCLARATION
cl ass uvm sequence_item extends uvm transacti on

new The constructor method for uvm_sequence_item.

get_sequence_id private

set_use_sequence_info

get_use_sequence_info These methods are used to set and get the status
of the use_sequence_info bit.

set_id_info Copies the sequence_id and transaction_id from
the referenced item into the calling item.

set_sequencer Sets the default sequencer for the sequence to
sequencer.

get_sequencer Returns a reference to the default sequencer used
by this sequence.

set_parent_sequence Sets the parent sequence of this sequence_item.

get_parent_sequence Returns a reference to the parent sequence of any
sequence on which this method was called.

set_depth The depth of any sequence is calculated
automatically.

get_depth Returns the depth of a sequence from it's parent.

is_item This function may be called on any sequence_item
or sequence.

start_item start_item and finish_item together will initiate
operation of either a sequence_item or sequence
object.

finish_item Finishes execution of a sequence item or sequence.

get_root_sequence_name Provides the name of the root sequence (the top-
most parent sequence).

get_root_sequence Provides a reference to the root sequence (the top-
most parent sequence).
get_sequence_path Provides a string of nhames of each sequence in the

full hierarchical path.

REPORTING INTERFACE Sequence items and sequences will use the
sequencer which they are associated with for
reporting messages.

uvm_report_info

uvm_report_warning

uvm_report_error

uvm_report_fatal These are the primary reporting methods in the
UVM.

UVM 1.0 Class Reference 148

new

function new (string nane)

The constructor method for uvm_sequence_item.

get_sequence_.id
function int get_sequence_id()

private

Get_sequence_id is an internal method that is not intended for user code. The
sequence_id is not a simple integer. The get_transaction_id is meant for users to
identify specific transactions.

These methods allow access to the sequence_item sequence and transaction IDs.
get_transaction_id and set_transaction_id are methods on the uvm_transaction
base_class. These IDs are used to identify sequences to the sequencer, to route
responses back to the sequence that issued a request, and to uniquely identify
transactions.

The sequence_id is assigned automatically by a sequencer when a sequence initiates
communication through any sequencer calls (i.e. “uvm_do_xxx, wait_for_grant). A
sequence_id will remain unique for this sequence until it ends or it is killed. However, a
single sequence may have multiple valid sequence ids at any point in time. Should a
sequence start again after it has ended, it will be given a new unique sequence_id.

The transaction_id is assigned automatically by the sequence each time a transaction is
sent to the sequencer with the transaction_id in its default (-1) value. If the user sets
the transaction_id to any non-default value, that value will be maintained.

Responses are routed back to this sequences based on sequence_id. The sequence may
use the transaction_id to correlate responses with their requests.

set_use_sequence_info

function void set_use_sequence_info(bit val ue)

get_use_sequence_info

function bit get_use_sequence_info()

These methods are used to set and get the status of the use_sequence_info bit.
Use_sequence_info controls whether the sequence information (sequencer,
parent_sequence, sequence_id, etc.) is printed, copied, or recorded. When
use_sequence_info is the default value of 0, then the sequence information is not used.
When use_sequence_info is set to 1, the sequence information will be used in printing
and copying.

set_id_info
function void set_id info(uvm sequence_ itemitem)

UVM 1.0 Class Reference 149

Copies the sequence_id and transaction_id from the referenced item into the calling
item. This routine should always be used by drivers to initialize responses for future
compatibility.

set_sequencer

virtual function void set_sequencer(uvm sequencer_base sequencer)
Sets the default sequencer for the sequence to sequencer. It will take effect

immediately, so it should not be called while the sequence is actively communicating with
the sequencer.

get_sequencer

function uvm sequencer _base get_sequencer ()

Returns a reference to the default sequencer used by this sequence.

set_parent_sequence

function void set_parent_sequence(uvm sequence_base parent)

Sets the parent sequence of this sequence_item. This is used to identify the source
sequence of a sequence_item.

get_parent_sequence

function uvm sequence_base get_parent _sequence()

Returns a reference to the parent sequence of any sequence on which this method was
called. If this is a parent sequence, the method returns null.

set_depth

function void set_depth(int value)
The depth of any sequence is calculated automatically. However, the user may use

set_depth to specify the depth of a particular sequence. This method will override the
automatically calculated depth, even if it is incorrect.

get_depth
function int get_depth()

Returns the depth of a sequence from it's parent. A parent sequence will have a depth
of 1, it's child will have a depth of 2, and it's grandchild will have a depth of 3.

is_item

UVM 1.0 Class Reference 150

virtual function bit is_item)

This function may be called on any sequence_item or sequence. It will return 1 for items
and 0 for sequences (which derive from this class).

start_item

virtual task start_item (uvm sequence_item itemor_seq,
i nt set_priority
uvm sequencer _base sequencer

= gl
nul 1)

start_item and finish_item together will initiate operation of either a sequence_item or
sequence object. If the object has not been initiated using create_item, then start_item
will be initialized in start_item to use the default sequencer specified by m_sequencer.
Randomization may be done between start_item and finish_item to ensure late
generation

finish_item

virtual task finish_item (uvmsequence_itemitem
i nt set_priority = -1)

Finishes execution of a sequence item or sequence. Finish_item must be called after

start_item returns with no delays or delta-cycles. Randomization, or other functions may
be called between the start_item and finish_item calls.

get_root_sequence_name

function string get_root_sequence_nane()

Provides the name of the root sequence (the top-most parent sequence).

get_root_sequence

function uvm sequence_base get_root_sequence()

Provides a reference to the root sequence (the top-most parent sequence).

get_sequence_path

function string get_sequence_path()

Provides a string of names of each sequence in the full hierarchical path. A “.” is used as
the separator between each sequence.

REPORTING INTERFACE

Sequence items and sequences will use the sequencer which they are associated with for
reporting messages. If no sequencer has been set for the item/sequence using
set_sequencer (or start_item), then the global reporter will be used.

UVM 1.0 Class Reference

151

uvm_report_info

virtual function void uvmreport_info(string id,
string message,

int ~ verbosity = UVM MEDI UM
string filename = "",
i nt l'ine =0)
uvm_report_warning
virtual function void uvmreport_warning(string id,
string message,
int verbosity = UVM VEDI UV
string filename = "",
i nt l'ine =0)
uvm_report_error
virtual function void uvmreport_error(string id,
string message,
int verbosity = UYM LOW
string filename = "",
i nt l'ine =0)
uvm_report_fatal
virtual function void uvmreport_fatal (string id,
string message,
int verbosity = UVM NONE,
string filename = "",
i nt l'ine =0)

These are the primary reporting methods in the UVM. uvm_sequence_item derived types
delegate these functions to their associated sequencer if they have one, or to the global
reporter. See uvm_report_object::Reporting for details on the messaging functions.

UVM 1.0 Class Reference

152

uvim_sequence_base

The uvm_sequence_base class provides the interfaces needed to create streams of
sequence items and/or other sequences.

A sequence is executed by calling its start method, either directly or indirectly via
start_item/finish_item or invocation of any of the "uvm_do_* macros.

Executing sequences via start

A sequence’s start method has a parent_sequence argument that controls whether
pre_do, mid_do, and post_do are called in the parent sequence. It also has a
call_pre_post argument that controls whether its pre_body and post_body methods are
called.

When start is called directly, you can provide the appropriate arguments according to
your application.

The sequence execution flow looks like

User code

sub_seq. random ze(...); // optional
sub_seq. start (seqr, parent _seq, priority, *call_pre_post*)

The following methods are called, in order

sub_seq. pre_body task if call_pre_post==1
parent_seq. pre_ doEOL_ t ask i f parent_sequence! =nul |
Barent seq. m d_do is) (func) i f parent sequence! =nul |

sub_seq. body task) YOUR STI MULUS CODE
Earent seq Bost _do(this) (unc) i f parent_sequence! =nul |

sub_seq. post _ (task) if call_pre_post==1

Executing sub-sequences via start_item/finish_item or “uvm_do macros

A sequence can also be indirectly started as a child in the body of a parent sequence.
The child sequence’s start method is called indirectly via calls to its
start_item/finish_item methods or by invoking any of the “uvm_do macros. Child
sequences can also be started by the predefined sequences, <uvm_random_sequence>
and <uvm_exhaustive_sequence>. In all these cases, start is called with call_pre_post
set to 0, preventing the started sequence’s pre_body and post_body methods from being
called. During execution of the child sequence, the parent’s pre_do, mid_do, and
post_do methods are called.

The sub-sequence execution flow looks like

User code

parent _seq. start |ten“(sub seq, priority);
sub_seq. randomn ze(.

parent _seq. fini sh |ten(sub seq);

or

“uvmdo with_prior(seq_seq, { constraints }, priority)

UVM 1.0 Class Reference

153

The following methods are called, in order

parent _seq. pre_do(0) (task)

parent _req. m d_do(sub_seq) (func&
sub_seq. body

parent_seq. post _do(sub_seq) (func)

Remember, it is the parent sequence’s pre|mid|post_do that are called, not the
sequence being executed.

Executing sequence items via start_item/finish_item or ~uvm_do macros

Items are started in the body of a parent sequence via calls to start_item/finish_item or
invocations of any of the “uvm_do macros. The pre_do, mid_do, and post_do methods
of the parent sequence will be called as the item is executed.

The sequence-item execution flow looks like

User code

parent_seq.start_iten(item priority);
sub_seq.randomi ze(...) [with {constra| nts}];
parent _seq. fini sh |ten(|ten)

or

‘uvmdo with prior(item constraints, priority)

The following methods are called, in order

sequencer.wai t _for_grant(prior) (taskg \ start_item \
parent _seq. pre_do(71)
‘u/vm_do* macr os

parent _seq. m d_do(item (func) \]
sequencer. send_r equest (i ten) func \finish_item/
sequencer.wait_for_item done() t ask /

parent _seq. post_do(iten) (func) /

Summary

uvm_sequence_base

The uvm_sequence_base class provides the interfaces needed to create streams
of sequence items and/or other sequences.

CLass HierarcHy
uvm_void
uvm_object
uvm_transaction

uvm_sequence_item

uvm_sequence_base

CLass DECLARATION
cl ass uvm sequence_base extends uvm sequence_item
new The constructor for

UVM 1.0 Class Reference

154

is_item

get_sequence_state

wait_for_sequence_state

Sequence Execution
start

pre_body

pre_do

mid_do

body

post_do

post_body

starting_phase

SeqQuence ConTROL
set_priority

get_priority

is_relevant

wait_for_relevant

lock
grab

unlock

UVM 1.0 Class Reference

uvm_sequence_base.

Returns 1 on items and 0 on
sequences.

Returns the sequence state as
an enumerated value.

Waits until the sequence
reaches the given state.

Executes this sequence,
returning when the sequence
has completed.

This task is a user-definable
callback that is called before
the execution of body only
when the sequence is started
with start.

This task is a user-definable
callback task that is called on
the parent sequence, if
any.the sequence has issued a
wait_for_grant() call and after
the sequencer has selected
this sequence, and before the
item is randomized.

This function is a user-
definable callback function that
is called after the sequence
item has been randomized,
and just before the item is
sent to the driver.

This is the user-defined task
where the main sequence code
resides.

This function is a user-
definable callback function that
is called after the driver has
indicated that it has completed
the item, using either this
item_done or put methods.
This task is a user-definable
callback task that is called
after the execution of body
only when the sequence is
started with start.

If non-null, specifies the phase
in which this sequence was
started.

The priority of a sequence may
be changed at any point in
time.

This function returns the
current priority of the
sequence.

The default is_relevant
implementation returns 1,
indicating that the sequence is
always relevant.

This method is called by the
sequencer when all available
sequences are not relevant.
Requests a lock on the
specified sequencer.

Requests a lock on the
specified sequencer.

Removes any locks or grabs
obtained by this sequence on
the specified sequencer.

ungrab

is_blocked

has_lock

kill

do_Kkill

SeqQuence ITem ExecuTion
create_item

start_item

finish_item

wait_for_grant

send_request

wait_for_item_done

Resronse API
use_response_handler

get_use_response_handler

response_handler

set_response_queue_error_report_disabled

get_response_queue_error_report_disabled

set_response_queue_depth

get_response_queue_depth

clear_response_queue

UVM 1.0 Class Reference

Removes any locks or grabs
obtained by this sequence on
the specified sequencer.
Returns a bit indicating
whether this sequence is
currently prevented from
running due to another lock or
grab.

Returns 1 if this sequence has
a lock, 0 otherwise.

This function will kill the
sequence, and cause all
current locks and requests in
the sequence’s default
sequencer to be removed.
This function is a user hook
that is called whenever a
sequence is terminated by
using either sequence.kill() or
sequencer.stop_sequences()
(which effectively calls
sequence.kill()).

Create_item will create and
initialize a sequence_item or
sequence using the factory.
start_item and finish_item
together will initiate operation
of either a sequence item or
sequence.

finish_item, together with
start_item together will initiate
operation of either a
sequence_item or sequence
object.

This task issues a request to
the current sequencer.

The send_request function
may only be called after a
wait_for_grant call.

A sequence may optionally call
wait_for_item_done.

When called with enable set to
1, responses will be sent to
the response handler.

Returns the state of the
use_response_handler bit.
When the
use_reponse_handler bit is set
to 1, this virtual task is called
by the sequencer for each
response that arrives for this
sequence.

By default, if the
response_queue overflows, an
error is reported.

When this bit is 0 (default
value), error reports are
generated when the response
queue overflows.

The default maximum depth of
the response queue is 8.
Returns the current depth
setting for the response
queue.

Empties the response queue
for this sequence.

156

new

function new (string name = "uvm sequence")

The constructor for uvm_sequence_base.

is_item
virtual function bit is_item)

Returns 1 on items and 0 on sequences. As this object is a sequence, is_item will
always return 0.

get_sequence_state

functi on uvm sequence_state_enum get_sequence_state()

Returns the sequence state as an enumerated value. Can use to wait on the sequence
reaching or changing from one or more states.

wai t (get _sequence_state() & (STOPPED| FI NI SHED)) ;

wait_for_sequence_state

task wait_for_sequence_state(uvm sequence_state_enum state)
Waits until the sequence reaches the given state. If the sequence is already in this

state, this method returns immediately. Convenience for wait (get_sequence_state ==
state);

SEeEQUENCE ExEcuTION

start

virtual task start (uvm sequencer base sequencer,

uvm sequence_base parent_sequence = null,
I nt eger this priority = 100,
bi t cal | _pre_post =1)

Executes this sequence, returning when the sequence has completed.

The sequencer argument specifies the sequencer on which to run this sequence. The
sequencer must be compatible with the sequence.

If parent_sequence is null, then this sequence is a root parent, otherwise it is a child of
parent_sequence. The parent_sequence’s pre_do, mid_do, and post_do methods will be
called during the execution of this sequence.

UVM 1.0 Class Reference 157

By default, the priority of a sequence is 100. A different priority may be specified by
this_priority. Higher numbers indicate higher priority.

If call_pre_post is set to 1 (default), then the pre_body and post_body tasks will be
called before and after the sequence body is called.

pre_body
virtual task pre_body()

This task is a user-definable callback that is called before the execution of body only
when the sequence is started with start. If start is called with call_pre post set to 0,
pre_body is not called. This method should not be called directly by the user.

pre_do
virtual task pre_do(bit is_item

This task is a user-definable callback task that is called on the parent sequence, if
any.the sequence has issued a wait_for_grant() call and after the sequencer has selected
this sequence, and before the item is randomized.

Although pre_do is a task, consuming simulation cycles may result in unexpected
behavior on the driver.

This method should not be called directly by the user.

mid_do
virtual function void md_do(uvm sequence_itemthis_item)
This function is a user-definable callback function that is called after the sequence item

has been randomized, and just before the item is sent to the driver. This mehod should
not be called directly by the user.

body

virtual task body()

This is the user-defined task where the main sequence code resides. This method should
not be called directly by the user.

post_do

virtual function void post_do(uvm sequence_itemthis_item)
This function is a user-definable callback function that is called after the driver has

indicated that it has completed the item, using either this item_done or put methods.
This method should not be called directly by the user.

post_body

UVM 1.0 Class Reference 158

virtual task post_body()

This task is a user-definable callback task that is called after the execution of body only
when the sequence is started with start. If start is called with call_pre_post set to 0O,
post_body is not called. This task is a user-definable callback task that is called after
the execution of the body, unless the sequence is started with call_pre_post=0. This
method should not be called directly by the user.

starting_phase

uvm phase starting_phase
If non-null, specifies the phase in which this sequence was started. The starting_phase

is set automatically when this sequence is started as the default sequence. See
uvm_sequencer_base::start_phase_sequence.

SeQuENcE CoNTRoOL

set_priority
function void set_priority (int value)

The priority of a sequence may be changed at any point in time. When the priority of a
sequence is changed, the new priority will be used by the sequencer the next time that it
arbitrates between sequences.

The default priority value for a sequence is 100. Higher values result in higher priorities.

get_priority
function int get _priority()

This function returns the current priority of the sequence.

is_relevant

virtual function bit is_relevant()

The default is_relevant implementation returns 1, indicating that the sequence is always
relevant.

Users may choose to override with their own virtual function to indicate to the sequencer
that the sequence is not currently relevant after a request has been made.

When the sequencer arbitrates, it will call is_relevant on each requesting, unblocked
sequence to see if it is relevant. If a 0 is returned, then the sequence will not be
chosen.

If all requesting sequences are not relevant, then the sequencer will call
wait_for_relevant on all sequences and re-arbitrate upon its return.

Any sequence that implements is_relevant must also implement wait_for_relevant so that
the sequencer has a way to wait for a sequence to become relevant.

UVM 1.0 Class Reference

159

wait_for_relevant

virtual task wait_for_relevant()

This method is called by the sequencer when all available sequences are not relevant.
When wait_for_relevant returns the sequencer attempt to re-arbitrate.

Returning from this call does not guarantee a sequence is relevant, although that would
be the ideal. The method provide some delay to prevent an infinite loop.

If a sequence defines is_relevant so that it is not always relevant (by default, a sequence
is always relevant), then the sequence must also supply a wait_for_relevant method.

lock

task | ock(uvm sequencer_base sequencer)

Requests a lock on the specified sequencer. If sequencer is null, the lock will be
requested on the current default sequencer.

A lock request will be arbitrated the same as any other request. A lock is granted after
all earlier requests are completed and no other locks or grabs are blocking this sequence.

The lock call will return when the lock has been granted.

grab

task grab(uvm sequencer_base sequencer)

Requests a lock on the specified sequencer. If no argument is supplied, the lock will be
requested on the current default sequencer.

A grab equest is put in front of the arbitration queue. It will be arbitrated before any
other requests. A grab is granted when no other grabs or locks are blocking this
sequence.

The grab call will return when the grab has been granted.

unlock

function void unl ock(uvm sequencer _base sequencer)

Removes any locks or grabs obtained by this sequence on the specified sequencer. If
sequencer is null, then the unlock will be done on the current default sequencer.

ungrab

function void ungrab(uvm sequencer_base sequencer)

Removes any locks or grabs obtained by this sequence on the specified sequencer. If
sequencer is null, then the unlock will be done on the current default sequencer.

UVM 1.0 Class Reference

160

is_blocked

function bit is_blocked()

Returns a bit indicating whether this sequence is currently prevented from running due
to another lock or grab. A 1 is returned if the sequence is currently blocked. A 0 is
returned if no lock or grab prevents this sequence from executing. Note that even if a
sequence is not blocked, it is possible for another sequence to issue a lock or grab
before this sequence can issue a request.

has_lock

function bit has_Ilock()

Returns 1 if this sequence has a lock, 0 otherwise.

Note that even if this sequence has a lock, a child sequence may also have a lock, in
which case the sequence is still blocked from issuing operations on the sequencer.

kill
function void kill ()

This function will kill the sequence, and cause all current locks and requests in the
sequence’s default sequencer to be removed. The sequence state will change to
STOPPED, and its post_body() method, if will not b

If a sequence has issued locks, grabs, or requests on sequencers other than the default
sequencer, then care must be taken to unregister the sequence with the other
sequencer(s) using the sequencer unregister_sequence() method.

do_kill

virtual function void do_kill()
This function is a user hook that is called whenever a sequence is terminated by using

either sequence.kill() or sequencer.stop_sequences() (which effectively calls
sequence.kill()).

SeQUENCE ITEM EXECuUTION

create_item

protected function uvm sequence_item create_iten
uvm obj ect _wr apper type_var,
uvm sequencer _base | _sequencer,
string nane

Create_item will create and initialize a sequence_item or sequence using the factory.
The sequence_item or sequence will be initialized to communicate with the specified
sequencer.

UVM 1.0 Class Reference

161

start_item

start_item and finish_item together will initiate operation of either a sequence item or
sequence. If the item or sequence has not already been initialized using create_item,
then it will be initialized here to use the default sequencer specified by m_sequencer.
Randomization may be done between start_item and finish_item to ensure late
generation

virtual task start_iten{uvm sequence_itemitem int set_priority = -1);

finish_item

finish_item, together with start_item together will initiate operation of either a
sequence_item or sequence object. Finish_item must be called after start_item with no
delays or delta-cycles. Randomization, or other functions may be called between the
start_item and finish_item calls.

virtual task finish_itemuvmsequence_itemitem int set _priority = -1);

wait_for_grant

virtual task wait_for_grant(int itempriority
bit | ock_request)

This task issues a request to the current sequencer. If item_priority is not specified,
then the current sequence priority will be used by the arbiter. If a lock_request is made,
then the sequencer will issue a lock immediately before granting the sequence. (Note
that the lock may be granted without the sequence being granted if is_relevant is not
asserted).

When this method returns, the sequencer has granted the sequence, and the sequence
must call send_request without inserting any simulation delay other than delta cycles.
The driver is currently waiting for the next item to be sent via the send_request call.

send_request

virtual function void send_request(uvm sequence_item request,
bit rerandomi ze)

The send_request function may only be called after a wait_for_grant call. This call will

send the request item to the sequencer, which will forward it to the driver. If the
rerandomize bit is set, the item will be randomized before being sent to the driver.

wait_for_item_done

virtual task wait_for_itemdone(int transaction_id)
A sequence may optionally call wait_for_item_done. This task will block until the driver

UVM 1.0 Class Reference 162

calls item_done or put. If no transaction_id parameter is specified, then the call will
return the next time that the driver calls item_done or put. If a specific transaction_id is
specified, then the call will return when the driver indicates completion of that specific
item.

Note that if a specific transaction_id has been specified, and the driver has already
issued an item_done or put for that transaction, then the call will hang, having missed
the earlier notification.

Response API

use_response_handler

function void use_response_handl er(bit enable)

When called with enable set to 1, responses will be sent to the response handler.
Otherwise, responses must be retrieved using get_response.

By default, responses from the driver are retrieved in the sequence by calling
get_response.

An alternative method is for the sequencer to call the response_handler function with
each response.

get_use_response_handler

function bit get_use_response_handl er ()

Returns the state of the use_response_handler bit.

response_handler

virtual function void response_handl er (uvm sequence_item response)

When the use_reponse_handler bit is set to 1, this virtual task is called by the sequencer
for each response that arrives for this sequence.

set_response_queue_error_report_disabled

function void set_response_queue_error_report _disabl ed(bit val ue)

By default, if the response_queue overflows, an error is reported. The response_queue
will overflow if more responses are sent to this sequence from the driver than
get_response calls are made. Setting value to 0 disables these errors, while setting it to
1 enables them.

get_response_queue_error_report_disabled

function bit get_response_queue_error_report_di sabl ed()

When this bit is 0 (default value), error reports are generated when the response queue

UVM 1.0 Class Reference

163

overflows. When this bit is 1, no such error reports are generated.

set_response_queue_depth

function void set_response_queue_depth(int val ue)

The default maximum depth of the response queue is 8. These method is used to
examine or change the maximum depth of the response queue.

Setting the response_queue_depth to -1 indicates an arbitrarily deep response queue.

No checking is done.

get_response_queue_depth

function int get_response_queue_depth()

Returns the current depth setting for the response queue.

clear_response_queue

virtual function void clear_response_queue()

Empties the response queue for this sequence.

UVM 1.0 Class Reference

164

uvm_sequence #(REQ,RSP)

The uvm_sequence class provides the interfaces necessary in order to create streams of
sequence items and/or other sequences.

Summary

uvm_sequence #(REQ,RSP)

The uvm_sequence class provides the interfaces necessary in order to create
streams of sequence items and/or other sequences.

CLass HierarcHY
uvm_void
uvm_object
uvm_transaction
uvm_sequence_item

uvm_sequence_base

uvm_sequence#(REQ,RSP) |

CLass DEecLARATION

virtual class uvm sequence #(
type REQ = uvm sequence_item
type RSP = REQ

) extends uvm sequence_base

MEeTHODS
new Creates and initializes a new sequence object.
send_request This method will send the request item to the sequencer,
which will forward it to the driver.
get_current_item Returns the request item currently being executed by the
sequencer.
get_response By default, sequences must retrieve responses by calling
get_response.
MEeTHODS
new
function new (string name = "uvm sequence")

Creates and initializes a new sequence object.

send_request

function void send_request (uvm sequence_item request,
bi t rerandom ze = 0)

This method will send the request item to the sequencer, which will forward it to the
driver. If the rerandomize bit is set, the item will be randomized before being sent to

UVM 1.0 Class Reference

165

the driver. The send_request function may only be called after
uvm_sequence_base::wait_for_grant returns.

get_current_item

function REQ get _current _iten()

Returns the request item currently being executed by the sequencer. If the sequencer is
not currently executing an item, this method will return null.

The sequencer is executing an item from the time that get_next_item or peek is called
until the time that get or item_done is called.

Note that a driver that only calls get will never show a current item, since the item is
completed at the same time as it is requested.

get_response

virtual task get_response(RSP response,)
int transaction_id)

By default, sequences must retrieve responses by calling get_response. If no
transaction_id is specified, this task will return the next response sent to this sequence.
If no response is available in the response queue, the method will block until a response
is recieved.

If a transaction_id is parameter is specified, the task will block until a response with that
transaction_id is received in the response queue.

The default size of the response queue is 8. The get_response method must be called
soon enough to avoid an overflow of the response queue to prevent responses from
being dropped.

If a response is dropped in the response queue, an error will be reported unless the error
reporting is disabled via set_response_queue_error_report_disabled.

UVM 1.0 Class Reference

166

Synchronization Classes

1
|'I | uvm_event_callback

1l

| | rRev,
| uvm_event | | uwn_barrier | | LN JIIIEI:I -

The UVM provides event and barrier synchronization classes for managing concurrent
processes.

e uvm_event - UVM’s event class augments the SystemVerilog event datatype with
such services as setting callbacks and data delivery.

e uvm_barrier - A barrier is used to prevent a pre-configured number of processes
from continuing until all have reached a certain point in simulation.

« uvm_event_pool and uvm_barrier_pool - The event and barrier pool classes are
specializations of uvm_object_string_pool #(T) used to store collections of
uvm_events and uvm_barriers, respectively, indexed by string name. Each pool
class contains a static, “global” pool instance for sharing across all processes.

e« uvm_event_callback - The event callback is used to create callback objects that
may be attached to uvm_events.

Summary

Synchronization Classes

UVM 1.0 Class Reference

167

The uvm_event class is a wrapper class around the SystemVerilog event construct. It
provides some additional services such as setting callbacks and maintaining the number
of waiters.

Summary

uvim_event

The uvm_event class is a wrapper class around the SystemVerilog event

construct.
Crass HierarcHY
uvm_void

uvm_object

uvim_event

CLass DECLARATION

cl ass uvm event

MEeTHODS
new
wait_on
wait_ off

wait_trigger
wait_ptrigger
wait_trigger_data

wait_ptrigger_data

trigger
get_trigger_data

get_trigger_time
is_on

is_off

reset
add_callback
delete_callback
cancel
get_num_waiters

MEeTHODS

ext ends uvm obj ect

Creates a new event object.

Waits for the event to be activated for the first time.
If the event has already triggered and is “on”, this task
waits for the event to be turned “off” via a call to
reset.

Waits for the event to be triggered.

Waits for a persistent trigger of the event.

This method calls wait_trigger followed by
get_trigger_data.

This method calls wait_ptrigger followed by
get_trigger_data.

Triggers the event, resuming all waiting processes.
Gets the data, if any, provided by the last call to
trigger.

Gets the time that this event was last triggered.
Indicates whether the event has been triggered since it
was last reset.

Indicates whether the event has been triggered or
been reset.

Resets the event to its off state.

Registers a callback object, cb, with this event.
Unregisters the given callback, cb, from this event.
Decrements the number of waiters on the event.
Returns the number of processes waiting on the event.

new

function new (string name = "")

Creates a new event object.

UVM 1.0 Class Reference

wait_on
virtual task wait_on (bit delta)
Waits for the event to be activated for the first time.

If the event has already been triggered, this task returns immediately. If delta is set,
the caller will be forced to wait a single delta #0 before returning. This prevents the
caller from returning before previously waiting processes have had a chance to resume.

Once an event has been triggered, it will be remain “on” until the event is reset.

wait_off

virtual task wait_off (bit delta)

If the event has already triggered and is “on”, this task waits for the event to be turned
“off” via a call to reset.

If the event has not already been triggered, this task returns immediately. If delta is
set, the caller will be forced to wait a single delta #0 before returning. This prevents the
caller from returning before previously waiting processes have had a chance to resume.

wait_trigger
virtual task wait_trigger ()
Waits for the event to be triggered.

If one process calls wait_trigger in the same delta as another process calls trigger, a race
condition occurs. If the call to wait occurs before the trigger, this method will return in
this delta. If the wait occurs after the trigger, this method will not return until the next
trigger, which may never occur and thus cause deadlock.

wait_ptrigger

virtual task wait_ptrigger ()

Waits for a persistent trigger of the event. Unlike wait_trigger, this views the trigger as
persistent within a given time-slice and thus avoids certain race conditions. If this
method is called after the trigger but within the same time-slice, the caller returns
immediately.

wait_trigger_data

virtual task wait_trigger_data (uvm obj ect data)

This method calls wait_trigger followed by get_trigger_data.

wait_ptrigger_data

virtual task wait_ptrigger_data (uvm obj ect data)

UVM 1.0 Class Reference

169

This method calls wait_ptrigger followed by get_trigger_data.

trigger
virtual function void trigger (uvmobject data = null)

Triggers the event, resuming all waiting processes.

An optional data argument can be supplied with the enable to provide trigger-specific
information.

get_trigger_data

virtual function uvmobject get_trigger_data ()

Gets the data, if any, provided by the last call to trigger.

get_trigger_time
virtual function tinme get_trigger_time ()

Gets the time that this event was last triggered. If the event has not been triggered, or
the event has been reset, then the trigger time will be 0.

is_on
virtual function bit is_on ()

Indicates whether the event has been triggered since it was last reset.

A return of 1 indicates that the event has triggered.

is_ off
virtual function bit is_off ()

Indicates whether the event has been triggered or been reset.

A return of 1 indicates that the event has not been triggered.

reset

virtual function void reset (bit wakeup =)

Resets the event to its off state. If wakeup is set, then all processes currently waiting
for the event are activated before the reset.

No callbacks are called during a reset.

UVM 1.0 Class Reference 170

add_callback

virtual function void add_callback (uvm event_callback cb,
bi t append = 1)

Registers a callback object, cb, with this event. The callback object may include

pre_trigger and post_trigger functionality. If append is set to 1, the default, cb is added
to the back of the callback list. Otherwise, cb is placed at the front of the callback list.

delete_callback

virtual function void delete_callback (uvmevent_call back cb)

Unregisters the given callback, cbh, from this event.

cancel

virtual function void cancel ()

Decrements the number of waiters on the event.

This is used if a process that is waiting on an event is disabled or activated by some
other means.

get_num_waiters

virtual function int get_numwaiters ()

Returns the number of processes waiting on the event.

UVM 1.0 Class Reference

171

uvm_event_callback

The uvm_event_callback class is an abstract class that is used to create callback objects
which may be attached to uvm_events. To use, you derive a new class and override any
or both pre_trigger and post_trigger.

Callbacks are an alternative to using processes that wait on events. When a callback is
attached to an event, that callback object’s callback function is called each time the
event is triggered.

Summary

uvm_event_callback

The uvm_event_callback class is an abstract class that is used to create callback
objects which may be attached to uvm_events.

CLass HIERARCHY
uvm_void

uvm_object

uvm_event_callback

CLass DEecLARATION
virtual class uvm event cal |l back extends uvm obj ect

MEeTHODS
new Creates a new callback object.
pre_trigger This callback is called just before triggering the associated
event.

post_trigger This callback is called after triggering the associated event.
METHODS
new

function new (string name = "")

Creates a new callback object.

pre_trigger

virtual function bit pre_trigger (uvmevent e,
uvm obj ect data = null)

This callback is called just before triggering the associated event. In a derived class,
override this method to implement any pre-trigger functionality.

If your callback returns 1, then the event will not trigger and the post-trigger callback is
not called. This provides a way for a callback to prevent the event from triggering.

In the function, e is the uvm_event that is being triggered, and data is the optional data

UVM 1.0 Class Reference

172

associated with the event trigger.

post_trigger

virtual function void post_trigger (uvmevent e,
uvm obj ect data)

This callback is called after triggering the associated event. In a derived class, override
this method to implement any post-trigger functionality.

In the function, e is the uvm_event that is being triggered, and data is the optional data
associated with the event trigger.

UVM 1.0 Class Reference 173

The uvm_barrier class provides a multiprocess synchronization mechanism. It enables a
set of processes to block until the desired number of processes get to the
synchronization point, at which time all of the processes are released.

Summary

uvm_barrier

The uvm_barrier class provides a multiprocess synchronization mechanism.
CiLass HierarcHy
uvm_void

uvm_object

uvm_barrier

CLass DEcCLARATION
class uvm barrier extends uvm object

MeTHODS

new Creates a new barrier object.

wait_for Waits for enough processes to reach the barrier before
continuing.

reset Resets the barrier.

set_auto_reset Determines if the barrier should reset itself after the
threshold is reached.

set_threshold Sets the process threshold.

get_threshold Gets the current threshold setting for the barrier.

get_num_waiters Returns the number of processes currently waiting at the
barrier.

cancel Decrements the waiter count by one.

METHODS

new

function new (string nane
i nt threshol d

Creates a new barrier object.

wait_for

virtual task wait_for()

Waits for enough processes to reach the barrier before continuing.

The number of processes to wait for is set by the set_threshold method.

UVM 1.0 Class Reference

174

reset

virtual function void reset (bit wakeup)

Resets the barrier. This sets the waiter count back to zero.

The threshold is unchanged. After reset, the barrier will force processes to wait for the
threshold again.

If the wakeup bit is set, any currently waiting processes will be activated.

set_auto_reset

virtual function void set_auto_reset (bit value)

Determines if the barrier should reset itself after the threshold is reached.

The default is on, so when a barrier hits its threshold it will reset, and new processes will
block until the threshold is reached again.

If auto reset is off, then once the threshold is achieved, new processes pass through
without being blocked until the barrier is reset.

set_threshold

virtual function void set_threshold (int threshold)

Sets the process threshold.

This determines how many processes must be waiting on the barrier before the
processes may proceed.

Once the threshold is reached, all waiting processes are activated.

If threshold is set to a value less than the number of currently waiting processes, then
the barrier is reset and waiting processes are activated.

get_threshold

virtual function int get_threshold ()

Gets the current threshold setting for the barrier.

get_num_waiters

virtual function int get_numwaiters ()

Returns the number of processes currently waiting at the barrier.

cancel

virtual function void cancel ()

Decrements the waiter count by one. This is used when a process that is waiting on the

UVM 1.0 Class Reference 175

barrier is killed or activated by some other means.

UVM 1.0 Class Reference 176

Objection Mechanism

The following classes define the objection mechanism and end-of-test functionality, which
is based on uvm_objection.

Contents

Objection Mechanism The following classes define the objection mechanism
and end-of-test functionality, which is based on
uvm_objection.

uvm_objection Objections provide a facility for coordinating status
information between two or more participating
components, objects, and even module-based IP.

uvm_test_done_objection Provides built-in end-of-test coordination

uvm_callbacks_objection The uvm_callbacks_objection is a specialized
uvm_objection which contains callbacks for the raised
and dropped events.

uvm_objection_callback The uvm_objection is the callback type that defines
the callback implementations for an objection callback.

uvm_objection

Objections provide a facility for coordinating status information between two or more
participating components, objects, and even module-based IP. In particular, the
uvm_test_done built-in objection provides a means for coordinating when to end a test,
i.e. when to call global_stop_request to end the <uvm_component::run> phase. When
all participating components have dropped their raised objections with uvm_test done,
an implicit call to global_stop_request is issued.

Tracing of objection activity can be turned on to follow the activity of the objection
mechanism. It may be turned on for a specific objection instance with
uvm_objection::trace_mode, or it can be set for all objections from the command line
using the option +UVM_OBJECTION_TRACE.

Summary

uvm_objection

Objections provide a facility for coordinating status information between two or
more participating components, objects, and even module-based IP.

CLass HIERARCHY
uvm_void
uvm_object

uvm_report_object

uvm_objection

CLASS DECLARATION
cl ass uvm obj ection extends uvmreport _object
new Creates a new objection instance.
trace_mode Set or get the trace mode for the objection object.

UVM 1.0 Class Reference

177

Osiection ConTROL

m_set_hier_mode Hierarchical mode only needs to be set for
intermediate components, not for uvm_root or a leaf
component.

raise_objection Raises the number of objections for the source object
by count, which defaults to 1.

drop_objection Drops the number of objections for the source object
by count, which defaults to 1.

set_drain_time Sets the drain time on the given object to drain.

CaLeack Hooks

raised Objection callback that is called when a
raise_objection has reached obj.

dropped Objection callback that is called when a
drop_objection has reached obj.

all_dropped Objection callback that is called when a

drop_objection has reached obj, and the total count
for obj goes to zero.

OBJECTION STATUS

get_objectors Returns the current list of objecting objects (objects
that raised an objection but have not dropped it).

wait_for Waits for the raised, dropped, or all_dropped event to
occur in the given obj.

get_objection_count Returns the current number of objections raised by
the given object.

get_objection_total Returns the current number of objections raised by
the given object and all descendants.

get_drain_time Returns the current drain time set for the given object
(default: 0 ns).

display_objections Displays objection information about the given object.

new
function new(string name = "")

Creates a new objection instance. Accesses the command line argument
+UVM_OBJECTION_TRACE to turn tracing on for all objection objects.

trace_mode

function bit trace_node (int nmode = -1)

Set or get the trace mode for the objection object. If no argument is specified (or an
argument other than 0 or 1) the current trace mode is unaffected. A trace_mode of 0
turns tracing off. A trace mode of 1 turns tracing on. The return value is the mode prior
to being reset.

OBiection ConTROL

m_set_hier_mode
function void mset_hier_node (uvm object obj)

Hierarchical mode only needs to be set for intermediate components, not for uvm_root or
a leaf component.

UVM 1.0 Class Reference 178

raise_objection

virtual function void raise_objection (uvmobject obj
string description
i nt count)

Raises the number of objections for the source object by count, which defaults to 1. The
object is usually the this handle of the caller. If object is not specified or null, the
implicit top-level component, uvm_top, is chosen.

Rasing an objection causes the following.

+ The source and total objection counts for object are increased by count.
description is a string that marks a specific objection and is used in tracing/debug.

+ The objection’s raised virtual method is called, which calls the
uvm_component::raised method for all of the components up the hierarchy.

drop_objection

virtual function void drop_objection (uvmobject obj
string descri ption
i nt count)

Drops the number of objections for the source object by count, which defaults to 1. The
object is usually the this handle of the caller. If object is not specified or null, the
implicit top-level component, uvm_top, is chosen.

Dropping an objection causes the following.

» The source and total objection counts for object are decreased by count. It is an
error to drop the objection count for object below zero.

+ The objection’s dropped virtual method is called, which calls the
uvm_component::dropped method for all of the components up the hierarchy.

« If the total objection count has not reached zero for object, then the drop is
propagated up the object hierarchy as with raise_objection. Then, each object in
the hierarchy will have updated their source counts--objections that they
originated--and total counts--the total number of objections by them and all their
descendants.

If the total objection count reaches zero, propagation up the hierarchy is deferred until a
configurable drain-time has passed and the uvm_component::all_dropped callback for
the current hierarchy level has returned. The following process occurs for each instance
up the hierarchy from the source caller:

A process is forked in a non-blocking fashion, allowing the drop call to return. The
forked process then does the following:

« If a drain time was set for the given object, the process waits for that amount of
time.

« The objection’s all_dropped virtual method is called, which calls the
uvm_component::all_dropped method (if object is a component).

* The process then waits for the all_dropped callback to complete.

« After the drain time has elapsed and all_dropped callback has completed,
propagation of the dropped objection to the parent proceeds as described in
raise_objection, except as described below.

If a new objection for this object or any of its descendents is raised during the drain
time or during execution of the all_dropped callback at any point, the hierarchical chain
described above is terminated and the dropped callback does not go up the hierarchy.

UVM 1.0 Class Reference

179

The raised objection will propagate up the hierarchy, but the number of raised
propagated up is reduced by the number of drops that were pending waiting for the
all_dropped/drain time completion. Thus, if exactly one objection caused the count to go
to zero, and during the drain exactly one new objection comes in, no raises or drops are
propagted up the hierarchy,

As an optimization, if the object has no set drain-time and no registered callbacks, the
forked process can be skipped and propagation proceeds immediately to the parent as
described.

set_drain_time
Sets the drain time on the given object to drain.

The drain time is the amount of time to wait once all objections have been dropped
before calling the all_dropped callback and propagating the objection to the parent.

If a new objection for this object or any of its descendents is raised during the drain
time or during execution of the all_dropped callbacks, the drain_time/all_dropped
execution is terminated.

CaLLeack Hooks

raised

virtual function void raised (uvm object obj,)
uvm obj ect source_obj,
string descri ption,
i nt count

Objection callback that is called when a raise_objection has reached obj. The default
implementation calls uvm_component::raised.

dropped

virtual function void dropped (uvm object obj,
uvm obj ect source_obj,
string description,
i nt count

Objection callback that is called when a drop_objection has reached obj. The default
implementation calls uvm_component::dropped.

all_dropped

virtual task all_dropped (uvm object obj, _
uvm obj ect source_obj,
string descri pti on,
i nt count)

Objection callback that is called when a drop_objection has reached obj, and the total

count for obj goes to zero. This callback is executed after the drain time associated with
obj. The default implementation calls uvm_component::all_dropped.

UVM 1.0 Class Reference 180

OBJECTION STATUS

get_objectors

function void get_objectors(ref uvmobject list[$])

Returns the current list of objecting objects (objects that raised an objection but have
not dropped it).

wait_for

task wait_for(uvm objection_event Obj t_event,
uvm obj ect ob = null)

Waits for the raised, dropped, or all_dropped event to occur in the given obj. The task
returns after all corresponding callbacks have been executed.

get_objection_count

function int get_objection_count (uvmobject obj = null)

Returns the current number of objections raised by the given object.

get_objection_total

function int get_objection_total (uvmobject obj = null)

Returns the current number of objections raised by the given object and all descendants.

get_drain_time
function tine get_drain_time (uvmobject obj = null)

Returns the current drain time set for the given object (default: 0 ns).

display_objections

function void di splay_objecti ons(uvm obj ect obj

nul |,
bi t show_header 1

)

Displays objection information about the given object. If object is not specified or null,
the implicit top-level component, uvm_root, is chosen. The show_header argument
allows control of whether a header is output.

uvm_test_done_objection

Provides built-in end-of-test coordination

UVM 1.0 Class Reference 181

Summary

uvm_test_done_objection

Provides built-in end-of-test coordination

CLass HIERARCHY

m_uvm_test_done_objection_base

uvm_test_done_objection

CLass DECLARATION

class uvm test_done_objection extends
m uvm t est _done_obj ecti on_base

MEeTHODS
new Creates the singleton test_done objection.
qualify Checks that the given object is derived from either
uvm_component or uvm_sequence_base.
stop_request Calling this function triggers the process of shutting down
the currently running task-based phase.
V ARIABLES
stop_timeout These set watchdog timers for task-based phases and stop
tasks.
MEeTHODS
all_dropped This callback is called when the given object’s objection
count reaches zero; if the object is the implicit top-level,
uvm_root then it means there are no more objections
raised for the uvm_test_done objection.
raise_objection Calls uvm_objection::raise_objection after calling qualify.
drop_objection Calls uvm_objection::drop_objection after calling qualify.
force_stop Forces the propagation of the all_dropped() callback, even
if there are still outstanding objections.
METHODS

new

Creates the singleton test_done objection. Users must not to call this method directly.

qualify
virtual function void qualify(uvm object obj = nul I,
bit is_raise,
string description)

Checks that the given object is derived from either uvm_component or
uvm_sequence_base.

stop_request

function void stop_request()

UVM 1.0 Class Reference 182

Calling this function triggers the process of shutting down the currently running task-
based phase. This process involves calling all components’ stop tasks for those
components whose enable_stop_interrupt bit is set. Once all stop tasks return, or once
the optional global_stop_timeout expires, all components’ kill method is called, effectively
ending the current phase. The uvm_top will then begin execution of the next phase, if
any.

V ARIABLES

stop_timeout

time stop_tineout = 0

These set watchdog timers for task-based phases and stop tasks. You can not disable
the timeouts. When set to 0, a timeout of the maximum time possible is applied. A
timeout at this value usually indicates a problem with your testbench. You should lower
the timeout to prevent “never-ending” simulations.

MEeTHODS

all_dropped

virtual task all_dropped (uvm object obj,
uvm obj ect source_obj,
string descri pti on,
i nt count)

This callback is called when the given object’s objection count reaches zero; if the object
is the implicit top-level, uvm_root then it means there are no more objections raised for
the uvm_test_done objection. Thus, after calling uvm_objection::all_dropped, this
method will call global_stop_request to stop the current task-based phase (e.g. run).

raise_objection

virtual function void raise_objection (uvmobject obj
string description
i nt count)

Calls uvm_objection::raise_objection after calling qualify. If the object is not provided or
is null, then the implicit top-level component, uvm_top, is chosen.

drop_objection

virtual function void drop_objection (uvmobject obj
string descri ption
i nt count)

Calls uvm_objection::drop_objection after calling qualify. If the object is not provided or
is null, then the implicit top-level component, uvm_top, is chosen.

UVM 1.0 Class Reference

183

force_stop

virtual task force_stop(uvmobject obj = null)

Forces the propagation of the all_dropped() callback, even if there are still outstanding
objections. The net effect of this action is to forcibly end the current phase.

uvm_callbacks_objection

The uvm_callbacks_objection is a specialized uvm_objection which contains callbacks for
the raised and dropped events. Callbacks happend for the three standard callback
activities, raised, dropped, and all_dropped.

The uvm_heartbeat mechanism use objections of this type for creating heartbeat
conditions. Whenever the objection is raised or dropped, the component which did the
raise/drop is considered to be alive.

Summary

uvm_callbacks_objection

The uvm_callbacks_objection is a specialized uvm_objection which contains
callbacks for the raised and dropped events.

CLass HierarcHY
uvm_void
uvm_object
uvm_report_object

uvm_objection

uvm_callbacks_objection

CLass DECLARATION
cl ass uvm cal | backs_obj ecti on extends uvm objection

MEeTHODS
raised Executes the uvm_objection_callback::raised method in the
user callback class whenever this objection is raised at the
object obj.
dropped Executes the uvm_objection_callback::dropped method in the
user callback class whenever this objection is dropped at the
object obj.
all_dropped Executes the uvm_objection_callback::all_dropped task in the
user callback class whenever the objection count for this
objection in reference to obj goes to zero.
MEeTHODS
raised

virtual function void raised (uvmobject obj,

UVM 1.0 Class Reference

184

uvm obj ect source_obj,
string descri pti on,
i nt count)

Executes the uvm_objection_callback::raised method in the user callback class whenever
this objection is raised at the object obj.

dropped

virtual function void dropped (uvmobject obj,
uvm obj ect source_obj,
string descri pti on,
i nt count)

Executes the uvm_objection_callback::dropped method in the user callback class
whenever this objection is dropped at the object obj.

all_dropped

virtual task all_dropped (uvm object obj,
uvm obj ect source_obj,
string descri pti on,
i nt count

Executes the uvm_objection_callback::all_dropped task in the user callback class
whenever the objection count for this objection in reference to obj goes to zero.

uvm_objection_callback

The uvm_objection is the callback type that defines the callback implementations for an
objection callback. A user uses the callback type uvm_objection_cbs_t to add callbacks
to specific objections.

For example

class ny_objection_cb extends uvm objection_call back;
function new(stri ng nane) ;
super. new(nane) ;
endf unction

virtual function void raised (uvmobjection objection, uvmobject obj,
uvm obj ect source_obj, string description, int count)
$di splay("%0t: Objection %: Raised for %", $tine,
obj ecti on get name(),
obj . get _ful'l _name());
endf unction
endcl ass

initial begi n
nmy_ obt)ectl on_cb cb = new("ch");)
uvm obj ection_cbs_t::add(null, cb); //typew de callback

Summary

uvm_objection_callback

The uvm_objection is the callback type that defines the callback implementations

UVM 1.0 Class Reference

185

for an objection callback.
CrLass HierarRcHY
uvm_void
uvm_object

uvm__callback

uvm_objection_callback

CLASS DECLARATION
cl ass uvm obj ection_cal | back extends uvm cal | back

MEeTHODS
raised Objection raised callback function.
dropped Objection dropped callback function.
all_dropped Objection all_dropped callback function.
METHODS
raised
virtual function void raised (uvm.objection objection,
uvm obj ect obj, .
uvm obj ect source_obj,
string description,
i nt count

Objection raised callback function. Called by uvm_callbacks_objection::raised.

dropped
virtual function void dropped (uvmobjection objection,
uvm obj ect obj , .
uvm obj ect sour ce_obj,
string description,
i nt count

Objection dropped callback function. Called by uvm_callbacks_objection::dropped.

all_dropped

virtual task all_dropped (uvmobjection objection,

uvm obj ect obj , .
uvm obj ect sour ce_obj,
string description,
i nt count

Objection all_dropped callback function. Called by uvm_callbacks_objection::all_dropped.

UVM 1.0 Class Reference 186

uvm_heartbeat

Heartbeats provide a way for environments to easily ensure that their descendants are
alive. A uvm_heartbeat is associated with a specific objection object. A component that
is being tracked by the heartbeat object must raise (or drop) the synchronizing objection
during the heartbeat window. The synchronizing objection must be a
uvm_callbacks_objection type.

The uvm_heartbeat object has a list of participating objects. The heartbeat can be
configured so that all components (UVM_ALL_ACTIVE), exactly one (UVM_ONE_ACTIVE),
or any component (UVM_ANY_ACTIVE) must trigger the objection in order to satisfy the
heartbeat condition.

Summary

uvm_heartbeat

Heartbeats provide a way for environments to easily ensure that their
descendants are alive.

MEeTHODS
new Creates a new heartbeat instance associated with cntxt.
set_mode Sets or retrieves the heartbeat mode.
set_heartbeat Sets up the heartbeat event and assigns a list of objects to
watch.
add Add a single component to the set of components to be
monitored.
remove Remove a single component to the set of components being
monitored.
start Starts the heartbeat monitor.
stop Stops the heartbeat monitor.
MEeTHODS
new
function new(string nane,
uvm conponent cnt xt,

uvm cal | backs_obj ection objection = null)

Creates a new heartbeat instance associated with cntxt. The context is the hierarchical
location that the heartbeat objections will flow through and be monitored at. The
objection associated with the heartbeat is optional, if it is left null but it must be set
before the heartbeat monitor will activate.

U\t/]_m_ca! | backs_obj ecti on nyobjection = new "nyobjection"); //some shared
obj ection
class nKenv extends uvm env;)] _

uvm heartbeat hb = new("hb", this, nyobjection);

endcl ass

UVM 1.0 Class Reference

187

set_mode

function uvm heartbeat npdes set node (
uvm heart beat nodes™ node

Sets or retrieves the heartbeat mode. The current value for the heartbeat mode is
returned. If an argument is specified to change the mode then the mode is changed to
the new value.

set__heartbeat

function void set_heartbeat (uvm event e,
uvm conponent conps[$])

Sets up the heartbeat event and assigns a list of objects to watch. The monitoring is
started as soon as this method is called. Once the monitoring has been started with a
specific event, providing a new monitor event results in an error. To change trigger
events, you must first stop the monitor and then start with a new event trigger.

If the trigger event e is null and there was no previously set trigger event, then the
monitoring is not started. Monitoring can be started by explicitly calling start.

add

function void add (uvm conponent conp)
Add a single component to the set of components to be monitored. This does not cause
monitoring to be started. If monitoring is currently active then this component will be

immediately added to the list of components and will be expected to participate in the
currently active event window.

remove

function void renove (uvm conmponent conp)

Remove a single component to the set of components being monitored. Monitoring is not
stopped, even if the last component has been removed (an explicit stop is required).

start

function void start (uvmevent e)
Starts the heartbeat monitor. If e is null then whatever event was previously set is
used. If no event was previously set then a warning is issued. It is an error if the

monitor is currently running and e is specifying a different trigger event from the current
event.

stop

function void stop ()

Stops the heartbeat monitor. Current state information is reset so that if start is called

UVM 1.0 Class Reference

188

again the process will wait for the first event trigger to start the monitoring.

UVM 1.0 Class Reference 189

Container Classes

The container classes are type parameterized datastructures. The uvm_queue #(T) class
implements a queue datastructure similar to the SystemVerilog queue construct. And
the uvm_pool #(KEY,T) class implements a pool datastructure similar to the
SystemVerilog associative array. The class based datastructures allow the objects to be
shared by reference; for example, a copy of a uvm_pool #(KEY,T) object will copy just
the class handle instead of the entire associative array.

Summary

Container Classes

The container classes are type parameterized datastructures.

UVM 1.0 Class Reference 190

Pool Classes

This section defines the <uvm_pool #(T)> class and derivative.

Contents
Pool Classes This section defines the <uvm_pool #(T)> class and
derivative.
uvm_pool #(KEY,T) Implements a class-based dynamic associative array.
uvm_object_string_pool This provides a specialization of the generic uvm_pool
#(T) #(KEY,T) class for an associative array of uvm_object-

based objects indexed by string.

uvm_pool #(KEY,T)

Implements a class-based dynamic associative array. Allows sparse arrays to be
allocated on demand, and passed and stored by reference.

Summary

uvm_pool #(KEY,T)

Implements a class-based dynamic associative array.
Crass HieraRrcHY
uvm_void

uvm_object

uvm_pool#(KEY,T) |

CLass DEecLARATION

cl ass uvm pool #(type _II§EY i nt,

uvm voi d) extends uvm obj ect

MEeTHODS

new Creates a new pool with the given name.

get_global_pool Returns the singleton global pool for the item type, T.

get_global Returns the specified item instance from the global item
pool.

get Returns the item with the given key.

add Adds the given (key, item) pair to the pool.

num Returns the number of uniquely keyed items stored in the
pool.

delete Removes the item with the given key from the pool.

exists Returns 1 if a item with the given key exists in the pool, 0
otherwise.

first Returns the key of the first item stored in the pool.

last Returns the key of the last item stored in the pool.

next Returns the key of the next item in the pool.

prev Returns the key of the previous item in the pool.

UVM 1.0 Class Reference 191

MEeTHODS

new

function new (string nane)

Creates a new pool with the given name.

get_global_pool

static function this_type get_global pool ()

Returns the singleton global pool for the item type, T.

This allows items to be shared amongst components throughout the verification
environment.

get_global

static function T get_global (KEY key)

Returns the specified item instance from the global item pool.

get

virtual function T get (KEY key)

Returns the item with the given key.

If no item exists by that key, a new item is created with that key and returned.

add

virtual function void add (KEY key,
T item)

Adds the given (key, item) pair to the pool. If an item already exists at the given key it
is overwritten with the new item.

num

virtual function int num ()

Returns the number of uniquely keyed items stored in the pool.

delete

virtual function void delete (KEY key)

UVM 1.0 Class Reference 192

Removes the item with the given key from the pool.

exists

virtual function int exists (KEY key)

Returns 1 if a item with the given key exists in the pool, 0 otherwise.

first

virtual function int first (ref KEY key)

Returns the key of the first item stored in the pool.
If the pool is empty, then key is unchanged and 0 is returned.

If the pool is not empty, then key is key of the first item and 1 is returned.

last
virtual function int last (ref KEY key)
Returns the key of the last item stored in the pool.
If the pool is empty, then 0 is returned and key is unchanged.

If the pool is not empty, then key is set to the last key in the pool and 1 is returned.

next
virtual function int next (ref KEY key)
Returns the key of the next item in the pool.
If the input key is the last key in the pool, then key is left unchanged and 0 is returned.

If a next key is found, then key is updated with that key and 1 is returned.

prev
virtual function int prev (ref KEY key)
Returns the key of the previous item in the pool.
If the input key is the first key in the pool, then key is left unchanged and 0 is returned.

If a previous key is found, then key is updated with that key and 1 is returned.

uvim_object_string_pool #(T)

This provides a specialization of the generic uvm_pool #(KEY,T) class for an associative

UVM 1.0 Class Reference 193

array of uvm_object-based objects indexed by string. Specializations of this class include

the uvm_event_pool (a uvm_object_string_pool storing uvm_events) and
uvm_barrier_pool (a uvm_obejct_string_pool storing uvm_barriers).

Summary

uvm_object_string_pool #(T)

This provides a specialization of the generic uvm_pool #(KEY,T) class for an
associative array of uvm_object-based objects indexed by string.

CLass HIERARCHY

uvm_pool#(string,T)

uvm_object_string_pool#(T) |

CLass DECLARATION

cl ass uvm obj ect _string_pool #(
type T = uvm obj ect
) extends uvm pool #(string,T)

MEeTHODS
new Creates a new pool with the given name.
get_type_name Returns the type name of this object.
get_global_pool Returns the singleton global pool for the item type, T.
get Returns the object item at the given string key.
delete Removes the item with the given string key from the pool.
METHODS
new
function new (string name = "")

Creates a new pool with the given name.

get_type_name

virtual function string get_type_nane()

Returns the type name of this object.

get_global_pool

static function this_type get_gl obal pool ()

Returns the singleton global pool for the item type, T.

This allows items to be shared amongst components throughout the verification
environment.

UVM 1.0 Class Reference

194

get

virtual function T get (string key)

Returns the object item at the given string key.

If no item exists by the given key, a new item is created for that key and returned.

delete

virtual function void delete (string key)

Removes the item with the given string key from the pool.

UVM 1.0 Class Reference 195

uvim_queue #(T)

Implements a class-based dynamic queue. Allows queues to be allocated on demand,
and passed and stored by reference.

Summary

uvm_queue #(T)

Implements a class-based dynamic queue.

CLass HIERARCHY
uvm_void

uvm_object

uvm_queue#(T) |

CLass DECLARATION

cl ass uvm queue #(type T = int) extends uvm object
MEeTHODS

new Creates a new queue with the given name.

get_global_queue Returns the singleton global queue for the item type, T.

get_global Returns the specified item instance from the global item
queue.

get Returns the item at the given index.

size Returns the number of items stored in the queue.

insert Inserts the item at the given index in the queue.

delete Removes the item at the given index from the queue; if
index is not provided, the entire contents of the queue
are deleted.

pop_front Returns the first element in the queue (index=0), or null
if the queue is empty.

pop_back Returns the last element in the queue (index=size()-1),
or null if the queue is empty.

push_front Inserts the given item at the front of the queue.

push_back Inserts the given item at the back of the queue.

MEeTHODS
new
function new (string name = "")

Creates a new queue with the given name.

get_global_queue
static function this_type get gl obal queue ()
Returns the singleton global queue for the item type, T.
This allows items to be shared amongst components throughout the verification

UVM 1.0 Class Reference 196

environment.

get_global

static function T get_global (int index)

Returns the specified item instance from the global item queue.

get

virtual function T get (int index)

Returns the item at the given index.

If no item exists by that key, a new item is created with that key and returned.

size
virtual function int size ()

Returns the number of items stored in the queue.

insert

virtual function void insert (int index,
T item)

Inserts the item at the given index in the queue.

delete

virtual function void delete (int index)

Removes the item at the given index from the queue; if index is not provided, the entire
contents of the queue are deleted.

pop_front

virtual function T pop_front()

Returns the first element in the queue (index=0), or null if the queue is empty.

pop_back

virtual function T pop_back()

Returns the last element in the queue (index=size()-1), or null if the queue is empty.

UVM 1.0 Class Reference 197

push_front

virtual function void push_front(T item)

Inserts the given item at the front of the queue.

push_back

virtual function void push_back(T item)

Inserts the given item at the back of the queue.

UVM 1.0 Class Reference

198

TLM Interfaces

The UVM TLM library defines several abstract, transaction-level interfaces and the ports
and exports that facilitate their use. Each TLM interface consists of one or more methods
used to transport data, typically whole transactions (objects) at a time. Component
designs that use TLM ports and exports to communicate are inherently more reusable,
interoperable, and modular.

The UVM TLM library specifies the required behavior (semantic) of each interface
method. Classes (components) that implement a TLM interface must meet the specified
semantic.

Summary

TLM Interfaces

The UVM TLM library defines several abstract, transaction-level interfaces and the
ports and exports that facilitate their use.

TLM2 The TLM2 sockets provide blocking and nonblocking transaction-
level interfaces with well-defined completion semantics.
TLM1 The TLM1 ports provide blocking and nonblocking pass-by-value

transaction-level interfaces.
Sequencer A push or pull port, with well-defined completion semantics.
Port

Analysis The analysis interface is used to perform non-blocking broadcasts
of transactions to connected components.

TLM2

The TLM2 sockets provide blocking and nonblocking transaction-level interfaces with well-
defined completion semantics.

TLM1

The TLM1 ports provide blocking and nonblocking pass-by-value transaction-level
interfaces. The semantics of these interfaces are limited to message passing.

Sequencer Port

A push or pull port, with well-defined completion semantics. It is used to connect
sequencers with drivers and layering sequences.

Analysis

The analysis interface is used to perform non-blocking broadcasts of transactions to
connected components. It is typically used by such components as monitors to publish
transactions observed on a bus to its subscribers, which are typically scoreboards and
response/coverage collectors.

UVM 1.0 Class Reference

199

file:///C|/Users/Joe/Documents/accellera/uvm/docs/uvm_1.0/1.0_RM/uvm_ref/tlm_ifs_and_ports.txt

uvm_analysis_if

write

UVM 1.0 Class Reference 200

TLM1 Interfaces, Ports, Exports and Transport

Interfaces

Each TLM1 interface is either blocking, non-blocking, or a combination of these two.

blocking A blocking interface conveys transactions in blocking fashion; its
methods do not return until the transaction has been
successfully sent or retrieved. Because delivery may consume
time to complete, the methods in such an interface are
declared as tasks.

non-blocking A non-blocking interface attempts to convey a transaction
without consuming simulation time. Its methods are declared
as functions. Because delivery may fail (e.g. the target
component is busy and can not accept the request), the
methods may return with failed status.

combination A combination interface contains both the blocking and non-
blocking variants. In SystemC, combination interfaces are
defined through multiple inheritance. Because SystemVerilog
does not support multiple inheritance, the UVM emulates
hierarchical interfaces via a common base class and interface
mask.

Like their SystemC counterparts, the UVM’s TLM port and export implementations allow
connections between ports whose interfaces are not an exact match. For example, an
uvm_blocking_get_port can be connected to any port, export or imp port that provides at
the least an implementation of the blocking_get interface, which includes the uvm_get_*
ports and exports, uvm_blocking_get peek * ports and exports, and uvm_get_peek *
ports and exports.

The sections below provide and overview of the unidirectional and bidirectional TLM
interfaces, ports, and exports.

Summary

TLM1 Interfaces, Ports, Exports and Transport Interfaces

Each TLM1 interface is either blocking, non-blocking, or a combination of these
two.

UnipirectionaL The unidirectional TLM interfaces consist of blocking, non-

INTERFACES & blocking, and combined blocking and non-blocking variants of
PorTs the put, get and peek interfaces, plus a non-blocking analysis
interface.
Put The put interfaces are used to send, or put, transactions to
other components.
Get and The get interfaces are used to retrieve transactions from
Peek other components.
Ports, The UVM provides unidirectional ports, exports, and
Exports, implementation ports for connecting your components via the
and Imps TLM interfaces.
BIDIRECTIONAL The bidirectional interfaces consist of blocking, non-blocking,
INTERFACES & and combined blocking and non-blocking variants of the
PorTs transport, master, and slave interfaces.
Transport The transport interface sends a request transaction and

returns a response transaction in a single task call, thereby
enforcing an in-order execution semantic.

Master and The primitive, unidirectional put, get, and peek interfaces are
Slave combined to form bidirectional master and slave interfaces.
Ports, The UVM provides bidirectional ports, exports, and

UVM 1.0 Class Reference 201

Exports, implementation ports for connecting your components via the
and Imps TLM interfaces.

UsaGe This example illustrates basic TLM connectivity using the
blocking put inteface.

UNipiRECTIONAL INTERFACES & PORTS

The unidirectional TLM interfaces consist of blocking, non-blocking, and combined
blocking and non-blocking variants of the put, get and peek interfaces, plus a non-
blocking analysis interface.

Put

The put interfaces are used to send, or put, transactions to other components.
Successful completion of a put guarantees its delivery, not execution.

77 77
uvm_blocking_put_if| |uvm_nonblocking_put_if
put try _put
can_put
T F77
| S —
uvm_put_if
put
Iy _put
can_put

Get and Peek

The get interfaces are used to retrieve transactions from other components. The peek

interfaces are used for the same purpose, except the retrieved transaction is not

consumed; successive calls to peek will return the same object. Combined get peek

interfaces are also defined.

UVM 1.0 Class Reference

202

FrT7 FT7 FrT7

rT7

um_tﬂuching_g:t]f

i qum_nunhlu-cl:ing _gll-at:if-

uvm_hblocking J:l-e;hti u\rm_nmbluclting_pe:h__iﬂ_

get try_get peak try_get
can_get can_get
Fi) T i) Fi) Fi) T)
T T T
L - — L —
uvm_get if uvm_peek_if
et peek
try_get try_peak
can_geat can_pesk
T ‘ LT
wvm_blocking get_peek_if uvm_naonblacking_get_peek_if
get try get
peek can_get
[iry_peek
can_pesk

i

uvmn_get_peek if

.

| <l

aet
try_get
can_get
peeak
try_peek
can_peek

Ports, Exports, and Imps

The UVM provides unidirectional ports, exports, and implementation ports for connecting
your components via the TLM interfaces.

Ports instantiated in components that require, or use, the associate
interface to initiate transaction requests.

Exports instantiated by components that forward an implementation of the
methods defined in the associated interface. The implementation is
typically provided by an imp port in a child component.

Imps instantiated by components that provide or implement an

implementation of the methods defined in the associated interface.

FIE
uvm_port_base
[a?

IF=tim_if_tase

Pt
uwn_'tlm_if_base_ I-

uvm_component

. T

FpORT |
1 — 1

| 1

]

uvrn_port_componant

<T,T=

FORT=uwm_port_basa<IF

T

71

uvm_*_port

uvm_*_export

CTave |

uvm_"*_i

UVM 1.0 Class Reference

m';:__'[J

203

A summary of port, export, and imp declarations are

class uvm *_export 1
extends uvm port_base #(tl m.i

class uvm*_port

#(type T=int

#(type T=int

2_base #(T,T));

)
extends uvm port_base #(tlm.if_base #(T,T));

class uvm?*_inp #(tgpe T=int)

ext ends™ uvm port

where the asterisk can be any of

bl ockin ut
nonblocgrp
put

bl ocki ng_get

ng_put

nonbl ocki ng_get

get

blocking_peek
nonbl oc
peek

ng_peek

blocking_get_peek
i

nonbl oc
get _peek

anal ysi s

ng_get peek

ase #(tlmif _base #(T,T));

BipirecTiONAL INTERFACES & PORTS

The bidirectional interfaces consist of blocking, non-blocking, and combined blocking and

non-blocking variants of the transport, master, and slave interfaces.

Bidirectional interfaces involve both a transaction request and response.

Transport

The transport interface sends a request transaction and returns a response transaction in
a single task call, thereby enforcing an in-order execution semantic. The request and
response transactions can be different types.

(REG RSP | (REQ R
uvm_blocking_transport_if | |uvm_nonblocking_transport_if
transport nb_transpart
T L REQ. RSP |

Master and Slave

The primitive, unidirectional put, get, and peek interfaces are combined to form
bidirectional master and slave interfaces. The master puts requests and gets or peeks

UVM 1.0 Class Reference

uwm_transport if

transport
nb_transport

204

responses. The slave gets or peeks requests and puts responses.
the get come from different function interface methods, the requests and responses are
not coupled as they are with the transport interface.

Because the put and

I'T 'y " [T ': [T '|-
uvm blnu:.klng_pu tif —I uvm_nonblocking put | |f—| uvm_blocking get peek | E uvm_nonblocking_get peek |f—|
iy Fi? i) iy Fa)
T=REL Thﬁ:bF- T=REDQ T=RSF T=R5F T=REU T=RSP T=RE
T
IREQ. RSP | ['REQ, RSP | "REQ. RSP | [REQ, RSP |
uvrn_blocking_master if um_nnnblocklng_mastar_ll‘ uvrn_blocking_slave if u-.-m_mnhlndclng_slavs_ll‘
put (REQ) try_put (REQ) get (RsP) try_get (REC)
get (rea) can_put [REG) peeak (ReQ) can_get (Req)
peak (R2P) try_get (RsP) put (r=e) try_peek (Rea)
can_oget (RsP) can_pesk (REQ)
try_peak (RSF) Iry_put (rse)
can_pesek (RSF) can_put (RSP
[REG RSP | I REQ RSP |
uvm_master_if uvm_nonblocking_slave if
put (RE) get (Rea)
try_put (REZ) try_get (rea)
can_put (Rea) can_get (Rea)
get (ReP) peek (REQ) REQ
try_get (RsP) iry_peek (REa)
can_get (R3P) can_peek (REC)
peek (RsF) put (Rsr)
Iry_pesk (ReR) iry_put (rsp) RSP
can_peek (RsP) can_put (RsP)

Ports, Exports, and Imps

The UVM provides bidirectional ports, exports, and implementation ports for connecting
your components via the TLM interfaces.

Ports instantiated in components that require, or use, the associate
interface to initiate transaction requests.

Exports instantiated by components that forward an implementation of the
methods defined in the associated interface. The implementation is
typically provided by an imp port in a child component.

Imps instantiated by components that provide or implement an

implementation of the methods defined in the associated interface.

UVM 1.0 Class Reference 205

MREGRSP |

1_ | 1
uvm_port_base
1
Fa)

IF:m_t_base<REC RSP
FORT=m_par]_base<F=

UV componert

Ly

" PORT |

Lin_port_cormponant

P "REQRSP |
L
uvm_*_port uvm_*_export |

"REQ,RSP.IMP |

T o - —
uvm_"_imp _I

A summary of port, export, and imp declarations are

class uvm*_port #(type REQ=int, RSP=i nt%{E
extends uvm port_base #(tlm.if_base #(REQ

class uvm *_export #(type REQ=int, RSP=int)

class uvm* _inp #(type REQ=int, RSP=int)
ext ends uvm port

RSP)) ;
extends uvm port_base #(tlm.if_base #(REQ RSP));

ase #(tlmif_base #(REQ RSP));

where the asterisk can be any of

transport

bl ocki ng_t ransport
nonbl ocki ng_transport
bl ocki nE__nast er

nonbl ocki ng_nast er
nmast er

bl ocki nE__sI ave

nonbl ocki ng_sl ave

sl ave

UsAGE

This example illustrates basic TLM connectivity using the blocking put inteface.

Y
compl comp2
subcomp2
leaf
leaf?
o e O O—0
part port apart raport g
put {trans) fask put{ Tt);

[:l = part {:} = export { imp <>=anar'_.r5i5|xurt

UVM 1.0 Class Reference

206

port-to-port leafl’s out port is connected to its parent’s (compl)

out port

port-to-export compl’s out port is connected to comp2’s in export

export-to-export comp2’s in export is connected to its child’s
(subcomp?2) in export

export-to-imp subcomp?2’s in export is connected leaf2’s in imp
port.

imp-to-implementation leaf2’s in imp port is connected to its implementation,
leaf2

Hierarchical port connections are resolved and optimized just before the
<uvm_component::end_of_elaboration> phase. After optimization, calling any port’s
interface method (e.g. leafl.out.put(trans)) incurs a single hop to get to the
implementation (e.g. leaf2’s put task), no matter how far up and down the hierarchy the
implementation resides.

“include "uvm pkg.sv"

import uvm pkg::*¥;

class trans extends uvmtransaction;
rand int addr;
rand int data;,
rand bit wite;

endcl ass

class leafl extends uvm conponent;
“uvm conponent _util s(l eaf1)
uvm bl ocki ng_put _port #(trans) out;

function newstring nane, uvm conponent parent=null);
super. new(nane, parent);
out = new("out",this);

endf unction

virtual task run();
trans t;
t = new,
t.random ze();
out.Eut(t);

endt as

endcl ass

class conpl extends uvm conponent;
“uvm conponent _util s(conpl)
uvm bl ocki ng_put _port #(trans) out;
leafl |eaf;
function new(string nane, uvmconponent parent=null);
super. new(nane, parent);
endf unction
virtual function void build();
out = new("out",thi s%;
leaf = new("leafl", this);
endf unction
[/ connect port to port
virtual function void connect();
| eaf . out. connect (out);
endf unction

endcl ass

class |eaf2 extends uvm conponent;
“uvm conponent _util s(l eaf 2)
uvm bl ocki ng_put _inp #(trans,|leaf2) in;
function newstring nane, uvm conponent parent=null);
super . new(nane, parent);])
[/ connect inp to inplenentation (this)

in = nem"in",this);
endf unction

UVM 1.0 Class Reference

207

virtual task put(trans t);]
$di spl ay("CGot trans: addr=%d, data=%0d, wite=%0d",
t.addr, t.data, t.wite);
endt ask

endcl ass

cl ass subconp2 extends uvm conponent;
“uvm conponent _util s(subconmp?2)
uvm bl ocki ng_put _export #(trans) in;
| eaf2 | eaf;

function new(string nane, uvm conponent parent=null);
super . new(nane, parent) ;
endf unction

virtual function void build();
in =new"in",this);
| eaf = new("leaf2", this);
endfunction

/'l connect export to inp

virtual function void connect();
i n.connect (leaf.in);

endf unction

endcl ass

cl ass conp2 extends uvm conponent;
“uvm conponent _uti | s(conp2)
uvm bl ocki ng_put _export #(trans) in;
subconp2 subconp;

function newstring nane, uvmconponent parent=null);
super . new(nane, parent);
endf unction

virtual function void build();
in = new"in", this);)
subconp = new("subconp2",this);

endfunction

/'l connect export to export

virtual function void connect();
i n. connect (subconp.in);

endf unction

endcl ass

class env extends uvm conponent;
“uvm conponent _util s(conpl)

conpl conpl_i;
conmp2 conp2_i;

function newstring nane, uvm conponent parent=null);
super . new(nane, parent);
endf unction

virt uaIl function voi dlbui Ihd(;
conpl_i = new "conpl",this);
conp2_i = ne%"con‘pZ",thi s);

endf uncti on

/'l connect port to export

virtual function void connect();
conpl_i . out.connect(conp2_i.in);

endf uncti on

endcl ass

nmodul e top;

env e = new("env");

initial run_test();

initial #10 uvmtop. stop_request();
endnodul e

UVM 1.0 Class Reference

208

uvm_tim_if_base #(T1,T2)

This class declares all of the methods of the TLM API.

Various subsets of these methods are combined to form primitive TLM interfaces, which
are then paired in various ways to form more abstract “combination” TLM interfaces.
Components that require a particular interface use ports to convey that requirement.
Components that provide a particular interface use exports to convey its availability.

Communication between components is established by connecting ports to compatible
exports, much like connecting module signal-level output ports to compatible input
ports. The difference is that UVM ports and exports bind interfaces (groups of methods),
not signals and wires. The methods of the interfaces so bound pass data as whole
transactions (e.g. objects). The set of primitve and combination TLM interfaces afford
many choices for designing components that communicate at the transaction level.

Summary

uvm_tim_if_base #(T1,T2)

This class declares all of the methods of the TLM API.

CLass DEecLARATION

virtual class uvmtlmif_base #(type Tl = int,
type T2 = int)
BLockING PUT
put Sends a user-defined transaction of type T.
BLOCKING GET
get Provides a new transaction of type T.
BLOCKING PEEK
peek Obtain a new transaction without consuming it.
NoN-BLOCKING
PUT
try_put Sends a transaction of type T, if possible.
can_put Returns 1 if the component is ready to accept the
transaction; 0 otherwise.
NoN-BLOCKING
GET
try_get Provides a new transaction of type T.
can_get Returns 1 if a new transaction can be provided immediately
upon request, 0 otherwise.
NoN-BLOCKING
PEEK
try_peek Provides a new transaction without consuming it.
can_peek Returns 1 if a new transaction is available; 0 otherwise.
BLockinG
TRANSPORT
transport Executes the given request and returns the response in the
given output argument.
NoN-BLOCKING
TRANSPORT
nb_transport Executes the given request and returns the response in the
given output argument.
ANALYSIS
write Broadcasts a user-defined transaction of type T to any

number of listeners.

UVM 1.0 Class Reference 209

BLOCKING PUT

put
virtual task put(Tl t)

Sends a user-defined transaction of type T.

Components implementing the put method will block the calling thread if it cannot
immediately accept delivery of the transaction.

BLOCKING GET

get
virtual task get(T2 t)

Provides a new transaction of type T.

The calling thread is blocked if the requested transaction cannot be provided
immediately. The new transaction is returned in the provided output argument.

The implementation of get must regard the transaction as consumed. Subsequent calls
to get must return a different transaction instance.

BLOCKING PEEK

peek

virtual task peek(T2 t)

Obtain a new transaction without consuming it.

If a transaction is available, then it is written to the provided output argument. If a
transaction is not available, then the calling thread is blocked until one is available.

The returned transaction is not consumed. A subsequent peek or get will return the
same transaction.

NON-BLOCKING PUT

try_put

virtual function bit try_put(Tl t)

Sends a transaction of type T, if possible.

UVM 1.0 Class Reference 210

If the component is ready to accept the transaction argument, then it does so and
returns 1, otherwise it returns 0.

can_put

virtual function bit can_put()

Returns 1 if the component is ready to accept the transaction; 0 otherwise.

NON-BLOCKING GET

try_get

virtual function bit try_get(T2 t)

Provides a new transaction of type T.

If a transaction is immediately available, then it is written to the output argument and 1
is returned. Otherwise, the output argument is not modified and 0 is returned.

can_get

virtual function bit can_get()

Returns 1 if a new transaction can be provided immediately upon request, 0 otherwise.

NON-BLOCKING PEEK

try_peek

virtual function bit try_peek(T2 t)

Provides a new transaction without consuming it.

If available, a transaction is written to the output argument and 1 is returned. A
subsequent peek or get will return the same transaction. If a transaction is not
available, then the argument is unmodified and 0 is returned.

can_peek

virtual function bit can_peek()

Returns 1 if a new transaction is available; 0 otherwise.

BLOCKING TRANSPORT

UVM 1.0 Class Reference

211

transport

virtual task transport(input T1 req ,
output T2 rsp)

Executes the given request and returns the response in the given output argument. The
calling thread may block until the operation is complete.

NON-BLOCKING TRANSPORT

nb_transport

virtual function bit nb_transport(input T1 req,
output T2 rsp)

Executes the given request and returns the response in the given output argument.
Completion of this operation must occur without blocking.

If for any reason the operation could not be executed immediately, then a 0 must be
returned; otherwise 1.

ANALYSIS

write

virtual function void wite(input T1 t)

Broadcasts a user-defined transaction of type T to any number of listeners. The
operation must complete without blocking.

UVM 1.0 Class Reference

212

TLM Port Classes

The following classes define the TLM port classes.

Contents

TLM Port The following classes define the TLM port classes.
Classes

uvm_*_port These unidirectional ports are instantiated by components that
#(T) require, or use, the associated interface to convey transactions.
uvm_*_port These bidirectional ports are instantiated by components that
#(REQ,RSP) require, or use, the associated interface to convey transactions.

uvm_*_port #(T)

These unidirectional ports are instantiated by components that require, or use, the
associated interface to convey transactions. A port can be connected to any compatible
port, export, or imp port. Unless its min_size is 0, a port must be connected to at least
one implementation of its assocated interface.

The asterisk in uvm_*_port is any of the following

bl ocki ng_put
nonbl ocki ng_put
put

blocking_get
nonbl ocki ng_get
get

blocking_peek
nonbl ocki ng_peek
peek

blocking_get peek

nonbl ocking _get peek
get _peek

Type parameters
T The type of transaction to be communicated by the export
Ports are connected to interface implementations directly via uvm_*_imp #(T,IMP) ports

or indirectly via hierarchical connections to uvm_*_port #(T) and uvm_*_export #(T)
ports.

Summary

uvm_*_port #(T)

These unidirectional ports are instantiated by components that require, or use,
the associated interface to convey transactions.

MeTHODS

new The name and parent are the standard uvm_component
constructor arguments.

UVM 1.0 Class Reference

213

METHODS

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been connected to this port by the end of elaboration.

function new (string nane,
uvm _conponent parent,
int mn_size=1,
int max_size=1)

uvm_*_port #(REQ,RSP)

These bidirectional ports are instantiated by components that require, or use, the
associated interface to convey transactions. A port can be connected to any compatible
port, export, or imp port. Unless its min_size is 0, a port must be connected to at least
one implementation of its assocated interface.

The asterisk in uvm_*_port is any of the following

bl ocki ng_t ransport
nonbl ocki ng_t ransport
transport

bl ocki ng_rrast er
nonbl ocki ng_mast er
mast er

bl ocki ng_sl ave
nonbl ocki ng_sl ave
sl ave

Ports are connected to interface implementations directly via uvm_*_imp
#(REQ,RSP,IMP,REQ_IMP,RSP_IMP) ports or indirectly via hierarchical connections to
uvm_*_port #(REQ,RSP) and uvm_*_export #(REQ,RSP) ports.

Type parameters

REQ The type of request transaction to be communicated by the export
RSP The type of response transaction to be communicated by the export
Summary

uvm_*_port #(REQ,RSP)

These bidirectional ports are instantiated by components that require, or use, the
associated interface to convey transactions.

MEeTHODS

UVM 1.0 Class Reference

214

new The name and parent are the standard uvm_component
constructor arguments.

MEeTHODS

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been supplied to this port by the end of elaboration.

function new (string name, uvm_component parent, int min_size=1, int max_size=1)

UVM 1.0 Class Reference

215

TLM Export Classes

The following classes define the TLM export classes.

Contents

TLM Export The following classes define the TLM export classes.
Classes

uvm_*_export The unidirectional uvm_*_export is a port that forwards or

#(T) promotes an interface implementation from a child component to
its parent.

uvm_*_export The bidirectional uvm_*_export is a port that forwards or

#(REQ,RSP) promotes an interface implementation from a child component to
its parent.

uvm_*_export #(T)

The unidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent. An export can be connected to
any compatible child export or imp port. It must ultimately be connected to at least one
implementation of its associated interface.

The interface type represented by the asterisk is any of the following

blocking_put
nonbl ocki ng_put
put
bl ocki ng_get
nonbl ocki ng_get
get
blocking_peek
nonbl ocki ng_peek
peek
blocking_get_peek
i

nonbl ocki ng_get _peek
get _peek

Type parameters

T The type of transaction to be communicated by the export

Exports are connected to interface implementations directly via uvm_*_imp #(T,IMP)
ports or indirectly via other uvm_*_export #(T) exports.

Summary

uvm_*_export #(T)

The unidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent.

MeTHODS
new The name and parent are the standard uvm_component

UVM 1.0 Class Reference

216

constructor arguments.

MEeTHODS

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been supplied to this port by the end of elaboration.

function new (string nane,
uvm conponent parent,
int mn_size=1,
int max_size=1)

uvm_*_export #(REQ,RSP)

The bidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent. An export can be connected to

any compatible child export or imp port. It must ultimately be connected to at least one
implementation of its associated interface.

The interface type represented by the asterisk is any of the following

bl ocki ng_t ransport
nonbl ocki ng_transport
transport
bl ocki ng_mast er
nonbl ocki ng_nast er
nmast er
bl ocki ng_sl ave

i

nonbl ocki ng_sl ave
sl ave

Type parameters

REQ The type of request transaction to be communicated by the export
RSP The type of response transaction to be communicated by the export

Exports are connected to interface implementations directly via uvm_*_imp #(REQ, RSP,
IMP, REQ_IMP, RSP_IMP) ports or indirectly via other uvm_*_export #(REQ,RSP)
exports.

Summary

uvm_*_export #(REQ,RSP)

The bidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent.

UVM 1.0 Class Reference 217

MEeTHODS
new The name and parent are the standard uvm_component
constructor arguments.

MEeTHODS

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been supplied to this port by the end of elaboration.

function new (string nane,
uvm conponent parent,
int mn_size=1,
int max_size=1)

UVM 1.0 Class Reference 218

uvm_*_imp ports

The following defines the TLM implementation (imp) classes.

Contents
uvm_*_imp The following defines the TLM implementation (imp) classes.
ports
uvm_*_imp Unidirectional implementation (imp) port classes--An imp
#(T,IMP) port provides access to an implementation of the associated

interface to all connected ports and exports.

uvm_*_imp Bidirectional implementation (imp) port classes--An imp port
#(REQ, RSP, IMP, provides access to an implementation of the associated
REQ_IMP, interface to all connected ports and exports.
RSP_IMP)

uvm_*_imp #(T,IMP)

Unidirectional implementation (imp) port classes--An imp port provides access to an
implementation of the associated interface to all connected ports and exports. Each imp
port instance must be connected to the component instance that implements the
associated interface, typically the imp port’s parent. All other connections-- e.g. to other
ports and exports-- are prohibited.

The asterisk in uvm_*_imp may be any of the following

bIockinE_put
nonbl ocki ng_put
put
bIockinE_get
nonbl ocki ng_get
get
blocking_peek

i

nonbl ocki ng_peek
peek

blocking_get_peek
nonbl ocki ng_get _peek
get _peek

Type parameters

T The type of transaction to be communicated by the imp

IMP The type of the component implementing the interface. That is, the
class to which this imp will delegate.

The interface methods are implemented in a component of type IMP, a handle to which is
passed in a constructor argument. The imp port delegates all interface calls to this
component.

Summary

uvm_*_imp #(T,IMP)

UVM 1.0 Class Reference

219

Unidirectional implementation (imp) port classes--An imp port provides access to
an implementation of the associated interface to all connected ports and exports.

MEeTHODS
new Creates a new unidirectional imp port with the given name and
parent.
MEeTHODS

new

Creates a new unidirectional imp port with the given name and parent. The parent must
implement the interface associated with this port. Its type must be the type specified in
the imp’s type-parameter, IMP.

function new (string name, |MP parent);

uvm_*_imp #(REQ, RSP, IMP, REQ_IMP,

RSP_IMP)

Bidirectional implementation (imp) port classes--An imp port provides access to an
implementation of the associated interface to all connected ports and exports. Each imp
port instance must be connected to the component instance that implements the
associated interface, typically the imp port’s parent. All other connections-- e.g. to other
ports and exports-- are prohibited.

The interface represented by the asterisk is any of the following

bl ocki ng_t ransport
nonbl ocki ng_transport
transport

bl ocki ng_mast er
nonbl ocki ng_nast er
nmast er

bl ocki ng_sl ave
i

nonbl ocki ng_sl ave
sl ave

Type parameters

REQ Request transaction type

RSP Response transaction type

IMP Component type that implements the interface methods, typically
the the parent of this imp port.

REQ_IMP Component type that implements the request side of the interface.

Defaults to IMP. For master and slave imps only.

RSP_IMP Component type that implements the response side of the
interface. Defaults to IMP. For master and slave imps only.

UVM 1.0 Class Reference 220

The interface methods are implemented in a component of type IMP, a handle to which is
passed in a constructor argument. The imp port delegates all interface calls to this
component.

The master and slave imps have two modes of operation.

+ A single component of type IMP implements the entire interface for both requests
and responses.

* Two sibling components of type REQ_IMP and RSP_IMP implement the request and
response interfaces, respectively. In this case, the IMP parent instantiates this imp
port and the REQ_IMP and RSP_IMP components.

The second mode is needed when a component instantiates more than one imp port, as
in the uvm_tim_req_rsp_channel #(REQ,RSP) channel.

Summary

uvm_*_imp #(REQ, RSP, IMP, REQ_IMP, RSP_IMP)

Bidirectional implementation (imp) port classes--An imp port provides access to
an implementation of the associated interface to all connected ports and exports.

MEeTHODS
new Creates a new bidirectional imp port with the given name and
parent.
MEeTHODS

new

Creates a new bidirectional imp port with the given name and parent. The parent, whose
type is specified by IMP type parameter, must implement the interface associated with
this port.

Transport imp constructor

function new(string name, |M inp)

Master and slave imp constructor

The optional reqg_imp and rsp_imp arguments, available to master and slave imp ports,
allow the requests and responses to be handled by different subcomponents. If they are
specified, they must point to the underlying component that implements the request and
response methods, respectively.

function new(string nane, |M inp,]))]
REQ | MP req_i np=inp, RSP_I MP rsp_i np=i np)

UVM 1.0 Class Reference 221

Analysis Ports

This section defines the port, export, and imp classes used for transaction analysis.

Contents

Analysis Ports This section defines the port, export, and imp classes used
for transaction analysis.

uvm_analysis_port Broadcasts a value to all subscribers implementing a
uvm_analysis_imp.

uvm_analysis_imp Receives all transactions broadcasted by a
uvm_analysis_port.

uvm_analysis_export Exports a lower-level uvm_analysis_imp to its parent.

uvm_analysis_port

Broadcasts a value to all subscribers implementing a uvm_analysis_imp.

cl ass nmon extends uvm conponent;
uvm anal ysi s_port#(trans) ap;
function nemst ring nane = "sb", uvm.conponent parent = null);
super. new nane, parent);
ap = new("ap", this);
endf unction

task run_phase(uvm phase phase);
trans t;

éb:write(t);

endf unction
endcl ass

Summary

uvm_analysis_port

Broadcasts a value to all subscribers implementing a uvm_analysis_imp.
CLass HierarcHY

uvm_port_base#(uvm_tim_if_base#(T,T))

uvm_analysis_port |

CLass DECLARATION

cl ass uvm anal ysis_port # (
type T = int .
) extends uvm port_base # (uvmtlimif_base #(T,T))
MEeTHODS

write Send specified value to all connected interface

UVM 1.0 Class Reference 222

MEeTHODS

write

function void wite (input T t)

Send specified value to all connected interface

uvm_analysis_imp

Receives all transactions broadcasted by a uvm_analysis_port. It serves as the
termination point of an analysis port/export/imp connection. The component attached to
the imp class--called a subscriber-- implements the analysis interface.

Will invoke the write(T) method in the parent component. The implementation of the
write(T) method must not modify the value passed to it.

class sb extends uvm conponent;
uvm anal ysi s_i np#(trans, sb) ap;

function new(string nane = "sb", uvmconponent parent = null);
nane, parent);
ap = new("ap", this);
endf unction
function void wite(trans t);

endf uncti on
endcl ass

Summary

uvm_analysis_imp
Receives all transactions broadcasted by a uvm_analysis_port.

CLass HIERARCHY

uvm_port_base#(uvm_tlm_if_base#(T,T))

uvm_analysis_imp |

CLass DECLARATION

class uvm anal ysis_imp #(
type T = int,
type IMP = int
) extends uvm port_base #(uvmtIm.if_base #(T,T))

uvm_analysis_export

Exports a lower-level uvm_analysis_imp to its parent.

UVM 1.0 Class Reference

223

Summary

uvm_analysis_export

Exports a lower-level uvm_analysis_imp to its parent.

CLass HieraRcHY

uvm_port_base#(uvm_tim_if_base#(T,T))

uvm_analysis_export |

CLass DECLARATION
cl ass uvm anal ysi s_export #(
type T]
) extends uvm port_base #(uvmtlm.if_base #(T,T))

MeTHODS
new Instantiate the export.
METHODS
new
function new (string nane,

uvm conponent par ent)

Instantiate the export.

UVM 1.0 Class Reference 224

TLM FIFO Classes

This section defines TLM-based FIFO classes.
Contents

TLM FIFO Classes This section defines TLM-based FIFO classes.
uvm_tlm_fifo This class provides storage of transactions between two
independently running processes.

uvm_tlm_analysis_fifo An analysis_fifo is a uvm_tlm_fifo with an unbounded size
and a write interface.

This class provides storage of transactions between two independently running

processes. Transactions are put into the FIFO via the put_export. transactions are
fetched from the FIFO in the order they arrived via the get _peek export. The put_export
and get_peek_export are inherited from the uvm_tim_fifo_base #(T) super class, and the
interface methods provided by these exports are defined by the uvm_tim_if_base
#(T1,T2) class.

Summary

uvm_tim_fifo

This class provides storage of transactions between two independently running
processes.

CLass HierarcHY
uvm_void
uvm_object
uvm_report_object
uvm_component

uvm_tlm_fifo_base#(T)

uvm_tim_fifo |

CiLass DEecLARATION
class uvmtlimfifo #(
type T = int)
) extends uvmtlmfifo_base #(T)

MEeTHODS

new The name and parent are the normal uvm_component
constructor arguments.

size Returns the capacity of the FIFO-- that is, the humber of entries
the FIFO is capable of holding.

used Returns the number of entries put into the FIFO.

is_empty Returns 1 when there are no entries in the FIFO, 0 otherwise.

is_full Returns 1 when the number of entries in the FIFO is equal to its
size, 0 otherwise.

flush Removes all entries from the FIFO, after which used returns 0

UVM 1.0 Class Reference

225

and is_empty returns 1.

METHODS
new
function new(string nane,
uvm conponent parent = null,
i nt si ze =1)

The name and parent are the normal uvm_component constructor arguments. The
parent should be null if the uvm_tim_fifo is going to be used in a statically elaborated
construct (e.g., a module). The size indicates the maximum size of the FIFO; a value of
zero indicates no upper bound.

size
virtual function int size()

Returns the capacity of the FIFO-- that is, the number of entries the FIFO is capable of
holding. A return value of 0 indicates the FIFO capacity has no limit.

used

virtual function int used()

Returns the number of entries put into the FIFO.

is_empty
virtual function bit is_enmpty()

Returns 1 when there are no entries in the FIFO, 0 otherwise.

is_full
virtual function bit is_full()

Returns 1 when the number of entries in the FIFO is equal to its size, 0 otherwise.

flush

virtual function void flush()

Removes all entries from the FIFO, after which used returns 0 and is_empty returns 1.

UVM 1.0 Class Reference 226

uvm_tim_analysis_fifo

An analysis_fifo is a uvm_tim_fifo with an unbounded size and a write interface. It can
be used any place a uvm_analysis_imp is used. Typical usage is as a buffer between an
uvm_analysis_port in an initiator component and TLM1 target component.

Summary

uvm_tim_analysis_fifo

An analysis_fifo is a uvm_tim_fifo with an unbounded size and a write interface.

Crass HierarcHY

uvm_tim_fifo#(T)

uvm_tim_analysis_ fifo |

CLASS DECLARATION
class uvmtlmanalysis_fifo #(
type T = int
) extends uvmtlimfifo #(T)

Ports
analysis_export The analysis_export provides the write method to all
#(T) connected analysis ports and parent exports:
MEeTHODS
new This is the standard uvm_component constructor.
PoRrTs

analysis_export #(T)
The analysis_export provides the write method to all connected analysis ports and parent

exports:

function void wite (T t)

Access via ports bound to this export is the normal mechanism for writing to an analysis
FIFO. See write method of uvm_tim_if base #(T1,T2) for more information.

MEeTHODS

new

function new string nane ,
uvm conmponent parent = null)

This is the standard uvm_component constructor. name is the local name of this

UVM 1.0 Class Reference 227

component. The parent should be left unspecified when this component is instantiated in
statically elaborated constructs and must be specified when this component is a child of
another UVM component.

UVM 1.0 Class Reference 228

uvm_tim_fifo_base #(T)

This class is the base for <uvm_tim_fifo #(T)>. It defines the TLM exports through
which all transaction-based FIFO operations occur. It also defines default
implementations for each inteface method provided by these exports.

The interface methods provided by the put_export and the get_peek_export are defined
and described by uvm_tlm_if base #(T1,T2). See the TLM Overview section for a
general discussion of TLM interface definition and usage.

Parameter type

T The type of transactions to be stored by this FIFO.
Summary

uvm_tim_fifo_base #(T)

This class is the base for <uvm_tim_fifo #(T)>.
CLass HierarcHY
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_tim_fifo_base#(T) |

CLASS DECLARATION
virtual class uvmtlmfifo_base #(
type T = int
) extends uvm conponent

Ports
put_export The put_export provides both the blocking and non-
blocking put interface methods to any attached port:
get_peek_export The get_peek_export provides all the blocking and non-
blocking get and peek interface methods:
put_ap Transactions passed via put or try_put (via any port

connected to the put_export) are sent out this port via
its write method.

get_ap Transactions passed via get, try_get, peek, or try_peek
(via any port connected to the get_peek_export) are sent
out this port via its write method.

MeTHODS

new The name and parent are the normal uvm_component
constructor arguments.

PorTs

put_export
The put_export provides both the blocking and non-blocking put interface methods to

UVM 1.0 Class Reference 229

any attached port:

task put (input T t)
function bit can_put ()
function bit try put (input T t)

Any put port variant can connect and send transactions to the FIFO via this export,
provided the transaction types match. See uvm_tlm_if_base #(T1,T2) for more
information on each of the above interface methods.

get_peek_export
The get_peek_export provides all the blocking and non-blocking get and peek interface

methods:

task get (output T t)

function bit can_get ()

function bit try get (output T t)
task peek (output T t

function bit can_peek ()

function bit try_peek (output T t)

Any get or peek port variant can connect to and retrieve transactions from the FIFO via
this export, provided the transaction types match. See uvm_tim_if base #(T1,T2) for
more information on each of the above interface methods.

put_ap
Transactions passed via put or try put (via any port connected to the put_export) are

sent out this port via its write method.

function void wite (T t)

All connected analysis exports and imps will receive put transactions. See
uvm_tim_if _base #(T1,T2) for more information on the write interface method.

get_ap
Transactions passed via get, try_get, peek, or try peek (via any port connected to the

get_peek_export) are sent out this port via its write method.

function void wite (T t)

All connected analysis exports and imps will receive get transactions. See
uvm_tim_if_base #(T1,T2) for more information on the write method.

UVM 1.0 Class Reference 230

MEeTHODS

new

function new(string name,
uvm conponent par ent)

The name and parent are the normal uvm_component constructor arguments. The
parent should be null if the uvm_tIm_fifo is going to be used in a statically elaborated
construct (e.g., a module). The size indicates the maximum size of the FIFO. A value of
zero indicates no upper bound.

UVM 1.0 Class Reference 231

TLM Channel Classes

This section defines built-in TLM channel classes.

Contents
TLM Channel Classes This section defines built-in TLM channel classes.
uvm_tlm_req_rsp_channel The uvm_tim_req_rsp_channel contains a request
#(REQ,RSP) FIFO of type REQ and a response FIFO of type RSP.
uvm_tlm_transport_channel A uvm_tlm_transport_channel is a
#(REQ,RSP) uvm_tlm_req_rsp_channel #(REQ,RSP) that

implements the transport interface.

uvm_tim_req_rsp_channel #(REQ,RSP)

The uvm_tim_req_rsp_channel contains a request FIFO of type REQ and a response FIFO
of type RSP. These FIFOs can be of any size. This channel is particularly useful for
dealing with pipelined protocols where the request and response are not tightly coupled.

Type parameters

REQ Type of the request transactions conveyed by this channel.
RSP Type of the reponse transactions conveyed by this channel.
Summary

uvm_tim_req_rsp_channel #(REQ,RSP)

The uvm_tlm_req_rsp_channel contains a request FIFO of type REQ and a
response FIFO of type RSP.

CLass HierarcHy
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_tim_req_rsp_channel#(REQ,RSP) |

CLass DECLARATION

class uvmtlmreq_rsp_channel #(
type REQ = 1nt,
type RSP = REQ

) extends uvm conponent

PorTs

put_request_export The put_export provides both the blocking and
non-blocking put interface methods to the
request FIFO:

get_peek_response_export The get_peek_response_export provides all the
blocking and non-blocking get and peek
interface methods to the response FIFO:

UVM 1.0 Class Reference 232

get_peek_request_export
put_response_export
request_ap

response_ap

master_export

slave_export

MEeTHODS
new

PoRrTs

The get_peek_export provides all the blocking
and non-blocking get and peek interface
methods to the response FIFO:

The put_export provides both the blocking and
non-blocking put interface methods to the
response FIFO:

Transactions passed via put or try_put (via any
port connected to the put_request_export) are
sent out this port via its write method.
Transactions passed via put or try_put (via any
port connected to the put_response_export)
are sent out this port via its write method.
Exports a single interface that allows a master
to put requests and get or peek responses.
Exports a single interface that allows a slave to
get or peek requests and to put responses.

The name and parent are the standard
uvm_component constructor arguments.

put_request_export

The put_export provides both the blocking and non-blocking put interface methods to the

request FIFO:

task put (input T t);
function bit can_put

function bit try put El)hput Tt);

Any put port variant can connect and send transactions to the request FIFO via this

export, provided the transaction types match.

get_peek_response_export

The get_peek_response_export provides all the blocking and non-blocking get and peek

interface methods to the response FIFO:

task get (output T t);
function bit can_get

DE
function bit try_ get §output Tt);

task peek (output T t
function bit can_peek ();
function bit try peek

Any get or peek port variant can connect to and retrieve transactions from the response

o'utput Tt);

FIFO via this export, provided the transaction types match.

get_peek_request_export

The get_peek_export provides all the blocking and non-blocking get and peek interface

UVM 1.0 Class Reference

233

methods to the response FIFO:

task get (output T t);

function bit can_get ();

function bit try get (output T t);
task peek (output T t);

function bit can_peek ();

function bit try peek (output T t);

Any get or peek port variant can connect to and retrieve transactions from the response
FIFO via this export, provided the transaction types match.

put_response_export

The put_export provides both the blocking and non-blocking put interface methods to the
response FIFO:

task put (input T t);
function bit can_put ();
function bit try_put (input T t);

Any put port variant can connect and send transactions to the response FIFO via this
export, provided the transaction types match.

request_ap

Transactions passed via put or try_put (via any port connected to the
put_request_export) are sent out this port via its write method.

function void wite (T t);
All connected analysis exports and imps will receive these transactions.

response_ap

Transactions passed via put or try_put (via any port connected to the
put_response_export) are sent out this port via its write method.

function void wite (T t);
All connected analysis exports and imps will receive these transactions.

master_export

Exports a single interface that allows a master to put requests and get or peek
responses. It is a combination of the put_request_export and
get_peek_response_export.

UVM 1.0 Class Reference

234

slave_export

Exports a single interface that allows a slave to get or peek requests and to put
responses. It is a combination of the get_peek_request_export and
put_response_export.

METHODS
new
function new (string nane,
uvm conponent parent . . = null,
i nt request _fifo_size = 1,
i nt response_fifo_size = 1)

The name and parent are the standard uvm_component constructor arguments. The
parent must be null if this component is defined within a static component such as a

module, program block, or interface. The last two arguments specify the request and
response FIFO sizes, which have default values of 1.

uvm_tim_transport_channel #(REQ,RSP)

A uvm_tlm_transport_channel is a uvm_tim_req_rsp_channel #(REQ,RSP) that
implements the transport interface. It is useful when modeling a non-pipelined bus at
the transaction level. Because the requests and responses have a tightly coupled one-
to-one relationship, the request and response FIFO sizes are both set to one.

Summary

uvm_tim_transport_channel #(REQ,RSP)

A uvm_tim_transport_channel is a uvm_tlm_req_rsp_channel #(REQ,RSP) that
implements the transport interface.

CLass HIErRARCHY
uvm_void
uvm_object
uvm_report_object
uvm_component

uvm_tlm_req_rsp_channel#(REQ,RSP)

uvm_tim_transport_channel#(REQ,RSP) |

CLass DECLARATION

class uvmtlmtransport_channel #(
type REQ = int,
type RSP = REQ
) extends uvmtlmreq_rsp_channel #(REQ RSP)

PorTs

UVM 1.0 Class Reference 235

transport_export The put_export provides both the blocking and non-
blocking transport interface methods to the response

FIFO:
MEeTHODS
new The name and parent are the standard uvm_component
constructor arguments.
PorTts

transport_export

The put_export provides both the blocking and non-blocking transport interface methods
to the response FIFO:

task transport(REQ request, output RSP response);
function bit nb_transport(REQ request, output RSP response);

Any transport port variant can connect to and send requests and retrieve responses via
this export, provided the transaction types match. Upon return, the response argument
carries the response to the request.

MEeTHODS

new

function new (string nane,
uvm conponent par ent)

The name and parent are the standard uvm_component constructor arguments. The

parent must be null if this component is defined within a statically elaborated construct
such as a module, program block, or interface.

UVM 1.0 Class Reference

236

TLM2 Interfaces, Ports, Exports and Transport

Interfaces Subset

Sockets group together all the necessary core interfaces for transportation and binding,
allowing more generic usage models than just TLM core interfaces.

A socket is like a port or export; in fact it is derived from the same base class as ports
and export, namely uvm_port_base #(IF). However, unlike a port or export a socket
provides both a forward and backward path. Thus you can enable asynchronous
(pipelined) bi-directional communication by connecting sockets together. To enable this,
a socket contains both a port and an export. Components that initiate transactions are
called initiators, and components that receive transactions sent by an initiator are called
targets. Initiators have initiator sockets and targets have target sockets. Initiator
sockets can connect to target sockets. You cannot connect initiator sockets to other
initiator sockets and you cannot connect target sockets to target sockets.

The UVM TLM2 subset provides the following two transport interfaces

Blocking (b_transport) completes the entire transaction within a single
method call
Non-blocking (nb_transport) describes the progress of a transaction using

multiple nb_transport() method calls going back-
and-forth between initiator and target

In general,any component might modify a transaction object during its lifetime (subject
to the rules of the protocol). Significant timing points during the lifetime of a transaction
(for example: start-ofresponse- phase) are indicated by calling nb_transport() in either
forward or backward direction, the specific timing point being given by the phase
argument. Protocol-specific rules for reading or writing the attributes of a transaction
can be expressed relative to the phase. The phase can be used for flow control, and for
that reason might have a different value at each hop taken by a transaction; the phase is
not an attribute of the transaction object.

A call to nb_transport() always represents a phase transition. However, the return from
nb_transport() might or might not do so, the choice being indicated by the value
returned from the function (UVM_TLM_ACCEPTED versus UVM_TLM_UPDATED).
Generally, you indicate the completion of a transaction over a particular hop using the
value of the phase argument. As a shortcut, a target might indicate the completion of
the transaction by returning a special value of UVM_TLM_COMPLETED. However, this is
an option, not a necessity.

The transaction object itself does not contain any timing information by design. Or even
events and status information concerning the API. You can pass the delays as
arguments to b_transport()/ nb_transport() and push the actual realization of any delay
in the simulator kernel downstream and defer (for simulation speed).

Use Models

Since sockets are derived from uvm_port_base #(IF) they are created and connected in
the same way as port, and exports. Create them in the build phase and connect them in
the connect phase by calling connect(). Initiator and target termination sockets are on
the ends of any connection. There can be an arbitrary number of passthrough sockets in
the path between initator and target. Some socket types must be bound to imps
implementations of the transport tasks and functions. Blocking terminator sockets must
be bound to an implementation of b_transport(), for example. Nonblocking initiator
sockets must be bound to an implementation of nb_transport_bw() and nonblocking
target sockets must be bound to an implementation of nb_transport_fw(). Typically, the
task or function is implemented in the component in which the socket is instantiated and

UVM 1.0 Class Reference

237

the component type and instance are provided to complete the binding.

Consider for example a consumer component with a blocking target socket.

Example

cl ass consuner extends uvm conponent;
tIm2_b_target _socket #(consumer, trans) target_socket;
function new(string nane, uvm conponent parent);
super. new nane, parent);
endf unction
function void build();
target _socket = new("target_socket", this, this);
endf unction
task b_transport(trans t, uvmtlmtine del ay);
#5;

uv'm_report_i nfo("consuner", t.convert2string());
endt ask
endcl ass

The interface task b_transport() is implemented in the consumer component. The
consumer component type is used in the declaration of the target socket. This informs
the socket object the type of the object that contains the interface task, in this case
b_transport(). When the socket is instantiated “this” is passed in twice, once as the
parent just like any other component instantiation and again to identify the object that
holds the implementation of b_transport(). Finally, in order to complete the binding, an
implementation of b_transport() must be present in the consumer component. Any
component that has either a blocking termination socket, a nonblocking initiator socket,
or a nonblocking termination socket must provide implementations of the relevant
components. This includes initiator and target components as well as interconnect
components that have these kinds of sockets. Components with passthrough sockets do
not need to provide implementations of any sort. Of course, they must ultimately be
connected to sockets that do that the necessary implementations.

In summary

Call to b_transport() start-of-life of transaction
Return from b_transport() end-of-life of transaction
Phase argument to nb_transport() timing point within lifetime of

transaction

Return value of nb_transport() whether return path is being used
(also shortcut to final phase)

Response status within transaction object protocol-specific status,
success/failure of transaction

On top of this, TLM-2.0 defines a generic payload and base protocol to enhance
interoperability for models with a memory-mapped bus interface.

It is possible to use the interfaces described above with user-defined transaction types
and protocols for the sake of interoperability. However, TLM-2.0 strongly recommends
either using the base protocol off-the-shelf or creating models of specific protocols on top
of the base protocol.

Summary
TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset

Sockets group together all the necessary core interfaces for transportation and
binding, allowing more generic usage models than just TLM core interfaces.

UVM 1.0 Class Reference 238

TLM Generic Payload & Extensions

The Generic Payload transaction represents a generic bus read/write access. It is used as
the default transaction in TLM2 blocking and nonblocking transport interfaces.

Contents

TLM Generic Payload &
Extensions

GLoBALS

uvm_tlm_command_e
uvm_tlm_response_status_e

Generic PayLoap
uvm_tlm_generic_payload

uvm_tim_gp

uvm_tlm_extension_base

uvm_tlm_extension

GLoBALS

The Generic Payload transaction represents a
generic bus read/write access.

Defines, Constants, enums.

Command atribute type definition
Respone status attribute type definition

This class provides a transaction definition
commonly used in memory-mapped bus-based
systems.

This typedef provides a short, more convenient
name for the uvm_tlm_generic_payload type.
The class uvm_tlm_extension_base is the non-
parameterized base class for all generic payload
extensions.

TLM extension class.

Defines, Constants, enums.

uvm_tim_command_e

Command atribute type definition
UVM_TLM_READ_COMMAND
UVM_TLM_WRITE_COMMAND
UVM_TLM_IGNORE_COMMAND

Bus read operation
Bus write operation
No bus operation.

uvm_tim_response_status_e

Respone status attribute type definition
UVM_TLM_OK_RESPONSE

UVM_TLM_INCOMPLETE_RESPONSE

UVM_TLM_GENERIC_ERROR_RESPONSE
UVM_TLM_ADDRESS_ERROR_RESPONSE
UVM_TLM_COMMAND_ERROR_RESPONSE
UVM_TLM_BURST_ERROR_RESPONSE
UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE

UVM 1.0 Class Reference

Bus operation completed
succesfully

Transaction was not delivered
to target

Bus operation had an error
Invalid address specified
Invalid command specified
Invalid burst specified

Invalid byte enabling specified

239

GeNeric PayLoaD

uvm_tim_generic_payload

This class provides a transaction definition commonly used in memory-mapped bus-based
systems. It's intended to be a general purpose transaction class that lends itself to many
applications. The class is derived from uvm_sequence_item which enables it to be
generated in sequences and transported to drivers through sequencers.

Summary

uvm_tim_generic_payload

This class provides a transaction definition commonly used in memory-mapped
bus-based systems.

CLass HierarcHY
uvm_void
uvm_object
uvm_transaction

uvm_sequence_item

uvm_tim_generic_payload

CiLass DEecLARATION
class uvm tl m generic_payl oad extends uvm sequence_item

m_address Address for the bus operation.

m_command Bus operation type.

m_data Data read or to be written.

m_length The number of bytes to be copied to or from the

m_data array, inclusive of any bytes disabled by
the m_byte_enable attribute.

m_response_status Status of the bus operation.
m_dmi DMI mode is not yet supported in the UVM TLM2
subset.
m_byte_enable Indicates valid m_data array elements.
m_byte_enable_length The number of elements in the m_byte_enable
array.
m_streaming_width Number of bytes transferred on each beat.
new Create a new instance of the generic payload.
convert2string Convert the contents of the class to a string
suitable for printing.
ACCESSORS The accessor functions let you set and get each of
the members of the generic payload.
get_command Get the value of the m_command variable
set_command Set the value of the m_command variable
is_read Returns true if the current value of the

m_command variable is
UVM_TLM_READ_COMMAND.

set_read Set the current value of the m_command variable
to UVM_TLM_READ_COMMAND.
is_write Returns true if the current value of the

m_command variable is
UVM_TLM_WRITE_COMMAND.
set_write Set the current value of the m_command variable

UVM 1.0 Class Reference 240

to UVM_TLM_WRITE_COMMAND.

set_address Set the value of the m_address variable
get_address Get the value of the m_address variable
get_data Return the value of the m_data array
set_data Set the value of the m_data array
get_data_length Return the current size of the m_data array
set_data_length Set the value of the m_length
get_streaming_width Get the value of the m_streaming_width array
set_streaming_width Set the value of the m_streaming_width array
get_byte_enable Return the value of the m_byte_enable array
set_byte_enable Set the value of the m_byte_enable array
get_byte_enable_length Return the current size of the m_byte_enable
array
set_byte_enable_length Set the size m_byte_enable_length of the
m_byte_enable array i.e m_byte_enable.size()
set_dmi_allowed DMI hint.
is_dmi_allowed DMI hint.
get_response_status Return the current value of the
m_response_status variable
set_response_status Set the current value of the m_response_status
variable
is_response_ok Return TRUE if the current value of the

m_response_status variable is
UVM_TLM_OK_RESPONSE
is_response_error Return TRUE if the current value of the
m_response_status variable is not
UVM_TLM_OK_RESPONSE
get_response_string Return the current value of the
m_response_status variable as a string

ExTenNsioNs MECHANISM

set_extension Add an instance-specific extension.

get_num_extensions Return the current number of instance specific
extensions.

get_extension Return the instance specific extension bound
under the specified key.

clear_extension Remove the instance-specific extension bound
under the specified key.

clear_extensions Remove all instance-specific extensions

m_address

rand bit [63:0] m address

Address for the bus operation. Should be set or read using the set_address and
get_address methods. The variable should be used only when constraining.

For a read command or a write command, the target shall interpret the current value of
the address attribute as the start address in the system memory map of the contiguous
block of data being read or written. The address associated with any given byte in the
data array is dependent upon the address attribute, the array index, the streaming width
attribute, the endianness and the width of the physical bus.

If the target is unable to execute the transaction with the given address attribute
(because the address is out-of-range, for example) it shall generate a standard error
response. The recommended response status is UVYM_TLM_ADDRESS ERROR_RESPONSE.

m_command

rand uvmtl m command_e m conmand

Bus operation type. Should be set using the set_command, set_read or set_write

UVM 1.0 Class Reference 241

methods and read using the get_command, is_read or is_write methods. The variable
should be used only when constraining.

If the target is unable to execute a read or write command, it shall generate a standard
error response. The recommended response status is
UVM_TLM_COMMAND_ERROR_RESPONSE.

On receipt of a generic payload transaction with the command attribute equal to
UVM_TLM_IGNORE_COMMAND, the target shall not execute a write command or a read
command not modify any data. The target may, however, use the value of any attribute
in the generic payload, including any extensions.

The command attribute shall be set by the initiator, and shall not be overwritten by any
interconnect

m_data

rand byte unsigned m data]

Data read or to be written. Should be set and read using the set_data or get_data
methods The variable should be used only when constraining.

For a read command or a write command, the target shall copy data to or from the data
array, respectively, honoring the semantics of the remaining attributes of the generic
payload.

For a write command or UVM_TLM_IGNORE_COMMAND, the contents of the data array
shall be set by the initiator, and shall not be overwritten by any interconnect component
or target. For a read command, the contents of the data array shall be overwritten by
the target (honoring the semantics of the byte enable) but by no other component.

Unlike the OSCI TLM-2.0 LRM, there is no requirement on the endiannes of multi-byte
data in the generic payload to match the host endianness. Unlike C++, it is not possible
in SystemVerilog to cast an arbitrary data type as an array of bytes. Therefore,
matching the host endianness is not necessary. In constrast, arbitrary data types may
be converted to and from a byte array using the streaming operator and uvm_object
objects may be further converted using the uvm_object::pack_bytes() and
uvm_object::unpack_bytes() methods. All that is required is that a consistent
mechanism is used to fill the payload data array and later extract data from it.

Should a generic payload be transfered to/from a systemC model, it will be necessary for
any multi-byte data in that generic payload to use/be interpreted using the host
endianness. However, this process is currently outside the scope of this standard.

m_length
rand int unsigned mlength

The number of bytes to be copied to or from the m_data array, inclusive of any bytes
disabled by the m_byte_enable attribute.

The data length attribute shall be set by the initiator, and shall not be overwritten by any
interconnect component or target.

The data length attribute shall not be set to 0. In order to transfer zero bytes, the
m_command attribute should be set to UVM_TLM_IGNORE_COMMAND.

UVM 1.0 Class Reference 242

m_response_status

rand uvmtl mresponse_status_e mresponse_status

Status of the bus operation. Should be set using the set_response_status method and
read using the get_response_status, get_response_string, is_response_ok or
is_response_error methods. The variable should be used only when constraining.

The response status attribute shall be set to UVM_TLM_INCOMPLETE_RESPONSE by the
initiator, and may be overwritten by the target. The response status attribute should not
be overwritten by any interconnect component, because the default value
UVM_TLM_INCOMPLETE_RESPONSE indicates that the transaction was not delivered to
the target.

The target may set the response status attribute to UVM_TLM_OK_RESPONSE to indicate
that it was able to execute the command successfully, or to one of the five error
responses to indicate an error. The target should choose the appropriate error response
depending on the cause of the error. If a target detects an error but is unable to select
a specific error response, it may set the response status to
UVM_TLM_GENERIC_ERROR_RESPONSE.

The target shall be responsible for setting the response status attribute at the
appropriate point in the lifetime of the transaction. In the case of the blocking transport
interface, this means before returning control from b_transport. In the case of the non-
blocking transport interface and the base protocol, this means before sending the
BEGIN_RESP phase or returning a value of UVM_TLM_COMPLETED.

It is recommended that the initiator should always check the response status attribute on
receiving a transition to the BEGIN_RESP phase or after the completion of the
transaction. An initiator may choose to ignore the response status if it is known in
advance that the value will be UVM_TLM_OK_RESPONSE, perhaps because it is known in
advance that the initiator is only connected to targets that always return
UVM_TLM_OK_RESPONSE, but in general this will not be the case. In other words, the
initiator ignores the response status at its own risk.

m_dmi
rand bit mdm

DMI mode is not yet supported in the UVM TLM2 subset. This variable is provided for
completeness and interoperability with SystemcC.

m_byte_enable

rand byte unsigned m byte_enabl e[]

Indicates valid m_data array elements. Should be set and read using the
set_byte_enable or get_byte_enable methods The variable should be used only when
constraining.

The elements in the byte enable array shall be interpreted as follows. A value of 0 shall
indicate that that corresponding byte is disabled, and a value of 1 shall indicate that the
corresponding byte is enabled.

Byte enables may be used to create burst transfers where the address increment
between each beat is greater than the number of significant bytes transferred on each
beat, or to place words in selected byte lanes of a bus. At a more abstract level, byte
enables may be used to create “lacy bursts” where the data array of the generic payload

UVM 1.0 Class Reference

243

has an arbitrary pattern of holes punched in it.

The byte enable mask may be defined by a small pattern applied repeatedly or by a large
pattern covering the whole data array. The byte enable array may be empty, in which
case byte enables shall not be used for the current transaction.

The byte enable array shall be set by the initiator and shall not be overwritten by any
interconnect component or target.

If the byte enable pointer is non-null, the target shall either implement the semantics of
the byte enable as defined below or shall generate a standard error response. The
recommended response status is UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE.

In the case of a write command, any interconnect component or target should ignore the
values of any disabled bytes in the m_data array. In the case of a read command, any
interconnect component or target should not modify the values of disabled bytes in the
m_data array.

m_byte_enable_length
rand int unsigned mbyte_enable_ | ength

The number of elements in the m_byte_enable array.

It shall be set by the initiator, and shall not be overwritten by any interconnect
component or target.

m_streaming_width

rand int unsigned mstream ng_w dth

Number of bytes transferred on each beat. Should be set and read using the
set_streaming_width or get_streaming_width methods The variable should be used only
when constraining.

Streaming affects the way a component should interpret the data array. A stream
consists of a sequence of data transfers occurring on successive notional beats, each beat
having the same start address as given by the generic payload address attribute. The
streaming width attribute shall determine the width of the stream, that is, the number of
bytes transferred on each beat. In other words, streaming affects the local address
associated with each byte in the data array. In all other respects, the organisation of the
data array is unaffected by streaming.

The bytes within the data array have a corresponding sequence of local addresses within
the component accessing the generic payload transaction. The lowest address is given by
the value of the address attribute. The highest address is given by the formula
address_attribute + streaming_width - 1. The address to or from which each byte is
being copied in the target shall be set to the value of the address attribute at the start
of each beat.

With respect to the interpretation of the data array, a single transaction with a streaming
width shall be functionally equivalent to a sequence of transactions each having the same
address as the original transaction, each having a data length attribute equal to the
streaming width of the original, and each with a data array that is a different subset of
the original data array on each beat. This subset effectively steps down the original data
array maintaining the sequence of bytes.

A streaming width of 0 indicates that a streaming transfer is not required. it is equivalent
to a streaming width value greater than or equal to the size of the m_data array.

UVM 1.0 Class Reference

244

Streaming may be used in conjunction with byte enables, in which case the streaming

width would typically be equal to the byte enable length. It would also make sense to
have the streaming width a multiple of the byte enable length. Having the byte enable
length a multiple of the streaming width would imply that different bytes were enabled
on each beat.

If the target is unable to execute the transaction with the given streaming width, it shall
generate a standard error response. The recommended response status is
TLM_BURST_ERROR_RESPONSE.

new

function new string nane)

Create a new instance of the generic payload. Initialize all the members to their default
values.

convert2string

function string convert2string()

Convert the contents of the class to a string suitable for printing.

ACCESSORS

The accessor functions let you set and get each of the members of the generic payload.
All of the accessor methods are virtual. This implies a slightly different use model for
the generic payload than in SsytemC. The way the generic payload is defined in
SystemC does not encourage you to create new transaction types derived from
uvm_tlm_generic_payload. Instead, you would use the extensions mechanism. Thus in
SystemC none of the accessors are virtual.

get_command

virtual function uvmtlmcomand_e get_ conmand()

Get the value of the m_command variable

set_command

virtual function void set_comand(uvmtl m command_e comrmand)

Set the value of the m_command variable

is_read
virtual function bit is_read()

Returns true if the current value of the m_command variable is
UVM_TLM_READ_COMMAND.

UVM 1.0 Class Reference

245

set_read

virtual function void set_read()

Set the current value of the m_command variable to UVM_TLM_READ_COMMAND.

is_write
virtual function bit is_wite()

Returns true if the current value of the m_command variable is
UVM_TLM_WRITE_COMMAND.

set_write

virtual function void set_wite()

Set the current value of the m_command variable to UVM_TLM_WRITE_COMMAND.

set_address

virtual function void set_address(bit [63:0] addr)

Set the value of the m_address variable

get_address

virtual function bit [63:0] get_address()

Get the value of the m_address variable

get_data

virtual function void get_data (output byte unsigned p [])

Return the value of the m_data array

set_data

virtual function void set_data(ref byte unsigned p [])

Set the value of the m_data array

get_data_length

virtual function int unsigned get_data_ | ength()

Return the current size of the m_data array

UVM 1.0 Class Reference 246

set_data_length

virtual function void set_data |ength(int unsigned |ength)

Set the value of the m_length

get_streaming_width

virtual function int unsigned get_streamnm ng_w dth()

Get the value of the m_streaming_width array

set_streaming_width

virtual function void set_stream ng_w dth(int unsigned w dth)

Set the value of the m_streaming_width array

get_byte_enable

virtual function void get_byte_enabl e(out put byte unsigned p[])

Return the value of the m_byte_enable array

set_byte_enable

virtual function void set_byte enable(ref byte unsigned p[])

Set the value of the m_byte_enable array

get_byte_enable_length

virtual function int unsigned get_byte_enabl e | ength()

Return the current size of the m_byte_enable array

set_byte_enable_length

virtual function void set_byte enable_|length(int unsigned |ength)

Set the size m_byte_enable_length of the m_byte_enable array i.e m_byte_enable.size()

set_dmi_allowed

virtual function void set_dmi _allowed(bit dm)

DMI hint. Set the internal flag m_dmi to allow dmi access

UVM 1.0 Class Reference 247

is_dmi_allowed

virtual function bit is_dm _allowed()

DMI hint. Query the internal flag m_dmi if allowed dmi access

get_response_status

virtual function uvmtlmresponse_status_e get_response_status()

Return the current value of the m_response_status variable

set_response_status

virtual function void set_response_status(uvmtlmresponse_status_e status)

Set the current value of the m_response_status variable

is_response_ok
virtual function bit is_response_ok()

Return TRUE if the current value of the m_response_status variable is
UVM_TLM_OK_RESPONSE

iS_response_error

virtual function bit is_response_error()

Return TRUE if the current value of the m_response_status variable is not
UVM_TLM_OK_RESPONSE

get_response_string

virtual function string get_response_string()

Return the current value of the m_response_status variable as a string

ExTENSIONS MECHANISM

set_extension

function uvmtl m extensi on_base set_extension(uvm tl m extension_base ext)

Add an instance-specific extension. The specified extension is bound to the generic
payload by ts type handle.

UVM 1.0 Class Reference

248

get_num_extensions

function int get_num extensions()

Return the current number of instance specific extensions.

get_extension

function uvmtl m extensi on_base get_extension(uvmtl m extension_base ext_hand

Return the instance specific extension bound under the specified key. If no extension is
bound under that key, null is returned.

clear_extension

function void clear_extension(uvmtl mextension_base ext_handl e)

Remove the instance-specific extension bound under the specified key.

clear_extensions

function void cl ear_extensions()

Remove all instance-specific extensions

This typedef provides a short, more convenient name for the uvm_tlm_generic_payload
type.

Summary

uvm_tim_gp

This typedef provides a short, more convenient name for the
uvm_tlm_generic_payload type.

CLass DEcLARATION
typedef uvmtl m generic_payl oad uvmtl mgp

uvim_tim_extension_base

The class uvm_tim_extension_base is the non-parameterized base class for all generic
payload extensions. It includes the utility do_copy() and create(). The pure virtual

UVM 1.0 Class Reference

249

function get_type_handle() allows you to get a unique handles that represents the
derived type. This is implemented in derived classes.

This class is never used directly by users. The uvm_tlm_extension class is used instead.

Summary

uvm_tim_extension_base

The class uvm_tlm_extension_base is the non-parameterized base class for all
generic payload extensions.

Crass HieraRcHY
uvm_void

uvm_object

uvm_tim_extension_base

CLass DECLARATION
virtual class uvmtl m extensi on_base extends uvm object

MEeTHODS
new
get_type_handle An interface to polymorphically retrieve a handle
that uniquely identifies the type of the sub-class
get_type_handle_name An interface to polymorphically retrieve the name
that uniquely identifies the type of the sub-class
create
METHODS
new
function new(string name = "")

get_type_handle

pure virtual function uvmtl m extension_base get_type_handl e()

An interface to polymorphically retrieve a handle that uniquely identifies the type of the
sub-class

get_type_handle_name

pure virtual function string get_type _handl e_nane()

An interface to polymorphically retrieve the name that uniquely identifies the type of the
sub-class

create

UVM 1.0 Class Reference 250

virtual function uvmobject create (string nane = "")

uvm_tim_extension

TLM extension class. The class is parameterized with arbitrary type which represents the
type of the extension. An instance of the generic payload can contain one extension
object of each type; it cannot contain two instances of the same extension type.

The extension type can be identified using the ID() method.

To implement a generic payload extension, simply derive a new class from this class and
specify the name of the derived class as the extension parameter.

class ny_ID extends uvmtlmextension#(nmy_ID);
int 1D

“uvm obj ect _utils_begin(ny_| D)
‘uvmfield_ int(ID, U/MALL_ON
“uvm oobject _utils_end

function new(string nane = "ny_ID");
super. new nane) ;
endf unction
endcl ass

Summary

uvm_tim_extension

TLM extension class.
CiLass HierarcHy
uvm_void
uvm_object

uvm_tlm_extension_base

uvm_tim_extension |

CiLass DEecLARATION
class uvm tl m extension #(
type T = int)
) extends uvm tl m extension_base

MEeTHODS
new creates a new extension object.
ID() Return the unique ID of this TLM extension type.
MEeTHODS
new
function newstring name = "")

UVM 1.0 Class Reference

251

creates a new extension object.

ID()

static function this_type 1D()
Return the unique ID of this TLM extension type. This method is used to identify the

type of the extension to retrieve from a uvm_tlm_generic_payload instance, using the
uvm_tlm_generic_payload::get_extension() method.

UVM 1.0 Class Reference 252

tim interfaces

Summary

tim interfaces

GLoBALS Global macro’s & enums
uvm_tlm_phase_e Nonblocking transport synchronization state
values between an initiator and a target.
uvm_tlm_sync_e Pre-defined phase state values for the

nonblocking transport Base Protocol
between an initiator and a target.

"UVM_TLM_TASK_ERROR Defines Not-Yet-Implemented TLM tasks
"UVM_TLM_FUNCTION_ERROR Defines Not-Yet-Implemented TLM
functions
TLM IF Cuass Base class type to define the transport
functions.
GLOBALS

Global macro’s & enums

uvm_tim_phase_e

Nonblocking transport synchronization state values between an initiator and a target.
UNINITIALIZED_PHASE Defaults for constructor

BEGIN_REQ Beginning of request phase
END_REQ End of request phase
BEGIN_RESP Begining of response phase
END_RESP End of response phase

uvm_tim_sync_e

Pre-defined phase state values for the nonblocking transport Base Protocol between an
initiator and a target.

UVM_TLM_ACCEPTED Transaction has been accepted
UVM_TLM_UPDATED Transaction has been modified
UVM_TLM_COMPLETED Execution of transaction is complete

*UVM_TLM_TASK_ERROR

Defines Not-Yet-Implemented TLM tasks

"UVM_TLM_FUNCTION_ERROR

UVM 1.0 Class Reference

253

Defines Not-Yet-Implemented TLM functions

TLM IF Cuass

Base class type to define the transport functions.

Base class type to define the transport functions.

e nb_transport_fw
e nb_transport_bw
¢ b_transport

Summary

uvm_tim_if

Base class type to define the transport functions.

CiLass DEecLARATION

class uvmtImif #(type T uvm t| m generi c_payl oad,

type P = uvmtl m phase_e
TLM TRANSPORT Each of the interface methods take a handle to the
METHODS transaction to be transported and a reference argument
for the delay.
nb_transport_fw Forward path call.
nb_transport_bw Implementation of the backward path.
b_transport Execute a blocking transaction.

TLM TRANSPORT METHODS

Each of the interface methods take a handle to the transaction to be transported and a
reference argument for the delay. In addition, the nonblocking interfaces take a
reference argument for the phase.

nb_transport_fw

virtual function uvmtlmsync_e nb_transport fw . T t,
ref P p,
Input uvmtlimtinme del ay)

Forward path call. The first call to this method for a transaction marks the initial timing
point. Every call to this method may mark a timing point in the execution of the
transaction. The timing annotation argument allows the timing points to be offset from
the simulation times at which the forward path is used. The final timing point of a
transaction may be marked by a call to nb_transport_bw or a return from this or
subsequent call to nb_transport_fw.

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on

UVM 1.0 Class Reference

254

the semantics and rules of the nonblocking transport interface.

nb_transport_bw

virtual function uvmtlmsync_e nb_transport_bw T t,
P

p:
uvmtlimtime del ay)

Implementation of the backward path. This function MUST be implemented in the
INITIATOR component class.

Every call to this method may mark a timing point, including the final timing point, in the
execution of the transaction. The timing annotation argument allows the timing point to
be offset from the simulation times at which the backward path is used. The final timing
point of a transaction may be marked by a call to nb_transport_fw or a return from this
or subsequent call to nb_transport_bw.

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on
the semantics and rules of the nonblocking transport interface.

Example

cl ass nmster extends uvm conponent ;

uvm_tim_nb_initiator_socket #(trans, uvm_tlm_phase_e, this_t) initiator_socket;

function void buil d_phase(uvm phase phase);

initiator_socket = new(“initiator_socket”, this, this);

endf unction

function uvmtlmsync_e nb_transport_bw(ref trans t,
ref ‘uvmtlm phase_e p,
] input uvmtTmtine delay);
transaction = t;
state = p;
return UVM TLM ACCEPTED,
endf unction

endcl ass

b_transport

virtual task b_transport(T) t,
uvmtimtine del ay)

Execute a blocking transaction. Once this method returns, the transaction is assumed to
have been executed. Whether that execution is succesful or not must be indicated by
the transaction itself.

The callee may modify or update the transaction object, subject to any constraints
imposed by the transaction class. The initiator may re-use a transaction object from one

UVM 1.0 Class Reference

255

call to the next and across calls to b_transport().

The call to b_transport shall mark the first timing point of the transaction. The return
from b_transport shall mark the final timing point of the transaction. The timing
annotation argument allows the timing points to be offset from the simulation times at
which the task call and return are executed.

UVM 1.0 Class Reference 256

TLM Sockets

Each uvm_tim_*_socket class is derived from a corresponding uvm_tlm_*_socket_base
class. The base class contains most of the implementation of the class, The derived
classes (in this file) contain the connection semantics.

Sockets come in several flavors: Each socket is either an initiator or a target, a
passthrough or a terminator. Further, any particular socket implements either the
blocking interfaces or the nonblocking interfaces. Terminator sockets are used on
initiators and targets as well as interconnect components as shown in the figure above.
Passthrough sockets are used to enable connections to cross hierarchical boundaries.

There are eight socket types: the cross of blocking and nonblocking, passthrough and
termination, target and initiator

Sockets are specified based on what they are (IS-A) and what they contains (HAS-A).
IS-A and HAS-A are types of object relationships. IS-A refers to the inheritance
relationship and HAS-A refers to the ownership relationship. For example if you say D is
a B that means that D is derived from base B. If you say object A HAS-A B that means
that B is a member of A.

Contents

TLM Sockets Each uvm_tim_*_socket class is
derived from a corresponding

uvm_tlm_* socket_base class.

uvm_tlm_b_initiator_socket IS-A forward port; has no backward
path except via the payload contents
IS-A forward imp; has no backward
path except via the payload contents.
IS-A forward port; HAS-A backward
imp

IS-A forward imp; HAS-A backward
port

uvm_tlm_b_target_socket
uvm_tlm_nb_initiator_socket

uvm_tlm_nb_target_socket

uvm_tlm_b_passthrough_initiator_socket
uvm_tlm_b_passthrough_target_socket
uvm_tlm_nb_passthrough_initiator_socket

uvm_tlm_nb_passthrough_target_socket

IS-A forward port;

IS-A forward export;

IS-A forward port; HAS-A backward
export

IS-A forward export; HAS-A
backward port

uvm_tim_b_initiator_socket

IS-A forward port; has no backward path except via the payload contents

Summary

uvm_tim_b_initiator_socket

IS-A forward port; has no backward path except via the payload contents

CLass HieraRrcHY

uvm_tlm_b_initiator_socket_base#(T)

UVM 1.0 Class Reference

257

uvm_tim_b_initiator_socket |

CLASS DECLARATION
class uvmtlmb_initiator_socket #(
mtl

type T = uvmtl m generic_payl oad
) extends uvmtImb initiator_socket base #(T)
MeTHODS

new Construct a new instance of this socket

Connect Connect this socket to the specified uvm_tlm_b_target_socket
MEeTHODS
new

function new(string nane,

uvm conponent parent)

Construct a new instance of this socket

Connect

Connect this socket to the specified uvm_tim_b_target_socket

uvm_tim_b_target_socket

IS-A forward imp; has no backward path except via the payload contents.

The component instantiating this socket must implement a b_transport() method with the
following signature

task b_transport(T t, uvmtimtinme delay);

Summary

uvm_tim_b_target_socket

IS-A forward imp; has no backward path except via the payload contents.

Crass HierarcHY

uvm_tlm_b_target_socket_base#(T)

uvm_tim_b_target_socket |

CLass DEecLARATION

class uvmtlmb target socket #(
type IMP = int,
type T = uvm tl m generi c_payl oad
) extends uvmtlmb target socket base #(T)

UVM 1.0 Class Reference 258

MEeTHODS

new Construct a new instance of this socket imp is a reference to the
class implementing the b_transport() method.
Connect Connect this socket to the specified uvm_tim_b_initiator_socket
METHODS
new
function new (string nane,
uvm conponent parent,
| VP I nmp = null)

Construct a new instance of this socket imp is a reference to the class implementing the
b_transport() method. If not specified, it is assume to be the same as parent.

Connect

Connect this socket to the specified uvm_tim_b_initiator_socket

uvm_tim_nb_initiator_socket

IS-A forward port; HAS-A backward imp
The component instantiating this socket must implement a nb_transport_bw() method
with the following signature

gulncti)on uvmtlmsync_e nb_transport_bw(T t, ref P p, input uvmtlmtine
el ay);

Summary

uvm_tim_nb_initiator_socket

IS-A forward port; HAS-A backward imp

CLass HIERARCHY

uvm_tlm_nb_initiator_socket_base#(T,P)

uvm_tim_nb_initiator_socket |

CLass DECLARATION
class uvmtlmnb_initiator_socket #(

type | MP = int, _
type T = uvm_tl m generi c_payl oad,
type P = uvmtl m phase_e

) extends uvmtlmnb_ initiator_socket _base #(T, P)

MeTHODS

UVM 1.0 Class Reference 259

new Construct a new instance of this socket imp is a reference to the
class implementing the nb_transport_bw() method.

Connect Connect this socket to the specified uvm_tlm_nb_target_socket
MEeTHODS
new
function new string nane,
uvm conponent parent,
I MP I nmp = null)

Construct a new instance of this socket imp is a reference to the class implementing the
nb_transport_bw() method. If not specified, it is assume to be the same as parent.

Connect

Connect this socket to the specified uvm_tlm_nb_target_socket

uvm_tim_nb_target_socket

IS-A forward imp; HAS-A backward port

The component instantiating this socket must implement a nb_transport_fw() method
with the following signature

Bulncti)on uvmtlmsync_e nb_transport fwT t, ref P p, input uvmtlimtine
el ay);

Summary

uvm_tim_nb_target_socket

IS-A forward imp; HAS-A backward port

CLass HIERARCHY

uvm_tlm_nb_target_socket_base#(T,P)

uvm_tim_nb_target_socket |

CLass DECLARATION

class uvmtlmnb_target socket #(
type | MP int,
type T uvm t| m generi c_payl oad,
type P uvm t| m phase_e
) extends uvmtl mnb_target socket base #(T, P)

MEeTHODS
new Construct a new instance of this socket imp is a reference to the
class implementing the nb_transport_fw() method.

UVM 1.0 Class Reference 260

connect Connect this socket to the specified uvm_tim_nb_initiator_socket

METHODS
new
function new (string nane,
uvm conmponent parent,
I MP I mp = null)

Construct a new instance of this socket imp is a reference to the class implementing the
nb_transport_fw() method. If not specified, it is assume to be the same as parent.

connect

function void connect(this_type provider)

Connect this socket to the specified uvm_tim_nb_initiator_socket

uvim_tim_b_passthrough_initiator_socket

IS-A forward port;

Summary

uvm_tim_b_passthrough_initiator_socket

IS-A forward port;

CrLass HIERARCHY

uvm_tlm_b_passthrough_initiator_socket_base#(T)

uvm_tim_b_passthrough_initiator_socket |

CLass DEcCLARATION

class uvmtl mb_passthrough_initiator_socket #(

type T = uvmtlmageneric_payl oad
)(e;d ends uvmtlmb_passthrough initiator_socket base
#(T

uvim_tim_b_passthrough_target_socket

IS-A forward export;

Summary

UVM 1.0 Class Reference 261

uvm_tim_b_passthrough_target_socket

IS-A forward export;
CLass HieraRcHY

uvm_tlm_b_passthrough_target_socket_base#(T)

uvm_tim_b_passthrough_target_socket |

CLass DEecLARATION

class uvmtl mb_passthrough_ target socket #(
type T = uvmtlmgeneric_payl oad
) extends uvm tl mb_passt hrough_target _socket base #(T)

uvim_tim_nb_passthrough_initiator_socket

IS-A forward port; HAS-A backward export

Summary

uvm_tim_nb_passthrough_initiator_socket

IS-A forward port; HAS-A backward export
CLass HierarcHY

uvm_tlm_nb_passthrough_initiator_socket_base#(T,P)

uvm_tim_nb_passthrough_initiator_socket |

CiLass DEecLARATION
class uvmtl mnb_passthrough_initiator_socket #(

type T = uvmtl mgeneric_payl oad,
type P = uvmtlmphase e
3#(_(Ia_x;ca;ends uvm tl mnb_passt hrough_initiator_socket base

uvm_tim_nb_passthrough_target_socket

IS-A forward export; HAS-A backward port

Summary

uvm_tim_nb_passthrough_target_socket

IS-A forward export; HAS-A backward port
Crass HierarRcHY

uvm_tlm_nb_passthrough_target_socket_base#(T,P)

uvm_tim_nb_passthrough_target_socket |

UVM 1.0 Class Reference 262

CLass DECLARATION

class uvmtl mnb_passt hrough_target _socket #(
type T = uvmtlmgeneric_payl oad,
type P = uvmtl m phase_e
) extends uvm tl m nb_passthrough_t arget socket base #(T, P)

MeTHODS
connect Connect this socket to the specified uvm_tim_nb_initiator_socket

MEeTHODS

connect

function void connect(this_type provider)

Connect this socket to the specified uvm_tlm_nb_initiator_socket

UVM 1.0 Class Reference

263

TLM2 ports

The following defines TLM2 port classes.

Contents
TLM2 ports The following defines TLM2 port classes.
uvm_tlm_b_transport_port Class providing the blocking transport port, The

port can be bound to one export.
uvm_tlm_nb_transport_fw_port Class providing the non-blocking backward
transport port.
uvm_tlm_nb_transport_bw_port Class providing the non-blocking backward
transport port.

uvm_tim_b_transport_port

Class providing the blocking transport port, The port can be bound to one export. There
is no backward path for the blocking transport.

Summary

uvm_tim_b_transport_port

Class providing the blocking transport port, The port can be bound to one export.
CLass HierarcHy

uvm_port_base# (uvm_tim_if#(T))

uvm_tim_b_transport_port |

CLass DECLARATION

class uvmtlmb_transport_port #(
type T = uvmtl m generic_payl oad
) extends uvm port_base #(uvmitIimif #(T))

uvm_tim_nb_transport_fw_port

Class providing the non-blocking backward transport port. Transactions received from
the producer, on the forward path, are sent back to the producer on the backward path
using this non-blocking transport port. The port can be bound to one export.

Summary

uvm_tim_nb_transport_fw_port

Class providing the non-blocking backward transport port.

Crass HierarcHY

UVM 1.0 Class Reference

264

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_transport_fw_port |

CLass DECLARATION

class uvmtlmnb_transport fw port #(
type T = uvmtl mgeneric_payl oad,
type P = uvmtl m phase e
) extends uvm port_base #(uvmtIimif #(T,P))

uvm_tim_nb_transport_bw_port

Class providing the non-blocking backward transport port. Transactions received from
the producer, on the forward path, are sent back to the producer on the backward path
using this non-blocking transport port The port can be bound to one export.

Summary

uvm_tim_nb_transport_bw_port

Class providing the non-blocking backward transport port.

CLass HIERARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_transport_bw_port |

CLass DECLARATION

class uvmtlmnb_transport_bw port #(
type T = uvmtl mgeneric_payl oad,
type P = uvmtl m phase e
) extends uvm port_base #(uvmtIimif #(T,P))

MEeTHODS
new

MEeTHODS

new

UVM 1.0 Class Reference 265

TLM2 Export Classes

This section defines the export classes for connecting TLM2 interfaces.

Contents

TLM2 Export Classes This section defines the export classes for

connecting TLM2 interfaces.

uvm_tlm_b_transport_export Blocking transport export class.
uvm_tlm_nb_transport_fw_export Non-blocking forward transport export class
uvm_tlm_nb_transport_bw_export Non-blocking backward transport export class

uvim_tim_b_transport_export

Blocking transport export class.

Summary

uvm_tim_b_transport_export

Blocking transport export class.
Crass HierarcHY

uvm_port_base#(uvm_tim_if#(T))

uvm_tim_b_transport_export |

CLass DEecLARATION

class uvmtlmb_transport_export #(
type T = uvmtl mgeneric_payl oad
) extends uvm port base #(uvmtIimif #(T))

uvm_tim_nb_transport_fw_export

Non-blocking forward transport export class

Summary

uvm_tim_nb_transport_fw_export

Non-blocking forward transport export class

CLass HIERARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_transport_fw_export |

UVM 1.0 Class Reference 266

CLass DECLARATION

class uvmtl mnb_transport_fw export #(
type T = uvmitl mgeneric_payl oad,
type P = uvmtl m phase e
) extends uvm port _base #(uvmtIimif #(T,P))

uvim_tim_nb_transport_bw_export

Non-blocking backward transport export class

Summary

uvm_tim_nb_transport_bw_export

Non-blocking backward transport export class

CrLass HIERARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_transport_bw_export |

CLass DEcCLARATION

class uvmtlmnb_
type T = uvmt
type P = uvmt
) extends uvm por

ansport_bw export #(
m _generi c_payl oad,
m phase

t
|
I e
t _base #(uvmtlimif #(T,P))

MeTHODS
new

MEeTHODS

new

UVM 1.0 Class Reference 267

TLM2 imps (interface implementations)

This section defines the implementation classes for connecting TLM2 interfaces.

TLM imps bind a TLM interface with the object that contains the interface
implementation. In addition to the transaction type and the phase type, the imps are
parameterized with the type of the object that will provide the implementation. Most
often this will be the type of the component where the imp resides. The constructor of
the imp takes as an argument an object of type IMP and installs it as the
implementation object. Most often the imp constructor argument is “this”.

Contents
TLM2 imps (interface This section defines the implementation
implementations) classes for connecting TLM2 interfaces.

IMP BINDING MACROS

"UVM_TLM_NB_TRANSPORT_FW_IMP The macro wraps the forward path call
function nb_transport_fw()

"UVM_TLM_NB_TRANSPORT_BW_IMP Implementation of the backward path.

"UVM_TLM_B_TRANSPORT_IMP The macro wraps the function
b_transport() Execute a blocking
transaction.

IMP BINDING CLASSES

uvm_tim_b_transport_imp Used like exports, except an addtional
class parameter specifices the type of
the implementation object.

uvm_tlm_nb_transport_fw_imp Used like exports, except an addtional
class parameter specifices the type of
the implementation object.

uvm_tlm_nb_transport_bw_imp Used like exports, except an addtional
class parameter specifices the type of
the implementation object.

IMP BINDING MACROS

"UVM_TLM_NB_TRANSPORT_FW_IMP

The macro wraps the forward path call function nb_transport_fw()

The first call to this method for a transaction marks the initial timing point. Every call to
this method may mark a timing point in the execution of the transaction. The timing
annotation argument allows the timing points to be offset from the simulation times at
which the forward path is used. The final timing point of a transaction may be marked
by a call to nb_transport_bw() within "UVM_TLM_NB_TRANSPORT_BW_IMP or a return
from this or subsequent call to nb_transport_fw().

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on
the semantics and rules of the nonblocking transport interface.

"UVM_TLM_NB_TRANSPORT_BW_IMP

Implementation of the backward path. The macro wraps the function called

UVM 1.0 Class Reference

268

nb_transport_bw(). This function MUST be implemented in the INITIATOR component
class.

Every call to this method may mark a timing point, including the final timing point, in the
execution of the transaction. The timing annotation argument allows the timing point to
be offset from the simulation times at which the backward path is used. The final timing
point of a transaction may be marked by a call to nb_transport_fw() within
"UVM_TLM_NB_TRANSPORT_FW_IMP or a return from this or subsequent call to
nb_transport_bw().

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on
the semantics and rules of the nonblocking transport interface.

Example

class naster extends uvm conponent;
uvm tl mnb_initiator_socket] S
#(trans, uvmtTmphase_e, this_t) initiator_socket;

function void bujld_phase(uvm phase phase);]]
initiator_socket = new("initiator socket this, this);
endf uncti on

function uvmtlimsync_e nb_transport_bw(trans t,
ref ‘uvmtl mphase_e
input uvmtTmtine del ay) ;
transaction = t;
state = p;
return UVM TLM ACCEPTED,
endf unction

endcl ass

"UVM_TLM_B_TRANSPORT_IMP

The macro wraps the function b_transport() Execute a blocking transaction. Once this
method returns, the transaction is assumed to have been executed. Whether that
execution is succesful or not must be indicated by the transaction itself.

The callee may modify or update the transaction object, subject to any constraints
imposed by the transaction class. The initiator may re-use a transaction object from one
call to the next and across calls to b_transport().

The call to b_transport shall mark the first timing point of the transaction. The return
from b_transport() shall mark the final timing point of the transaction. The timing
annotation argument allows the timing points to be offset from the simulation times at
which the task call and return are executed.

IMP BINDING CLASSES

uvm_tim_b_transport_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object. When the imp is instantiated the implementation object is
bound.

UVM 1.0 Class Reference 269

Summary

uvm_tim_b_transport_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object.

Crass HieraRrcHY

uvm_port_base#(uvm_tim_if#(T))

uvm_tim_b_transport_imp |

CLass DEcCLARATION

class uvmtl mb_transport_inp #(
type T uvm tl m generi c_payl oad,
type | MP i nt]

) extends uvm port_base #(uvmtIimif #(T))

uvim_tim_nb_transport_fw_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object. When the imp is instantiated the implementation object is

bound.

Summary

uvm_tim_nb_transport_fw_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object.

CLass HIERARCHY

uvm_port_base#(uvm_tim_if#(T,P))

uvm_tim_nb_transport_fw_imp |

CLass DEcCLARATION
class uvmtlmnb_transport_fw_inp #(

type T = uvm_tl m generi c_payl oad,
type P = uvm tl m phase_e,
type IMP = int

) extends uvm port_base #(uvmtIimif #(T,P))

uvm_tim_nb_transport_bw_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object. When the imp is instantiated the implementation object is

bound.

Summary

UVM 1.0 Class Reference 270

uvm_tim_nb_transport_bw_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object.

CLass HiErRARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_transport_bw_imp |

CLass DECLARATION
class uvmtlimnb_transport_bw inp #(
type T = uvm t| m generi c_payl oad,
type P = uvm tl m phase_g,
type IMP = int
) extends uvm port_base #(uvmtIimif #(T,P))

UVM 1.0 Class Reference 271

Interface Masks

Each of the following macros is a mask that identifies which interfaces a particular port
requires or export provides. The interfaces are identified by bit position and can be or’ed
together for combination ports/exports. The mask is used to do run-time interface type
checking of port/export connections.

Summary

Interface Masks

Each of the following macros is a mask that identifies which interfaces a particular
port requires or export provides.

Macros
"UVM_TLM_NB_FW_MASK Define Non blocking Forward mask onehot
assignment = ‘'b001
"UVM_TLM_NB_BW_MASK Define Non blocking backward mask onehot
assignment = ‘b010
"UVM_TLM_B_MASK Define blocking mask onehot assignment =
‘b100

MAcros

"UVM_TLM_NB_FW_MASK

Define Non blocking Forward mask onehot assignment = '‘b001

"UVM_TLM_NB_BW_MASK

Define Non blocking backward mask onehot assignment = ‘b010

"UVM_TLM_B_MASK

Define blocking mask onehot assignment = '‘b100

UVM 1.0 Class Reference

272

TLM Socket Base Classes

A collection of base classes, one for each socket type. The reason for having a base
class for each socket is that all the socket (base) types must be known before connect is
defined. Socket connection semantics are provided in the derived classes, which are user
visible.

Termination Sockets A termination socket must be the terminus of every TLM
path. A transaction originates with an initator socket
and ultimately ends up in a target socket. There may
be zero or more passthrough sockets between initiator
and target.

Passthrough Sockets Passthrough initiators are ports and contain exports for
instance IS-A port and HAS-A export. Passthrough
targets are the opposite, they are exports and contain

ports.
Contents
TLM Socket Base Classes A collection of base classes,
one for each socket type.
uvm_tlm_b_target_socket_base IS-A forward imp; has no

backward path except via the
payload contents.

uvm_tlm_b_initiator_socket_base IS-A forward port; has no
backward path except via the
payload contents

uvm_tlm_nb_target_socket_base IS-A forward imp; HAS-A
backward port
uvm_tlm_nb_initiator_socket_base IS-A forward port; HAS-A

backward imp
uvm_tlm_nb_passthrough_initiator_socket_base IS-A forward port; HAS-A

backward export
uvm_tim_nb_passthrough_target_socket_base IS-A forward export; HAS-A

backward port
uvm_tlm_b_passthrough_initiator_socket_base IS-A forward port
uvm_tim_b_passthrough_target_socket_base IS-A forward export

uvm_tim_b_target_socket_base

IS-A forward imp; has no backward path except via the payload contents.

Summary

uvm_tim_b_target_socket_base

IS-A forward imp; has no backward path except via the payload contents.
CLass HierarcHy

uvm_port_base#(uvm_tim_if#(T))

uvm_tim_b_target_socket_base |

CLass DECLARATION

UVM 1.0 Class Reference 273

class uvmtl mb_target_socket_base #(
type T = uvmtlmgeneric_payl oad
) extends uvm port_base #(uvmtIimif #(T))

uvm_tim_b_initiator_socket_base

IS-A forward port; has no backward path except via the payload contents

Summary

uvm_tim_b_initiator_socket_base

IS-A forward port; has no backward path except via the payload contents
CLass HieraRcHY

uvm_port_base#(uvm_tim_if#(T))

uvm_tim_b_initiator_socket_base |

CLass DEecLARATION

class uvmtlmb_initiator_socket_base #(
type T = uvmtl m generic_payl oad
) extends uvm port _base #(uvmtImif #(T))

uvm_tim_nb_target_socket_base

IS-A forward imp; HAS-A backward port

Summary

uvm_tim_nb_target_socket_base

IS-A forward imp; HAS-A backward port
CLass HierarcHy

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_target_socket_base |

CLass DECLARATION

class uvmtl mnb_target_socket _base #(
type T = uvmitl mgeneric_payl oad,
type P = uvmtl m phase_e
) extends uvm port _base #(uvmtIimif #(T,P))

uvm_tim_nb_initiator_socket_base

UVM 1.0 Class Reference 274

IS-A forward port; HAS-A backward imp

Summary

uvm_tim_nb_initiator_socket_base

IS-A forward port; HAS-A backward imp
Crass HierarcHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_initiator_socket_base |

CLass DEecLARATION

class uvmtimnb_initiator_socket base #(
type T = uvmitl mgeneric_payl oad,
type P = uvmtl m phase e

) extends uvm port _base #(uvmtIimif #(T,P))

uvim_tim_nb_passthrough_initiator_socket_base

IS-A forward port; HAS-A backward export

Summary

uvm_tim_nb_passthrough_initiator_socket_base

IS-A forward port; HAS-A backward export
Crass HierarcHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_passthrough_initiator_socket_base |

CLass DEecLARATION

class uvmtl mnb_passthrough_initiator_socket base #(
type T = uvmtlmgeneric_payl oad,
type P = uvmtlmphase e

) extends uvm port_base #(uvmtIimif #(T,P))

uvim_tim_nb_passthrough_target_socket_base

IS-A forward export; HAS-A backward port

Summary

uvm_tim_nb_passthrough_target_socket_base

IS-A forward export; HAS-A backward port

UVM 1.0 Class Reference 275

CLass HIERARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_passthrough_target_socket_base |

CLass DECLARATION

class uvm tl mnb_passt hrough_ tar?et socket base #(
type T = uvmtl mgeneric_pay
type P = uvmtl mphase e

) extends uvm port_base #(uvmtIimif #(T,P))

uvm_tim_b_passthrough_initiator_socket_base

IS-A forward port

Summary

uvm_tim_b_passthrough_initiator_socket_base

IS-A forward port

CLass HIERARCHY

uvm_port_base#(uvm_tim_if#(T))

uvm_tim_b_passthrough_initiator_socket_base |

CLass DECLARATION

class uvmtl m b_passthrough_initiator_socket _base #(
type T =" uvmtlmgeneric_payl oa
) extends uvm port base #(uvmtImif #(T))

uvim_tim_b_passthrough_target_socket_base

IS-A forward export

Summary

uvm_tim_b_passthrough_target_socket_base

IS-A forward export

CLass HieraRrcHY

uvm_port_base#(uvm_tim_if#(T))

uvm_tim_b_passthrough_target_socket_base |

CLass DEcLARATION

class uvm.tl mb_passthrough_ target socket base #(
type T = uvmtl mgeneric_payl oad
) extends uvm port_base #(uvmtl mif #(T))

UVM 1.0 Class Reference 276

Canonical time type that can be used in different timescales

This time type is used to represent time values in a canonical form that can bridge
initiators and targets located in different timescales and time precisions.

For a detailed explanation of the purpose for this class, see Why is this necessary.

Summary

uvm_tim_time

Canonical time type that can be used in different timescales

CLASS DECLARATION
class uvmtimtine
set_time_resolution Set the default canonical time resolution.

new Create a new canonical time value.

get_name Return the name of this instance

reset Reset the value to 0

get_realtime Return the current canonical time value, scaled for the
caller’s timescale

incr Increment the time value by the specified number of
scaled time unit

decr Decrement the time value by the specified number of
scaled time unit

get_abstime Return the current canonical time value, in the number of
specified time unit, reguardless of the current timescale
of the caller.

set_abstime Set the current canonical time value, to the number of
specified time unit, reguardless of the current timescale
of the caller.

WHy 1s THIS Integers are not sufficient, on their own, to represent

NECESSARY time without any ambiguity: you need to know the scale

of that integer value.

set_time_resolution

static function void set_tine_resolution(real res)

Set the default canonical time resolution.

Must be a power of 10. When co-simulating with SystemC, it is recommended that
default canonical time resolution be set to the SystemC time resolution.

By default, the default resolution is 1.0e-12 (ps)

new

function new string nane

"uvmtlmtime",
real res 0

Create a new canonical time value.

The new value is initialized to 0. If a resolution is not specified, the default resolution,

UVM 1.0 Class Reference

277

as specified by set_time_resolution(), is used.

get_name

function string get_nane()

Return the name of this instance

reset

function void reset()

Reset the value to 0

get_realtime

function real get_realtine(tine scal ed,
real secs)

Return the current canonical time value, scaled for the caller’s timescale

scaled must be a time literal value that corresponds to the number of seconds specified
in secs (1ns by default). It must be a time literal value that is greater or equal to the
current timescale.

#(del ay. get _real time(1ns));
#(del ay. get _real time(1fs, 1.0e-15));

incr

function void incr(real t,
time scal ed,
real secs)

Increment the time value by the specified number of scaled time unit

t is a time value expressed in the scale and precision of the caller. scaled must be a
time literal value that corresponds to the number of seconds specified in secs (1ns by

default). It must be a time literal value that is greater or equal to the current timescale.

del ay.incr(1.5ns, 1ns);
delay.incr(1.5ns, 1ps, 1.0e-12);

decr

function void decr(real t,
time scal ed,
real secs)

Decrement the time value by the specified number of scaled time unit

UVM 1.0 Class Reference

278

t is a time value expressed in the scale and precision of the caller. scaled must be a
time literal value that corresponds to the number of seconds specified in secs (1ns by
default). It must be a time literal value that is greater or equal to the current timescale.

del ay. decr (200ps, 1ns);

get_abstime

function real get_abstine(real secs)

Return the current canonical time value, in the number of specified time unit, reguardless
of the current timescale of the caller.

secs is the number of seconds in the desired time unit e.g. 1e-9 for nanoseconds.

$write("% 3f ps\n", delay.get_abstinme(le-12));

set_abstime

function void set_abstine(real t,
real secs)

Set the current canonical time value, to the number of specified time unit, reguardless of
the current timescale of the caller.
secs is the number of seconds in the time unit in the value t e.g. 1e-9 for nanoseconds.

del ay. set _abstinme(1.5, 1le-12));

WHY IS THIS NECESSARY

Integers are not sufficient, on their own, to represent time without any ambiguity: you
need to know the scale of that integer value. That scale is information conveyed outside
of that integer. In SystemVerilog, it is based on the timescale that was active when the
code was compiled. SystemVerilog properly scales time literals, but not integer values.
That’s because it does not know the difference between an integer that carries an
integer value and an integer that carries a time value. The ‘time’ variables are simply
64-bit integers, they are not scaled back and forth to the underlying precision.

“tinmescal e 1ns/1ps

nodul e n();

time t;

initial

begi n
#1. 5;
$wite("T=% ns (1.5)\n", S$realtine());
t = 1.5

#t

UVM 1.0 Class Reference

279

Swite("T=% ns (3.0)\n", S$realtine());
#10ps;
Swite("T=% ns (3.010)\n", $realtine());
Eﬁft': 10ps;
d$vv’rite("T:°/tf ns (3.020)\n", S$realtime());
en
endnodul e

yields

1.500000 ns (1 5;
3.500000 ns (3.0
3.510000 ns (3.010
3.510000 ns (3.020

Within SystemVerilog, we have to worry about
» different time scale
« different time precision

Because each endpoint in a socket could be coded in different packages and thus be
executing under different timescale directives, a simple integer cannot be used to
exchange time information across a socket.

For example

“tinmescal e 1ns/1ps
package a_pkg;
class a; . i)
function void f(inout tine t);
+= 10ns;
endf unction
endcl ass

endpackage

“tinmescal e 1ps/1ps

program p;
i mport a_pkg::*;
tinme t = 0;
initial
begi n
a A = new,
Af(t);

#t;
OI$wri te("T=%d ps (10,000)\n", S$realtime());
en
endpr ogr am

yeilds

T=10 ps (10, 000)

Scaling is needed everytime you make a procedural call to code that may interpret a
time value in a different timescale.

Using the uvm_tim_time type

UVM 1.0 Class Reference 280

“tinmescal e 1ns/1ps
package a_pkg;

import uvm pkg::*;

class a;]]
function void f(uvmtimtime t);

t.incr(10ns, 1ns);

endf unction

endcl ass

endpackage

“tinescal e 1ps/1ps
program p;
i nport uvm pkg::*;
i nport a_pkg::*;
uvmtimtime t = new
initial

begin

(t)

a
A 2 _
#(t.get realtinme(1lns));

A = new,

f ;)

t. ;

Swrite("T=%0d ps (10,000)\n", $realtine());

end
endpr ogr am

yields

T=10000 ps (10, 000)

A similar procedure is required when crossing any simulator or language boundary, such

as interfacing between SystemVerilog and SystemC.

UVM 1.0 Class Reference

281

Sequence Item Pull Ports

This section defines the port, export, and imp port classes for communicating sequence
items between uvm_sequencer #(REQ,RSP) and uvm_driver #(REQ,RSP).

Contents

Sequence Item Pull This section defines the port, export, and imp port

Ports classes for communicating sequence items between
uvm_sequencer #(REQ,RSP) and uvm_driver
#(REQ,RSP).

uvm_seq_item_pull_port UVM provides a port, export, and imp connector for

#(REQ,RSP) use in sequencer-driver communication.

uvm_seq_item_pull_export This export type is used in sequencer-driver

#(REQ,RSP) communication.

uvm_seq_item_pull_imp This imp type is used in sequencer-driver

#(REQ,RSP,IMP) communication.

uvm_seq_item_pull_port #(REQ,RSP)

UVM provides a port, export, and imp connector for use in sequencer-driver
communication. All have standard port connector constructors, except that
uvm_seq_item_pull_port’s default min_size argument is 0O; it can be left unconnected.

Summary

uvm_seq_item_pull_port #(REQ,RSP)

UVM provides a port, export, and imp connector for use in sequencer-driver
communication.

CLass HIERARCHY

uvm_port_base#(uvm_sqr_if base#(REQ,RSP))

uvm_seq_item_pull_port#(REQ,RSP) |

CLass DECLARATION

class uvmseq_itempul |l _port #(
type REQ = int,
type RSP = REO
) extends uvm port_base #(uvmsqr_if_base #(REQ RSP))

uvm_seq_item_pull_export #(REQ,RSP)

This export type is used in sequencer-driver communication. It has the standard
constructor for exports.

Summary

UVM 1.0 Class Reference

282

uvm_seq_item_pull_export #(REQ,RSP)

This export type is used in sequencer-driver communication.

Crass HieraRrcHY

uvm_port_base#(uvm_sqr_if_base#(REQ,RSP))

uvim_seq_item_pull_export#(REQ,RSP) |

CLass DEcCLARATION

class uvmseqg_ itempul | _export #(
type " REQ = int,
type RSP = REQ

) extends uvm port_base #(uvmsqr_if_base #(REQ RSP))

uvm_seq_item_pull_imp #(REQ,RSP,IMP)

This imp type is used in sequencer-driver communication. It has the standard
constructor for imp-type ports.

Summary

uvm_seq_item_pull_imp #(REQ,RSP,IMP)

This imp type is used in sequencer-driver communication.

CLass HieraRrcHY

uvm_port_base#(uvm_sqr_if_base#(REQ,RSP))

uvm_seq_item_pull_imp#(REQ,RSP,IMP) |

CLass DEcCLARATION

class uvmseq_itemopul | _inp #(
type REQ = int,
type RSP = REQ
type IMP = int)
) extends uvm port_base #(uvmsqr_if_base #(REQ RSP))
MEeTHODS
new

MEeTHODS

new

UVM 1.0 Class Reference

283

uvm_sqr_if_base #(REQ,RSP)

This class defines an interface for sequence drivers to communicate with sequencers.
The driver requires the interface via a port, and the sequencer implements it and
provides it via an export.

Summary

uvm_sqr_if_base #(REQ,RSP)

This class defines an interface for sequence drivers to communicate with
sequencers.

CLAss DEcLARATION
virtual class uvmsqr_if _base #(type T1
T2

uvm obj ect
T1

MEeTHODS

get_next_item Retrieves the next available item from a sequence.

try_next_item Retrieves the next available item from a sequence if
one is available.

item_done Indicates that the request is completed to the
sequencer.

wait_for_sequences Waits for a sequence to have a new item available.

has_do_available Indicates whether a sequence item is available for
immediate processing.

get Retrieves the next available item from a sequence.

peek Returns the current request item if one is in the
sequencer fifo.

put Sends a response back to the sequence that issued
the request.

MEeTHODS

get_next_item
virtual task get_next_itemoutput T1 t)

Retrieves the next available item from a sequence. The call will block until an item is
available. The following steps occur on this call:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

The chosen sequence will return from wait_for_grant

The chosen sequence uvm_sequence_base::pre_do is called
The chosen sequence item is randomized

The chosen sequence uvm_sequence_base::post_do is called

o o~ WN

Return with a reference to the item

Once get_next_item is called, item_done must be called to indicate the completion of the
request to the sequencer. This will remove the request item from the sequencer fifo.

UVM 1.0 Class Reference 284

try_next_item

virtual task try_next_itenm{output T1 t)

Retrieves the next available item from a sequence if one is available. Otherwise, the
function returns immediately with request set to null. The following steps occur on this
call:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, return null.

The chosen sequence will return from wait_for_grant

The chosen sequence uvm_sequence_base::pre_do is called
The chosen sequence item is randomized

The chosen sequence uvm_sequence_base::post_do is called

o oA W N

Return with a reference to the item

Once try_next_item is called, item_done must be called to indicate the completion of the
request to the sequencer. This will remove the request item from the sequencer fifo.

item_done

virtual function void itemdone(input T2 t = null)

Indicates that the request is completed to the sequencer. Any
uvm_sequence_base::wait_for_item_done calls made by a sequence for this item will
return.

The current item is removed from the sequencer fifo.

If a response item is provided, then it will be sent back to the requesting sequence. The
response item must have it’s sequence ID and transaction ID set correctly, using the
uvm_sequence_item::set_id_info method:

rsp.set_id_info(req);

Before item_done is called, any calls to peek will retrieve the current item that was
obtained by get_next_item. After item_done is called, peek will cause the sequencer to
arbitrate for a new item.

wait_for_sequences

virtual task wait_for_sequences()
Waits for a sequence to have a new item available. The default implementation in the
sequencer delays <uvm_sequencer_base::pound_zero_count> delta cycles. User-derived

sequencers may override its wait_for_sequences implementation to perform some other
application-specific implementation.

has_do_available

UVM 1.0 Class Reference 285

virtual function bit has_do_avail abl e()

Indicates whether a sequence item is available for immediate processing.
Implementations should return 1 if an item is available, 0 otherwise.

get

virtual task get(Tl t)

Retrieves the next available item from a sequence. The call blocks until an item is
available. The following steps occur on this call:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

The chosen sequence will return from uvm_sequence_base::wait_for_grant
The chosen sequence uvm_sequence_base::pre_do is called

The chosen sequence item is randomized

The chosen sequence uvm_sequence_base::post_do is called

Indicate item_done to the sequencer

N o o b~ WON

Return with a reference to the item

When get is called, item_done may not be called. A new item can be obtained by calling
get again, or a response may be sent using either put, or uvm_driver::rsp_port.write().

peek

virtual task peek(Tl t)

Returns the current request item if one is in the sequencer fifo. If no item is in the fifo,
then the call will block until the sequencer has a new request. The following steps will
occur if the sequencer fifo is empty:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

The chosen sequence will return from uvm_sequence_base::wait_for_grant
The chosen sequence uvm_sequence_base::pre_do is called
The chosen sequence item is randomized

a b~ W N

The chosen sequence uvm_sequence_base::post_do is called

Once a request item has been retrieved and is in the sequencer fifo, subsequent calls to
peek will return the same item. The item will stay in the fifo until either get or
item_done is called.

put

virtual task put(T2 t)

Sends a response back to the sequence that issued the request. Before the response is
put, it must have it's sequence ID and transaction ID set to match the request. This can

UVM 1.0 Class Reference

286

be done using the uvm_sequence_item::set_id_info call:
rsp.set_id_info(req);

This task will not block. The response will be put into the sequence response queue or it
will be sent to the sequence response handler.

UVM 1.0 Class Reference 287

PRepeErFINED CoMPONENT CLASSES

Components form the foundation of the UVM. They encapsulate behavior of drivers,
scoreboards, and other objects in a testbench. The UVM library provides a set of
predefined component types, all derived directly or indirectly from uvm_component.

Predefined Components

Pre-defined Components

| uv_ohject |
Fa

I wvm_report_object |
Fa3

| uvm_component |

—I Ll'-"l‘l'l_ﬁﬂﬁt | ITQEG_,R_SF a

— REQ. RSP
I uvm_driver]_

—I uvm_enw | | _REC]'_.R_SF_ 'i

i uvm_pl.lsh_drl\lr'e? -]' -
—I uvm_agent |

I uvm_seqguencer_base I
—I uvm_monitar | B MREG RSP

I uvm_saquancarjaram:ba_ﬁr -

Luven_scoreboard T ireawar] |REQ RG]
| uvm_sequencer | |uvm_push_sequencer |
T

I uvm_subscriber — T

S
uvm_randm_s‘ﬂmﬁl_m]'

Summary

Predefined Component Classes

Components form the foundation of the UVM.

UVM 1.0 Class Reference

288

uvm_component

The uvm_component class is the root base class for UYM components. In addition to the
features inherited from uvm_object and uvm_report_object, uvm_component provides
the following interfaces:

Hierarchy provides methods for searching and traversing the
component hierarchy.
Phasing defines a phased test flow that all components follow,

with a group of standard phase methods and an API
for custom phases and multiple independent phasing
domains to mirror DUT behavior e.g. power

Configuration provides methods for configuring component topology
and other parameters ahead of and during component
construction.

Reporting provides a convenience interface to the
uvm_report_handler. All messages, warnings, and
errors are processed through this interface.

Transaction recording provides methods for recording the transactions
produced or consumed by the component to a
transaction database (vendor specific).

Factory provides a convenience interface to the uvm_factory.
The factory is used to create new components and
other objects based on type-wide and instance-specific
configuration.

The uvm_component is automatically seeded during construction using UVM seeding, if
enabled. All other objects must be manually reseeded, if appropriate. See
uvm_object::reseed for more information.

Summary

uvm_component

The uvm_component class is the root base class for UVYM components.
CLass HierarcHY
uvm_void
uvm_object

uvm_report_object

uvm_component

CLass DEecLARATION
virtual class uvm conponent extends uvmreport_object

new Creates a new component with the given leaf
instance name and handle to to its parent.

HierarRcHY INTERFACE These methods provide user access to
information about the component hierarchy, i.e.,
topology.

get_parent Returns a handle to this component’s parent, or
null if it has no parent.

get_full_name Returns the full hierarchical name of this object.

get_children This function populates the end of the children

array with the list of this component’s children.

UVM 1.0 Class Reference 289

get_child
get_next_child
get_first_child
get_num_children
has_child
set_name

lookup

get_depth

PHASING INTERFACE

build_phase

connect_phase

end_of_elaboration_phase

start_of_simulation_phase

run_phase
pre_reset_phase
reset_phase
post_reset_phase
pre_configure_phase
configure_phase
post_configure_phase
pre_main_phase
main_phase
post_main_phase
pre_shutdown_phase
shutdown_phase
post_shutdown_phase
extract_phase
check_phase
report_phase
final_phase
phase_started
phase_ended
set_domain

get_domain

UVM 1.0 Class Reference

These methods are used to iterate through this
component’s children, if any.

Returns the number of this component’s
children.

Returns 1 if this component has a child with the
given name, 0 otherwise.

Renames this component to name and
recalculates all descendants’ full names.

Looks for a component with the given
hierarchical name relative to this component.
Returns the component’s depth from the root
level.

These methods implement an interface which
allows all components to step through a standard
schedule of phases, or a customized schedule,
and also an API to allow independent phase
domains which can jump like state machines to
reflect behavior e.qg.

The Pre-Defined Phases::build_ph phase
implementation method.

The Pre-Defined Phases::connect_ph phase
implementation method.

The Pre-Defined Phases::end_of_elaboration_ph
phase implementation method.

The Pre-Defined Phases::start_of_simulation_ph
phase implementation method.

The Pre-Defined Phases::run_ph phase
implementation method.

The Pre-Defined Phases::pre_reset_ph phase
implementation method.

The Pre-Defined Phases::reset_ph phase
implementation method.

The Pre-Defined Phases::post_reset_ph phase
implementation method.

The Pre-Defined Phases::pre_configure_ph
phase implementation method.

The Pre-Defined Phases::configure_ph phase
implementation method.

The Pre-Defined Phases::post_configure_ph
phase implementation method.

The Pre-Defined Phases::pre_main_ph phase
implementation method.

The Pre-Defined Phases::main_ph phase
implementation method.

The Pre-Defined Phases::post_main_ph phase
implementation method.

The Pre-Defined Phases::pre_shutdown_ph
phase implementation method.

The Pre-Defined Phases::shutdown_ph phase
implementation method.

The Pre-Defined Phases::post_shutdown_ph
phase implementation method.

The Pre-Defined Phases::extract_ph phase
implementation method.

The Pre-Defined Phases::check_ph phase
implementation method.

The Pre-Defined Phases::report_ph phase
implementation method.

The Pre-Defined Phases::final_ph phase
implementation method.

Invoked at the start of each phase.

Invoked at the end of each phase.

Apply a phase domain to this component (by
default, also to it’s children).

Return handle to the phase domain set on this
component

290

get_schedule
define_phase_schedule

set_phase_imp

suspend
resume
status
kill

do_Kkill_all

stop

enable_stop_interrupt

resolve_bindings

CoNFIGURATION INTERFACE

set_config_int
set_config_string
set_config_object

get_config_int
get_config_string
get_config_object

check_config_usage

apply_config_settings

print_config_settings

print_config

print_config_with_audit

print_config_matches

OBiecTioN INTERFACE

raised

dropped

all_dropped

UVM 1.0 Class Reference

Return handle to the phase schedule graph that
applies to this component

Builds and returns the required phase schedule
subgraph for this component base

Override the default implementation for a phase
on this component (tree) with a custom one,
which must be created as a singleton object
extending the default one and implementing
required behavior in exec and traverse methods
Suspend this component.

Resume this component.

Returns the status of this component.

Kills the process tree associated with this
component’s currently running task-based
phase, e.g., run.

Recursively calls kill on this component and all
its descendants, which abruptly ends the
currently running task-based phase, e.g., run.
The stop task is called when this component’s
enable_stop_interrupt bit is set and
global_stop_request is called during a task-
based phase, e.g., run.

This bit allows a component to raise an
objection to the stopping of the current phase.
Processes all port, export, and imp connections.

Components can be designed to be user-
configurable in terms of its topology (the type and
number of children it has), mode of operation,
and run-time parameters (knobs).

Calling set_config_* causes configuration
settings to be created and placed in a table
internal to this component.

These methods retrieve configuration settings
made by previous calls to their set_config_*
counterparts.

Check all configuration settings in a components
configuration table to determine if the setting
has been used, overridden or not used.
Searches for all config settings matching this
component’s instance path.

Called without arguments, print_config_settings
prints all configuration information for this
component, as set by previous calls to
set_config_*.

Print_config_settings prints all configuration
information for this component, as set by
previous calls to set_config_* and exports to
the resources pool.

Operates the same as print_config except that
the audit bit is forced to 1.

Setting this static variable causes get_config_*
to print info about matching configuration
settings as they are being applied.

These methods provide object level hooks into
the uvm_objection mechanism.

The raised callback is called when a decendant
of the component instance raises the specfied
objection.

The dropped callback is called when a
decendant of the component instance raises the
specfied objection.

The all_dropped callback is called when a
decendant of the component instance raises the
specfied objection.

291

FactorY INTERFACE

create_component

create_object

set_type_override_by_type

set_inst_override_by_type

set_type_override

set_inst_override

print_override_info

HierarcHicAL REPORTING INTERFACE

set_report_id_verbosity_hier
set_report_severity_id_verbosity_hier

set_report_severity_action_hier
set_report_id_action_hier
set_report_severity_id_action_hier

set_report_default_file_hier
set_report_severity_file_hier
set_report_id_file_hier
set_report_severity_id_file_hier

set_report_verbosity_level_hier

pre_abort

RECORDING INTERFACE

UVM 1.0 Class Reference

The factory interface provides convenient access
to a portion of UVM’s uvm_factory interface.

A convenience function for
uvm_factory::create_component_by_name, this
method calls upon the factory to create a new
child component whose type corresponds to the
preregistered type name,

requested_type name, and instance name,
name.

A convenience function for
uvm_factory::create_object_by_name, this
method calls upon the factory to create a new
object whose type corresponds to the
preregistered type name,
requested_type_name, and instance name,
name.

A convenience function for
uvm_factory::set_type_override_by_type, this
method registers a factory override for
components and objects created at this level of
hierarchy or below.

A convenience function for
uvm_factory::set_inst_override_by_type, this
method registers a factory override for
components and objects created at this level of
hierarchy or below.

A convenience function for
uvm_factory::set_type_override_by_name, this
method configures the factory to create an
object of type override_type _name whenever
the factory is asked to produce a type
represented by original_type_name.

A convenience function for
uvm_factory::set_inst_override_by_type, this
method registers a factory override for
components created at this level of hierarchy or
below.

This factory debug method performs the same
lookup process as create_object and
create_component, but instead of creating an
object, it prints information about what type of
object would be created given the provided
arguments.

This interface provides versions of the
set_report_* methods in the uvm_report__object
base class that are applied recursively to this
component and all its children.

These methods recursively associate the
specified verbosity with reports of the given
severity, id, or severity-id pair.

These methods recursively associate the
specified action with reports of the given
severity, id, or severity-id pair.

These methods recursively associate the
specified FILE descriptor with reports of the
given severity, id, or severity-id pair.

This method recursively sets the maximum
verbosity level for reports for this component
and all those below it.

This callback is executed when the message
system is executing a UVM_EXIT action.

These methods comprise the component-based

292

new

function new (string
uvm component parent)

accept_tr

do_accept_tr

begin_tr
begin_child_tr

do_begin_tr

end_tr
do_end_tr
record_error_tr
record_event_tr
print_enabled

if overriding this method, always
follow this pattern

nane,

transaction recording interface.

This function marks the acceptance of a
transaction, tr, by this component.

The accept_tr method calls this function to
accommodate any user-defined post-accept
action.

This function marks the start of a transaction,
tr, by this component.

This function marks the start of a child
transaction, tr, by this component.

The begin_tr and begin_child_tr methods call
this function to accommodate any user-defined
post-begin action.

This function marks the end of a transaction, tr,
by this component.

The end_tr method calls this function to

accommodate any user-defined post-end action.

This function marks an error transaction by a
component.

This function marks an event transaction by a
component.

This bit determines if this component should
automatically be printed as a child of its parent
object.

only build a new schedule if one of that name
does not yet exist under this domain to
augment this base schedule, use result of
super.define_phase_schedule(domain,MYNAME);

Creates a new component with the given leaf instance name and handle to to its parent.
If the component is a top-level component (i.e. it is created in a static module or
interface), parent should be null.

The component will be inserted as a child of the parent object, if any. If parent already
has a child by the given name, an error is produced.

If parent is null, then the component will become a child of the implicit top-level
component, uvm_top.

All classes derived from uvm_component must call super.new(name,parent).

HieraARCHY INTERFACE

These methods provide user access to information about the component hierarchy, i.e.,

topology.

get_parent

vi rtual

function uvm conponent get parent ()

Returns a handle to this component’s parent, or null if it has no parent.

UVM 1.0 Class Reference

293

get_full_name

virtual function string get _full_nane ()

Returns the full hierarchical name of this object. The default implementation
concatenates the hierarchical name of the parent, if any, with the leaf name of this
object, as given by uvm_object::get_name.

get_children

function void get _children(ref uvm conponent children[$])

This function populates the end of the children array with the list of this component’s
children.

uvm corrponent array[$];
rrﬁ get ch| I dren(array)
foreac (array]
do_sonet hi ng(array[1);

get_child

function uvm conponent get_child (string nane)

get_next_child

function int get_next_child (ref string nane)

get_first_child
function int get_first_child (ref string nane)

These methods are used to iterate through this component’s children, if any. For
example, given a component with an object handle, comp, the following code calls
uvm_object::print for each child:

string nane;
uvm corrponent chil d;
if (con‘p get first_child(nane))
do be
chi d = co get _chil d(nane);
child. print)
end while (con'p get _next _chil d(nane));

get_num_children

function int get_numchildren ()

Returns the number of this component’s children.

UVM 1.0 Class Reference

294

has_child

function int has_child (string nane)

Returns 1 if this component has a child with the given name, 0 otherwise.

set_name

virtual function void set_name (string nane)

Renames this component to name and recalculates all descendants’ full nhames.

lookup

function uvm conponent | ookup (string nane)
Looks for a component with the given hierarchical name relative to this component. If
the given name is preceded with a'.” (dot), then the search begins relative to the top

level (absolute lookup). The handle of the matching component is returned, else null.
The name must not contain wildcards.

get_depth
function int unsigned get_depth()

Returns the component’s depth from the root level. uvm_top has a depth of 0. The test
and any other top level components have a depth of 1, and so on.

PHASING INTERFACE

These methods implement an interface which allows all components to step through a
standard schedule of phases, or a customized schedule, and also an API to allow
independent phase domains which can jump like state machines to reflect behavior e.g.
power domains on the DUT in different portions of the testbench. The phase tasks and
functions are the phase name with the _phase suffix. For example, the build phase
function is build_phase.

All processes associated with a task-based phase are killed when the phase ends. See
<uvm_phase::execute> for more details.

build_phase

virtual function void build_phase(uvm phase phase)

The Pre-Defined Phases::build_ph phase implementation method.

Any override should call super.build_phase(phase) to execute the automatic configuration
of fields registed in the component by calling apply_config_settings. To turn off
automatic configuration for a component, do not call super.build_phase(phase).

This method should never be called directly.

UVM 1.0 Class Reference 295

connect_phase

virtual function void connect_phase(uvm phase phase)

The Pre-Defined Phases::connect_ph phase implementation method.

This method should never be called directly.

end_of_elaboration_phase

virtual function void end_of_el aboration_phase(uvm phase phase)

The Pre-Defined Phases::end_of elaboration_ph phase implementation method.

This method should never be called directly.

start_of_simulation_phase

virtual function void start_of sinulati on_phase(uvm phase phase)

The Pre-Defined Phases::start_of_simulation_ph phase implementation method.

This method should never be called directly.

run_phase

virtual task run_phase(uvm phase phase)

The Pre-Defined Phases::run_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. Unlike
other task phases, it is not necessary to raise an objection to cause it to persist: it will
persists until global_stop_request() is called. However, if a single phase objection is
raised using phase.raise_objection(), then the phase will automatically ends once all
objections are dropped using phase.drop_objection().

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

The run_phase task should never be called directly.

pre_reset_phase

virtual task pre_reset_phase(uvm phase phase)

The Pre-Defined Phases::pre_reset_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

UVM 1.0 Class Reference 296

This method should not be called directly.

reset_phase

virtual task reset_phase(uvm phase phase)

The Pre-Defined Phases::reset_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

post_reset_phase

virtual task post_reset_ phase(uvm phase phase)

The Pre-Defined Phases::post_reset_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

pre_configure_phase

virtual task pre_configure_phase(uvm phase phase)

The Pre-Defined Phases::pre_configure_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

configure_phase

virtual task configure_phase(uvm phase phase)

The Pre-Defined Phases::configure_ph phase implementation method.

UVM 1.0 Class Reference 297

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

post_configure_phase

virtual task post_configure_phase(uvm phase phase)

The Pre-Defined Phases::post_configure_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

pre_main_phase

virtual task pre_main_phase(uvm phase phase)

The Pre-Defined Phases::pre_main_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if nho components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

main_phase

virtual task main_phase(uvm phase phase)

The Pre-Defined Phases::main_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

UVM 1.0 Class Reference 298

post_main_phase

virtual task post_nmmi n_phase(uvm phase phase)

The Pre-Defined Phases::post_main_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

pre_shutdown_phase

virtual task pre_shutdown_phase(uvm phase phase)

The Pre-Defined Phases::pre_shutdown_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

shutdown_phase

virtual task shutdown_phase(uvm phase phase)

The Pre-Defined Phases::shutdown_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

post_shutdown_phase

virtual task post_shutdown_phase(uvm phase phase)

The Pre-Defined Phases::post_shutdown_ph phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to

UVM 1.0 Class Reference

299

persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

extract_phase

virtual function void extract_phase(uvm phase phase)

The Pre-Defined Phases::extract_ph phase implementation method.

This method should never be called directly.

check_phase

virtual function void check_phase(uvm phase phase)

The Pre-Defined Phases::check_ph phase implementation method.

This method should never be called directly.

report_phase

virtual function void report_phase(uvm phase phase)

The Pre-Defined Phases::report_ph phase implementation method.

This method should never be called directly.

final_phase

virtual function void final _phase(uvm phase phase)

The Pre-Defined Phases::final_ph phase implementation method.

This method should never be called directly.

phase_started

virtual function void phase_started (uvm phase phase)

Invoked at the start of each phase. The phase argument specifies the phase being
started. Any threads spawned in this callback are not affected when the phase ends.

phase_ended
virtual function void phase_ended (uvm phase phase)
Invoked at the end of each phase. The phase argument specifies the phase that is

UVM 1.0 Class Reference 300

ending. Any threads spawned in this callback are not affected when the phase ends.

set_domain

function void set_domai n(uvm domai n domai n,
i nt hi er)

Apply a phase domain to this component (by default, also to it's children). Get a copy of
the schedule graph for this component base class as defined by virtual
define_phase_schedule(), and add an instance of that to our domain branch in the
master phasing schedule graph, if it does not already exist.

get_domain

function uvm domai n get _domai n()

Return handle to the phase domain set on this component

get_schedule

functi on uvm phase get _schedul e()

Return handle to the phase schedule graph that applies to this component

define_phase_schedule

virtual protected function uvm phase define_phase_schedul e(uvm domai n donai n,
string nane

Builds and returns the required phase schedule subgraph for this component base

Here we define the structure and organization of a schedule for this component base
type (uvm_component). We give that schedule a name (default ‘uvm’) and return a
handle to it to the caller (either the set_domain() method, or a subclass’s
define_phase_schedule() having called super.define_phase_schedule(), ready to be added
into the main schedule graph.

Custom component base classes requiring a custom phasing schedule to augment or
replace the default UVM schedule can override this method. They can inherit the parent
schedule and build on it by calling super.define_phase_schedule(MYNAME) or they can
create a new schedule from scratch by not calling the super method.

set_phase_imp

function void set_phase_i np(uvm phase phase,
uvm phase 1 np,
i nt hi er)

Override the default implementation for a phase on this component (tree) with a custom
one, which must be created as a singleton object extending the default one and
implementing required behavior in exec and traverse methods

The hier specifies whether to apply the custom functor to the whole tree or just this

UVM 1.0 Class Reference 301

component.

suspend

virtual task suspend ()

Suspend this component.

This method must be implemented by the user to suspend the component according to
the protocol and functionality it implements. A suspended component can be
subsequently resumed using resume().

resume

virtual task resune ()

Resume this component.

This method must be implemented by the user to resume a component that was
previously suspended using suspend(). Some component may start in the suspended
state and may need to be explicitly resumed.

status
function string status ()

Returns the status of this component.

Returns a string that describes the current status of the components. Possible values
include, but are not limited to

"<unknown>" Status is unknown (default)

"FINISHED” Component has stopped on its own accord. May be resumed.

"RUNNING” Component is running. May be suspended after normal
completion of operation in progress.

"WAITING” Component is waiting. May be suspended immediately.

"SUSPENDED” Component is suspended. May be resumed.

"KILLED” Component has been killed and is unable to operate any

further. It cannot be resumed.

kill
virtual function void kill ()

Kills the process tree associated with this component’s currently running task-based
phase, e.g., run.

An alternative mechanism for stopping the run phase is the stop request. Calling
global_stop_request causes all components’ run_phase processes to be killed, but only
after all components have had the opportunity to complete in progress transactions and
shutdown cleanly via their stop tasks.

UVM 1.0 Class Reference 302

do_kill_all
virtual function void do kill _all ()

Recursively calls kill on this component and all its descendants, which abruptly ends the
currently running task-based phase, e.g., run. See run_phase for better options to
ending a task-based phase.

stop

virtual task stop (string ph_nane)

The stop task is called when this component’s enable_stop_interrupt bit is set and
global_stop_request is called during a task-based phase, e.g., run.

Before a phase is abruptly ended, e.g., when a test deems the simulation complete,
some components may need extra time to shut down cleanly. Such components may
implement stop to finish the currently executing transaction, flush the queue, or perform
other cleanup. Upon return from its stop, a component signals it is ready to be stopped.

The stop method will not be called if enable_stop_interrupt is 0.
The default implementation of stop is empty, i.e., it will return immediately.

This method should never be called directly.

enable_stop_interrupt

int enable_stop_interrupt = 0

This bit allows a component to raise an objection to the stopping of the current phase.
It affects only time consuming phases (such as the run phase).

When this bit is set, the stop task in the component is called as a result of a call to
global_stop_request. Components that are sensitive to an immediate killing of its run-
time processes should set this bit and implement the stop task to prepare for shutdown.

resolve_bindings

virtual function void resolve_bindings ()

Processes all port, export, and imp connections. Checks whether each port’'s min and
max connection requirements are met.

It is called just before the end_of_elaboration phase.

Users should not call directly.

CONFIGURATION INTERFACE

Components can be designed to be user-configurable in terms of its topology (the type
and number of children it has), mode of operation, and run-time parameters (knobs).
The configuration interface accommodates this common need, allowing component
composition and state to be modified without having to derive new classes or new class
hierarchies for every configuration scenario.

UVM 1.0 Class Reference 303

set_config_int

virtual function void set_config_int (string i nst _name,
string fiel d_nane,
uvmbitstreamt val ue)

set_config_string

virtual function void set_config_string (string inst_namne,
string field_nane,
string val ue

set_config_object

virtual function void set_config_object (string i nst_narne,
stri ng field _nane,
uvm obj ect val ue,
bi t cl one)

Calling set_config_* causes configuration settings to be created and placed in a table
internal to this component. There are similar global methods that store settings in a
global table. Each setting stores the supplied inst_name, field_name, and value for later
use by descendent components during their construction. (The global table applies to all
components and takes precedence over the component tables.)

When a descendant component calls a get_config_* method, the inst_name and
field_name provided in the get call are matched against all the configuration settings
stored in the global table and then in each component in the parent hierarchy, top-
down. Upon the first match, the value stored in the configuration setting is returned.
Thus, precedence is global, following by the top-level component, and so on down to the
descendent component’s parent.

These methods work in conjunction with the get_config_* methods to provide a
configuration setting mechanism for integral, string, and uvm_object-based types.
Settings of other types, such as virtual interfaces and arrays, can be indirectly supported
by defining a class that contains them.

Both inst_name and field_name may contain wildcards.

« For set_config_int, value is an integral value that can be anything from 1 bit to
4096 bits.

» For set_config_string, value is a string.

« For set_config_object, value must be an uvm_object-based object or null. Its
clone argument specifies whether the object should be cloned. If set, the object is
cloned both going into the table (during the set) and coming out of the table
(during the get), so that multiple components matched to the same setting (by
way of wildcards) do not end up sharing the same object.

The following message tags are used for configuration setting. You can use the standard
uvm report messaging interface to control these messages. CFGNTS -- The configuration
setting was not used by any component. This is a warning. CFGOVR -- The configuration
setting was overridden by a setting above. CFGSET -- The configuration setting was used
at least once.

See get_config_int, get_config_string, and get_config_object for information on getting
the configurations set by these methods.

UVM 1.0 Class Reference

304

get_config_int

virtual function bit get_config_int (string fiel d_nane,
uvm bitstreamt val ue

get_config_string

virtual function bit get_config_string (string field_nane,
string val ue)

get_config_object

virtual function bit get_config_object (stri ngl fiel d_nane,
uvm obj ect val ue,
bi t cl one)

These methods retrieve configuration settings made by previous calls to their
set_config_* counterparts. As the methods’ names suggest, there is direct support for
integral types, strings, and objects. Settings of other types can be indirectly supported
by defining an object to contain them.

Configuration settings are stored in a global table and in each component instance. With
each call to a get_config_* method, a top-down search is made for a setting that
matches this component’s full name and the given field_name. For example, say this
component’s full instance name is top.ul.u2. First, the global configuration table is
searched. If that fails, then it searches the configuration table in component ‘top’,
followed by top.ul.

The first instance/field that matches causes value to be written with the value of the
configuration setting and 1 is returned. If no match is found, then value is unchanged
and the 0 returned.

Calling the get_config_object method requires special handling. Because value is an
output of type uvm_object, you must provide an uvm_object handle to assign to (not a
derived class handle). After the call, you can then $cast to the actual type.

For example, the following code illustrates how a component designer might call upon the
configuration mechanism to assign its data object property, whose type myobj_t derives
from uvm_object.

cl ass nyconponent extends uvm conponent;
I ocal nyobj _t data;

function void build_phase(uvm phase phase);
uvm obj ect tnp;
super . bui | d_phase(phase) ;
if(get_config_object("data", tnp))
1T (T$cast(data, tnp))
$di splay("error! config setting for 'data' not of type nyobj_t");
endf unction

The above example overrides the build_phase method. If you want to retain any base
functionality, you must call super.build_phase(uvm_phase phase).

The clone bit clones the data inbound. The get_config_object method can also clone the
data outbound.

See Members for information on setting the global configuration table.

UVM 1.0 Class Reference 305

check_config_usage

function void check_config usage (bit recurse)

Check all configuration settings in a components configuration table to determine if the
setting has been used, overridden or not used. When recurse is 1 (default),
configuration for this and all child components are recursively checked. This function is
automatically called in the check phase, but can be manually called at any time.

Additional detail is provided by the following message tags
¢ CFGOVR -- lists all configuration settings that have been overridden from above.
e CFGSET -- lists all configuration settings that have been set.

To get all configuration information prior to the run phase, do something like this in your
top object:

function void start_of_sinul atl on ghase(uvm phase phase)
set_report_id_action_hier PLA
set _report _id_action_hier CFGSET UVM DI SPLA
check_config _usage();

endf uncti on

apply_config_settings

virtual function void apply_config_settings (bit verbose)

Searches for all config settings matching this component’s instance path. For each
match, the appropriate set_*_local method is called using the matching config setting’s
field_name and value. Provided the set_*_local method is implemented, the component
property associated with the field_name is assigned the given value.

This function is called by uvm_component::build_phase.

The apply_config_settings method determines all the configuration settings targeting this
component and calls the appropriate set_*_local method to set each one. To work, you
must override one or more set_*_local methods to accommodate setting of your
component’s specific properties. Any properties registered with the optional
“uvm_*_field macros do not require special handling by the set_*_local methods; the
macros provide the set_*_local functionality for you.

If you do not want apply_config_settings to be called for a component, then the
build_phase() method should be overloaded and you should not call
super.build_phase(phase). Likewise, apply_config_settings can be overloaded to
customize automated configuration.

When the verbose bit is set, all overrides are printed as they are applied. If the
component’s print_config_matches property is set, then apply_config_settings is
automatically called with verbose = 1.

print_config_settings

function void print_config_settings (string field
uvm conponent conp
bi t recurse)

UVM 1.0 Class Reference 306

Called without arguments, print_config_settings prints all configuration information for
this component, as set by previous calls to set_config_*. The settings are printing in the
order of their precedence.

If field is specified and non-empty, then only configuration settings matching that field, if
any, are printed. The field may not contain wildcards.

If comp is specified and non-null, then the configuration for that component is printed.

If recurse is set, then configuration information for all comp’s children and below are
printed as well.

This function has been deprecated. Use print_config instead.

print_config

function void print_config(bit recurse
bit audit)

Print_config_settings prints all configuration information for this component, as set by
previous calls to set_config_* and exports to the resources pool. The settings are
printing in the order of their precedence.

If recurse is set, then configuration information for all children and below are printed as
well.

if audit is set then the audit trail for each resource is printed along with the resource
name and value

print_config_with_audit

function void print_config with audit(bit recurse)

Operates the same as print_config except that the audit bit is forced to 1. This interface
makes user code a bit more readable as it avoids multiple arbitrary bit settings in the
argument list.

If recurse is set, then configuration information for all children and below are printed as
well.

print_config_matches

static bit print_config nmatches = 0

Setting this static variable causes get_config_* to print info about matching configuration
settings as they are being applied.

OBiecTION INTERFACE

These methods provide object level hooks into the uvm_objection mechanism.

raised

virtual function void raised (uvm objection objection,
UVM 1.0 Class Reference

307

uvm obj ect sour ce_obj,
string descri ption,
i nt count)

The raised callback is called when a decendant of the component instance raises the
specfied objection. The source_obj is the object which originally raised the object. count
is an optional count that was used to indicate a number of objections which were raised.

dropped
virtual function void dropped (uvmobjection objection,
uvm obj ect sour ce_obj,
string descri pti on,
i nt count)

The dropped callback is called when a decendant of the component instance raises the
specfied objection. The source_obj is the object which originally dropped the object.
count is an optional count that was used to indicate a number of objections which were
dropped.

all_dropped

virtual task all_dropped (uvm objection objection,

uvm obj ect sour ce_obj,
string description,
i nt count

The all_dropped callback is called when a decendant of the component instance raises
the specfied objection. The source_obj is the object which originally all_dropped the
object. count is an optional count that was used to indicate a number of objections
which were dropped. This callback is time-consuming and the all_dropped conditional
will not be propagated up to the object’s parent until the callback returns.

FAacTOrRY INTERFACE

The factory interface provides convenient access to a portion of UVM’s uvm_factory
interface. For creating new objects and components, the preferred method of accessing
the factory is via the object or component wrapper (see uvm_component_registry
#(T,Tname) and uvm_object_registry #(T,Tname)). The wrapper also provides functions
for setting type and instance overrides.

create_component

function uvm conponent create_conponent (string requested_type_nane,
string name

A convenience function for uvm_factory::create_component_by_name, this method calls
upon the factory to create a new child component whose type corresponds to the
preregistered type name, requested_type name, and instance hame, name. This method
is equivalent to:

factory. create_conponent by nanme(requested_type_nane,]
get _fulT_name(), nane, this);

UVM 1.0 Class Reference

308

If the factory determines that a type or instance override exists, the type of the
component created may be different than the requested type. See set_type_override
and set_inst_override. See also uvm_factory for details on factory operation.

create_object

function uvm obj ect create_object (string requested_type_nane,
string name ="M

A convenience function for uvm_factory::create_object_by name, this method calls upon
the factory to create a new object whose type corresponds to the preregistered type
name, requested_type _name, and instance name, name. This method is equivalent to:

factory.create_object_by nane(requested type_nane,
get full_name(), nane);

If the factory determines that a type or instance override exists, the type of the object
created may be different than the requested type. See uvm_factory for details on
factory operation.

set_type_override_by_type

static function void set_type override_by_type (
uvm obj ect _wr apper original_type,
uvm obj ect _wr apper override_type,
bi t repl ace =1

)

A convenience function for uvm_factory::set_type_override_by_type, this method
registers a factory override for components and objects created at this level of hierarchy
or below. This method is equivalent to:

factory.set _type_override_by type(original _type, override_type,replace);

The relative_inst_path is relative to this component and may include wildcards. The
original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the
requested_type matches the original_type and the instance paths match, the factory will
produce the override_type.

The original and override type arguments are lightweight proxies to the types they
represent. See set_inst_override_by_type for information on usage.

set_inst_override_by_type

function void set_inst_override_by type(stri ng. relative_inst_path
uvm obj ect _wr apper origi nal _type,
uvm obj ect _wrapper override_type

A convenience function for uvm_factory::set_inst_override_by_type, this method registers
a factory override for components and objects created at this level of hierarchy or
below. In typical usage, this method is equivalent to:

UVM 1.0 Class Reference 309

factory.set_inst_override_by_type({get_full_name(),".",
relative_inst_path},
ori gi nal _type,
override_type);

The relative_inst_path is relative to this component and may include wildcards. The
original_type represents the type that is being overridden. In subsequent calls to

uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the
requested_type matches the original_type and the instance paths match, the factory will

produce the override_type.

The original and override types are lightweight proxies to the types they represent. They
can be obtained by calling type::get_type(), if implemented by type, or by directly calling
type::type_id::get(), where type is the user type and type_id is the name of the typedef

to uvm_object_registry #(T,Tname) or uvm_component_registry #(T,Tname).

If you are employing the “uvm_*_utils macros, the typedef and the get_type method
will be implemented for you. For details on the utils macros refer to Utility and Field
Macros for Components and Objects.

The following example shows “uvm_*_utils usage

class conp extends uvm conponent;
uvm conponent _uti | s(conp)

endcl ass
class nyconp extends uvm conponent;
uvm conponent _uti | s(nyconp)

endcl ass
class bl ock extends uvm conponent;
“uvm conponent _uti | s(bl ock)
conp c_inst;)]
virtual function void build phase(uvm phase phase);
set _inst_override_by type("c_inst", conp::get_type(),

. myconp: T get _type());
endf uncti on

endcl ass

set_type_override

static function void set_type_override(string original _type_nane,
string override_type_nane,
bi t repl ace = 1)

A convenience function for uvm_factory::set_type_override_by_name, this method
configures the factory to create an object of type override_type name whenever the
factory is asked to produce a type represented by original_type name. This method is
equivalent to:

factory.set_type_override_by_nane(original _type_nane,
override_type_nane, replace);

The original_type_name typically refers to a preregistered type in the factory. It may,
however, be any arbitrary string. Subsequent calls to create_component or
create_object with the same string and matching instance path will produce the type

UVM 1.0 Class Reference

310

represented by override_type_name. The override_type _name must refer to a
preregistered type in the factory.

set_inst_override

function void set_inst_override(string relative_inst_path,
string original _type_nane,
string override_type_nane)

A convenience function for uvm_factory::set_inst_override_by_type, this method registers
a factory override for components created at this level of hierarchy or below. In typical
usage, this method is equivalent to:

factory.set_inst_override_by _name({get_full _name(),"."

relative_i nst_pét 'h},
origi nal _type_nang,
override_type_nane);

The relative_inst_path is relative to this component and may include wildcards. The
original_type name typically refers to a preregistered type in the factory. It may,
however, be any arbitrary string. Subsequent calls to create_component or
create_object with the same string and matching instance path will produce the type
represented by override_type name. The override_type name must refer to a
preregistered type in the factory.

print_override_info

function void print_override_info(string requested_type_nane,
string nane ="")

This factory debug method performs the same lookup process as create_object and

create_component, but instead of creating an object, it prints information about what
type of object would be created given the provided arguments.

HieraArcHICAL REPORTING INTERFACE

This interface provides versions of the set_report_* methods in the uvm_report_object
base class that are applied recursively to this component and all its children.

When a report is issued and its associated action has the LOG bit set, the report will be
sent to its associated FILE descriptor.

set_report_id_verbosity_hier

function void set_report_id verbosity_hier (string id,
i nt verbosity)

set_report_severity_id_verbosity_hier

function void set_report_severity_id_verbosity_hier(uvmseverity sgveri ty,
string id,
i nt ver bosity)

UVM 1.0 Class Reference 311

These methods recursively associate the specified verbosity with reports of the given
severity, id, or severity-id pair. An verbosity associated with a particular severity-id pair
takes precedence over an verbosity associated with id, which takes precedence over an
an verbosity associated with a severity.

For a list of severities and their default verbosities, refer to uvm_report_handler.

set_report_severity_action_hier

function void set_report_severity_action_hier (uvmseverity severity,
uvm action action

set_report_id_action_hier

function void set_report_id_action_hier (string id,
uvm action acti on)

set_report_severity_id_action_hier

function void set_report_severity_id_action_hier(uvmseverity scejveri ty,
string id,
uvm action action)

These methods recursively associate the specified action with reports of the given
severity, id, or severity-id pair. An action associated with a particular severity-id pair
takes precedence over an action associated with id, which takes precedence over an an
action associated with a severity.

For a list of severities and their default actions, refer to uvm_report_handler.

set_report_default_file_hier

function void set _report_default file hier (UUMFILE file)

set_report_severity_file_hier

function void set_report_severity_file_hier (uvmseverity severity,
UVM_FI LE file

set_report_id_file_hier

function void set_report_id file_hier (st

ring
UVM _FI

| i
LE file)

set_report_severity_id_file_hier

function void set_report_severity_id_file_hier(uvmseverity jsgveri ty,
string id,
UVM FILE file)
These methods recursively associate the specified FILE descriptor with reports of the

UVM 1.0 Class Reference 312

given severity, id, or severity-id pair. A FILE associated with a particular severity-id pair
takes precedence over a FILE associated with id, which take precedence over an a FILE
associated with a severity, which takes precedence over the default FILE descriptor.

For a list of severities and other information related to the report mechanism, refer to
uvm_report_handler.

set_report_verbosity_level_hier

function void set_report_verbosity level _hier (int verbosity)

This method recursively sets the maximum verbosity level for reports for this component
and all those below it. Any report from this component subtree whose verbosity exceeds
this maximum will be ignored.

See uvm_report_handler for a list of predefined message verbosity levels and their
meaning.

pre_abort

virtual function void pre_abort

This callback is executed when the message system is executing a UVM_EXIT action.
The exit action causes an immediate termination of the simulation, but the pre_abort
callback hook gives components an opportunity to provide additional information to the
user before the termination happens. For example, a test may want to executed the
report function of a particular component even when an error condition has happened to
force a premature termination you would write a function like:

function voi d nyconponent: :pre_abort();
report();
endf uncti on

REcorRDING INTERFACE

These methods comprise the component-based transaction recording interface. The
methods can be used to record the transactions that this component “sees”, i.e. produces
or consumes.

The API and implementation are subject to change once a vendor-independent use-model
is determined.

accept_tr

function void accept_tr (uvmtransaction tr,)
time accept _tine)

This function marks the acceptance of a transaction, tr, by this component. Specifically,

it performs the following actions:

» Calls the tr's uvm_transaction::accept_tr method, passing to it the accept_time
argument.

« Calls this component’s do_accept_tr method to allow for any post-begin action in

UVM 1.0 Class Reference

313

derived classes.

* Triggers the component’s internal accept_tr event. Any processes waiting on this
event will resume in the next delta cycle.

do_accept_tr

virtual protected function void do_accept_tr (uvmtransaction tr)

The accept_tr method calls this function to accommodate any user-defined post-accept
action. Implementations should call super.do_accept_tr to ensure correct operation.

begin_tr
function integer begin_tr (uvmtransaction tr,
string stream nane
string | abel
string desc
time begin_tinme)

This function marks the start of a transaction, tr, by this component. Specifically, it
performs the following actions:

e Calls tr's uvm_transaction::begin_tr method, passing to it the begin_time
argument. The begin_time should be greater than or equal to the accept time. By
default, when begin_time = 0, the current simulation time is used.

If recording is enabled (recording_detail '= UVM_OFF), then a new database-transaction
is started on the component’s transaction stream given by the stream argument. No
transaction properties are recorded at this time.

+ Calls the component’s do_begin_tr method to allow for any post-begin action in
derived classes.

« Triggers the component’s internal begin_tr event. Any processes waiting on this
event will resume in the next delta cycle.

A handle to the transaction is returned. The meaning of this handle, as well as the
interpretation of the arguments stream_name, label, and desc are vendor specific.

begin_child_tr

function integer begin_child_tr (uvmtransaction tr,

i nt eger par ent _handl e

string stream nane

string | abel

string desc

time begin_tine)

This function marks the start of a child transaction, tr, by this component. Its operation
is identical to that of begin_tr, except that an association is made between this
transaction and the provided parent transaction. This association is vendor-specific.

do_begin_tr
virtual protected function void do_begin_tr (uvmtransaction tr,
string stream nane,
i nt eger tr_handle)

The begin_tr and begin_child_tr methods call this function to accommodate any user-

UVM 1.0 Class Reference

314

defined post-begin action. Implementations should call super.do_begin_tr to ensure
correct operation.

end_tr
function void end_tr (uvmtransaction tr,
time end_tine
bi t free_handl e)

This function marks the end of a transaction, tr, by this component. Specifically, it
performs the following actions:

e Calls tr's uvm_transaction::end_tr method, passing to it the end_time argument.
The end_time must at least be greater than the begin time. By default, when
end_time = 0, the current simulation time is used.

The transaction’s properties are recorded to the database-transaction on which it was
started, and then the transaction is ended. Only those properties handled by the
transaction’s do_record method (and optional “uvm_*_field macros) are recorded.

e Calls the component’s do_end_tr method to accommodate any post-end action in
derived classes.

« Triggers the component’s internal end_tr event. Any processes waiting on this
event will resume in the next delta cycle.

The free_handle bit indicates that this transaction is no longer needed. The
implementation of free_handle is vendor-specific.

do_end_tr

virtual protected function void do_end_tr (uvmtransaction tr,
i nt eger tr_handl e)

The end_tr method calls this function to accommodate any user-defined post-end action.
Implementations should call super.do_end_tr to ensure correct operation.

record_error_tr

function integer record_error_tr (stri ngl st ream nane
uvm obj ect info

string | abel

string desc

tine error_tine

bit keep_active)

This function marks an error transaction by a component. Properties of the given
uvm_object, info, as implemented in its uvm_object::do_record method, are recorded to
the transaction database.

An error_time of 0 indicates to use the current simulation time. The keep_active bit
determines if the handle should remain active. If 0, then a zero-length error transaction
is recorded. A handle to the database-transaction is returned.

Interpretation of this handle, as well as the strings stream_name, label, and desc, are
vendor-specific.

record_event_tr

UVM 1.0 Class Reference 315

function integer record_event tr (stri ng stream nanme = "nmmin",
uvm obj ect info = nul I,
string | abel = "event _tr",
string desc ="",
time event _time = 0,
bi t keep_active = 0)

This function marks an event transaction by a component.
An event_time of 0 indicates to use the current simulation time.

A handle to the transaction is returned. The keep_active bit determines if the handle
may be used for other vendor-specific purposes.

The strings for stream_name, label, and desc are vendor-specific identifiers for the
transaction.

print_enabled
bit print_enabled =1

This bit determines if this component should automatically be printed as a child of its
parent object.

By default, all children are printed. However, this bit allows a parent component to
disable the printing of specific children.

if overriding this method, always follow this pattern
only build a new schedule if one of that name does not yet exist under this domain to

augment this base schedule, use result of
super.define_phase_schedule(domain,MYNAME);

UVM 1.0 Class Reference 316

Callbacks Classes

This section defines the classes used for callback registration, management, and user-
defined callbacks.

Contents
Callbacks This section defines the classes used for callback registration,
Classes management, and user-defined callbacks.
uvm_callbacks The uvm_callbacks class provides a base class for
#(T,CB) implementing callbacks, which are typically used to modify or

augment component behavior without changing the
component class.

uvm_callback_iter The uvm_callback_iter class is an iterator class for iterating
over callback queues of a specific callback type.

uvm_ callback The uvm_callback class is the base class for user-defined
callback classes.

uvm_callbacks #(T,CB)

The uvm_callbacks class provides a base class for implementing callbacks, which are
typically used to modify or augment component behavior without changing the
component class. To work effectively, the developer of the component class defines a set
of “hook” methods that enable users to customize certain behaviors of the component in
a manner that is controlled by the component developer. The integrity of the
component’s overall behavior is intact, while still allowing certain customizable actions by
the user.

To enable compile-time type-safety, the class is parameterized on both the user-defined
callback interface implementation as well as the object type associated with the callback.
The object type-callback type pair are associated together using the "uvm_register_cb
macro to define a valid pairing; valid pairings are checked when a user attempts to add a
callback to an object.

To provide the most flexibility for end-user customization and reuse, it is recommended
that the component developer also define a corresponding set of virtual method hooks in
the component itself. This affords users the ability to customize via inheritance/factory
overrides as well as callback object registration. The implementation of each virtual
method would provide the default traversal algorithm for the particular callback being
called. Being virtual, users can define subtypes that override the default algorithm,
perform tasks before and/or after calling super.<method> to execute any registered
callbacks, or to not call the base implementation, effectively disabling that particalar
hook. A demonstration of this methodology is provided in an example included in the kit.

Summary

uvm_callbacks #(T,CB)

The uvm_callbacks class provides a base class for implementing callbacks, which
are typically used to modify or augment component behavior without changing
the component class.

T This type parameter specifies the base object type with
which the CB callback objects will be registered.

UVM 1.0 Class Reference

317

CB This type parameter specifies the base callback type that
will be managed by this callback class.

App/ DELETE
INTEFACE
add Registers the given callback object, cb, with the given obj
handle.
add_by_name Registers the given callback object, cb, with one or more
uvm_components.
delete Deletes the given callback object, cb, from the queue
associated with the given obj handle.
delete_by_name Removes the given callback object, cb, associated with

one or more uvm_component callback queues.

ITERATOR INTERFACE This set of functions provide an iterator interface for
callback queues.

get_first returns the first enabled callback of type CB which resides
in the queue for obj.

get_last returns the last enabled callback of type CB which resides
in the queue for obj.

get_next returns the next enabled callback of type CB which
resides in the queue for obj, using itr as the starting
point.

get_prev returns the previous enabled callback of type CB which
resides in the queue for obj, using itr as the starting
point.

DEeBuG
display This function displays callback information for obj.

T

This type parameter specifies the base object type with which the CB callback objects will
be registered. This object must be a derivative of uvm_object.

CB

This type parameter specifies the base callback type that will be managed by this
callback class. The callback type is typically a interface class, which defines one or more
virtual method prototypes that users can override in subtypes. This type must be a
derivative of uvm_callback.

ADD/ DELETE INTEFACE

add

static function void add(T obj ,
uvm cal | back cb,
uvm apprepend ordering)

Registers the given callback object, cb, with the given obj handle. The obj handle can be
null, which allows registration of callbacks without an object context. If ordreing is
UVM_APPEND (default), the callback will be executed after previously added callbacks,
else the callback will be executed ahead of previously added callbacks. The cb is the
callback handle; it must be non-null, and if the callback has already been added to the
object instance then a warning is issued. Note that the CB parameter is optional. For
example, the following are equivalent:

UVM 1.0 Class Reference

318

, cb);

uvm cal | backs# co ::radd(co ;
érry_) (I s)i azjd(conp_a, ch);

a
uvm cal | backs#(my_conp, ny_cal | back

add_by_name

static function void add_by nane(string nane,
uvm cal | back cbh,
uvm comnponent root,
uvm appr epend ordering = UVM APPEND)

Registers the given callback object, cb, with one or more uvm_components. The
components must already exist and must be type T or a derivative. As with add the CB
parameter is optional. root specifies the location in the component hierarchy to start the
search for name. See uvm_root::find_all for more details on searching by name.

delete

static function void delete(T obj ,
uvm cal | back cb)

Deletes the given callback object, cb, from the queue associated with the given obj
handle. The obj handle can be null, which allows de-registration of callbacks without an
object context. The cb is the callback handle; it must be non-null, and if the callback
has already been removed from the object instance then a warning is issued. Note that
the CB parameter is optional. For example, the following are equivalent:

uvm cal | backs#(ny_conp)::del ete(conp_a, cbh);
uvm cal | backs#(ny_conp, ny_call back):: del ete(conp_a, cb);

delete_by_name

static function void delete_by name(string nane,
uvm cal | back cbh,
uvm _conponent root)

Removes the given callback object, cb, associated with one or more uvm_component
callback queues. As with delete the CB parameter is optional. root specifies the location
in the component hierarchy to start the search for name. See uvm_root::find_all for
more details on searching by name.

ITERATOR INTERFACE

This set of functions provide an iterator interface for callback queues. A facade class,
uvm_callback_iter is also available, and is the generally preferred way to iterate over
callback queues.

get_first
static function CB get_first (ref int itr,

UVM 1.0 Class Reference

319

T obj)

returns the first enabled callback of type CB which resides in the queue for obj. If obj is
null then the typewide queue for T is searched. itr is the iterator; it will be updated with
a value that can be supplied to get_next to get the next callback object.

If the queue is empty then null is returned.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

get_last

static function CB get_last (int itr,
T o]

returns the last enabled callback of type CB which resides in the queue for obj. If obj is
null then the typewide queue for T is searched. itr is the iterator; it will be updated with
a value that can be supplied to get_prev to get the previous callback object.

If the queue is empty then null is returned.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

get_next

static function CB get_next (int itr,
T o}

returns the next enabled callback of type CB which resides in the queue for obj, using itr
as the starting point. If obj is null then the typewide queue for T is searched. itr is the
iterator; it will be updated with a value that can be supplied to get next to get the next
callback object.

If no more callbacks exist in the queue, then null is returned. get_next will continue to
return null in this case until get_first or get_last has been used to reset the iterator.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

get_prev

static function CB get_prev (int itr,
T o

returns the previous enabled callback of type CB which resides in the queue for obj,
using itr as the starting point. If obj is null then the typewide queue for T is searched.
itr is the iterator; it will be updated with a value that can be supplied to get _prev to get
the previous callback object.

If no more callbacks exist in the queue, then null is returned. get_prev will continue to
return null in this case until get_first or get_last has been used to reset the iterator.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

UVM 1.0 Class Reference

320

DEeBuG

display
static function void display(T obj = null)

This function displays callback information for obj. If obj is null, then it displays callback
information for all objects of type T, including typewide callbacks.

uvm_callback_iter

The uvm_callback_iter class is an iterator class for iterating over callback queues of a
specific callback type. The typical usage of the class is:

uvm cal | back_iter# conp, mych) iter = new(this);
for(nycb cb = _iter(.rpfrsrtrp()r;wctz 1= null; g\g = i%er.next())
cb. dosonet hi ng() ;

The callback iteration macros, "uvm_do_callbacks and "uvm_do_callbacks_exit_on
provide a simple method for iterating callbacks and executing the callback methods.

Summary

uvm_callback_iter

The uvm_callback_iter class is an iterator class for iterating over callback queues
of a specific callback type.

CLass DECLARATION

class uvmcall back_iter#(type T uvm obj ect,

type CB uvm cal | back)
MEeTHODS

new Creates a new callback iterator object.

first Returns the first valid (enabled) callback of the callback type (or a
derivative) that is in the queue of the context object.

last Returns the last valid (enabled) callback of the callback type (or a
derivative) that is in the queue of the context object.

next Returns the next valid (enabled) callback of the callback type (or a
derivative) that is in the queue of the context object.

prev Returns the previous valid (enabled) callback of the callback type
(or a derivative) that is in the queue of the context object.

get_cb Returns the last callback accessed via a first() or next() call.

MEeTHODS

new

function new(T obj)

UVM 1.0 Class Reference

321

Creates a new callback iterator object. It is required that the object context be provided.

first

function CB first()

Returns the first valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If the queue is empty then null is returned.

last

function CB last()

Returns the last valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If the queue is empty then null is returned.

next

function CB next()

Returns the next valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If there are no more valid callbacks in the queue, then
null is returned.

prev

function CB prev()

Returns the previous valid (enabled) callback of the callback type (or a derivative) that is
in the queue of the context object. If there are no more valid callbacks in the queue,
then null is returned.

get_cb

function CB get_ch()

Returns the last callback accessed via a first() or next() call.

The uvm_callback class is the base class for user-defined callback classes. Typically, the
component developer defines an application-specific callback class that extends from this
class. In it, he defines one or more virtual methods, called a callback interface, that
represent the hooks available for user override.

Methods intended for optional override should not be declared pure. Usually, all the
callback methods are defined with empty implementations so users have the option of
overriding any or all of them.

UVM 1.0 Class Reference 322

The prototypes for each hook method are completely application specific with no
restrictions.

Summary

uvm_callback

The uvm_callback class is the base class for user-defined callback classes.

CrLass HIERARCHY
uvm_void

uvm_object

uvm_callback

CLASS DECLARATION
class uvm cal | back extends uvm obj ect

MEeTHODS
new Creates a new uvm_callback object, giving it an optional
name.
callback_mode Enable/disable callbacks (modeled like rand_mode and
constraint_mode).
is_enabled Returns 1 if the callback is enabled, 0 otherwise.
get_type_name Returns the type name of this callback object.
MEeTHODS
new
function newstring name = "uvm cal | back")

Creates a new uvm_callback object, giving it an optional name.

callback_mode

function bit callback_node(int on = -1)

Enable/disable callbacks (modeled like rand_mode and constraint_mode).

is_enabled

function bit is_enabl ed()

Returns 1 if the callback is enabled, 0 otherwise.

get_type_name

virtual function string get_type_nane()

UVM 1.0 Class Reference

323

Returns the type name of this callback object.

UVM 1.0 Class Reference 324

This class is the virtual base class for the user-defined tests.

The uvm_test virtual class should be used as the base class for user-defined tests.
Doing so provides the ability to select which test to execute using the UVM_TESTNAME
command line or argument to the uvm_root::run_test task.

For example

pronpt > SI M_COMVAND +UVM TESTNAME=t est _bus_retry

The global run_test() task should be specified inside an initial block such as

initial run_test();

Multiple tests, identified by their type name, are compiled in and then selected for
execution from the command line without need for recompilation. Random seed selection
is also available on the command line.

If +UVM_TESTNAME=test_name is specified, then an object of type ‘test_name’ is
created by factory and phasing begins. Here, it is presumed that the test will instantiate
the test environment, or the test environment will have already been instantiated before
the call to run_test().

If the specified test_name cannot be created by the uvm_factory, then a fatal error
occurs. If run_test() is called without UVYM_TESTNAME being specified, then all
components constructed before the call to run_test will be cycled through their
simulation phases.

Deriving from uvm_test will allow you to distinguish tests from other component types
that inherit from uvm_component directly. Such tests will automatically inherit features
that may be added to uvm_test in the future.

Summary

uvim_test

This class is the virtual base class for the user-defined tests.
CLass HierarcHy
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_test

CLass DEecLARATION
virtual class uvmtest extends uvm conponent

MEeTHODS

UVM 1.0 Class Reference

325

new Creates and initializes an instance of this class using the normal
constructor arguments for uvm_component: name is the name of
the instance, and parent is the handle to the hierarchical parent, if

any.
METHODS
new
function new (string nane,

uvm conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the

hierarchical parent, if any.

UVM 1.0 Class Reference

326

The base class for hierarchical containers of other components that together comprise a
complete environment. The environment may initially consist of the entire testbench.
Later, it can be reused as a sub-environment in even larger system-level environments.

Summary

uvm_env

The base class for hierarchical containers of other components that together
comprise a complete environment.

Crass HierarcHY

uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_env

CiLass DEecLARATION
virtual class uvm env extends uvm conponent

MEeTHODS
new Creates and initializes an instance of this class using the normal

constructor arguments for uvm_component: name is the name of
the instance, and parent is the handle to the hierarchical parent, if
any.

MEeTHODS

new

function new (string name = "env",
uvm conponent parent = null)

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

UVM 1.0 Class Reference

327

The uvm_agent virtual class should be used as the base class for the user- defined
agents. Deriving from uvm_agent will allow you to distinguish agents from other
component types also using its inheritance. Such agents will automatically inherit
features that may be added to uvm_agent in the future.

While an agent’s build function, inherited from uvm_component, can be implemented to
define any agent topology, an agent typically contains three subcomponents: a driver,
sequencer, and monitor. If the agent is active, subtypes should contain all three
subcomponents. If the agent is passive, subtypes should contain only the monitor.

Summary

uvim_agent

The uvm_agent virtual class should be used as the base class for the user-
defined agents.

CLass HierarcHY
uvm_void
uvm_object
uvm_report_object

uvm_component

uvim_agent

CLass DEcCLARATION
virtual class uvm agent extends uvm conponent

MeTHODS

new Creates and initializes an instance of this class using the
normal constructor arguments for uvm_component: name is
the name of the instance, and parent is the handle to the
hierarchical parent, if any.

get_is_active Returns UVM_ACTIVE is the agent is acting as an active
agent and UVM_PASSIVE if it is acting as a passive agent.

MEeTHODS

new

function new (string nane,
uvm conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

The int configuration parameter is_active is used to identify whether this agent should be
acting in active or passive mode. This parameter can be set by doing:

UVM 1.0 Class Reference

328

set_config int("<path_to_agent>", "is_active", UVMACTIVE);

get_is_active
virtual function uvm active_passive_enum get _is_active()

Returns UVM_ACTIVE is the agent is acting as an active agent and UVM_PASSIVE if it is
acting as a passive agent. The default implementation is to just return the is_active flag,
but the component developer may override this behavior if a more complex algorithm is
needed to determine the active/passive nature of the agent.

UVM 1.0 Class Reference 329

This class should be used as the base class for user-defined monitors.

Deriving from uvm_monitor allows you to distinguish monitors from generic component
types inheriting from uvm_component. Such monitors will automatically inherit features
that may be added to uvm_monitor in the future.

Summary

uvm_monitor

This class should be used as the base class for user-defined monitors.
CLass HierarRcHY
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_monitor

CiLAss DEecLARATION
virtual class uvm nonitor extends uvm conponent

MEeTHODS
new Creates and initializes an instance of this class using the normal

constructor arguments for uvm_component: name is the name of
the instance, and parent is the handle to the hierarchical parent, if
any.

MEeTHODS

new

function new (string nane,

uvm conponent parent)
Creates and initializes an instance of this class using the normal constructor arguments

for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

UVM 1.0 Class Reference

330

uvm_scoreboard

The uvm_scoreboard virtual class should be used as the base class for user-defined
scoreboards.

Deriving from uvm_scoreboard will allow you to distinguish scoreboards from other
component types inheriting directly from uvm_component. Such scoreboards will
automatically inherit and benefit from features that may be added to uvm_scoreboard in
the future.

Summary

uvm_scoreboard

The uvm_scoreboard virtual class should be used as the base class for user-
defined scoreboards.

CLass HierarcHY
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_scoreboard

CLass DEcLARATION
virtual class uvm scoreboard extends uvm conponent

MEeTHODS
new Creates and initializes an instance of this class using the normal

constructor arguments for uvm_component: name is the name of
the instance, and parent is the handle to the hierarchical parent, if
any.

METHODS

new

function new (string nane,

uvm conponent parent)
Creates and initializes an instance of this class using the normal constructor arguments

for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

UVM 1.0 Class Reference

331

uvm_driver #(REQ,RSP)

The base class for drivers that initiate requests for new transactions via a
uvm_seq_item_pull_port. The ports are typically connected to the exports of an
appropriate sequencer component.

This driver operates in pull mode. Its ports are typically connected to the corresponding
exports in a pull sequencer as follows:

driver.seq_item port.connect (sequencer.seq_item export);
driver.rsp_port.connect (sequencer.rsp_export);

The rsp_port needs connecting only if the driver will use it to write responses to the
analysis export in the sequencer.

Summary

uvm_driver #(REQ,RSP)

The base class for drivers that initiate requests for new transactions via a
uvm_seq_item_pull_port.

CLass HierarcHY
uvm_void
uvm_object
uvm_report_object
uvm_component

uvm_driver#(REQ,RSP) |

CLass DECLARATION

class uvmdriver #(
type REQ = uvm sequence_item
type RSP = REQ

) extends uvm conponent

Ports
seq_item_port Derived driver classes should use this port to request items
from the sequencer.
rsp_port This port provides an alternate way of sending responses
back to the originating sequencer.
MEeTHODS
new Creates and initializes an instance of this class using the
normal constructor arguments for uvm_component: name
is the name of the instance, and parent is the handle to the
hierarchical parent, if any.
PoRrTs

seq_item_port

UVM 1.0 Class Reference

332

Derived driver classes should use this port to request items from the sequencer. They
may also use it to send responses back.

rsp_port
This port provides an alternate way of sending responses back to the originating

sequencer. Which port to use depends on which export the sequencer provides for
connection.

METHODS

new

function new (string nane,
uvm conponent parent)

Creates and initializes an instance of this class using the normal constructor arguments

for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

UVM 1.0 Class Reference

333

uvm_push_driver #(REQ,RSP)

Base class for a driver that passively receives transactions, i.e. does not initiate requests
transactions. Also known as push mode. Its ports are typically connected to the
corresponding ports in a push sequencer as follows:

push_sequencer.req_port. connect (ﬁush_dri ver. req_exportg ;
push_driver.rsp_port.connect (push_sequencer.rsp_export

The rsp_port needs connecting only if the driver will use it to write responses to the
analysis export in the sequencer.

Summary

uvm_push_driver #(REQ,RSP)

Base class for a driver that passively receives transactions, i.e.
CiLass HierarcHy
uvm_void
uvm_object
uvm_report_object
uvm_component

uvm_push_driver#(REQ,RSP) |

CLass DEecLARATION

class uvm push_driver #(
type REQ = uvm sequence_item
type RSP = REQ

) extends uvm conponent

PorTs
req_export This export provides the blocking put interface whose default
implementation produces an error.
rsp_port This analysis port is used to send response transactions back
to the originating sequencer.
MEeTHODS
new Creates and initializes an instance of this class using the
normal constructor arguments for uvm_component: name is
the name of the instance, and parent is the handle to the
hierarchical parent, if any.
PoRrTs

req_export
This export provides the blocking put interface whose default implementation produces

an error. Derived drivers must override put with an appropriate implementation (and not
call super.put). Ports connected to this export will supply the driver with transactions.

UVM 1.0 Class Reference

334

rsp_port

This analysis port is used to send response transactions back to the originating
sequencer.

MEeTHODS

new

function new (string nane,
uvm conmponent parent)

Creates and initializes an instance of this class using the normal constructor arguments

for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

UVM 1.0 Class Reference 335

uvm_random_stimulus #(T)

A general purpose unidirectional random stimulus class.

The uvm_random_stimulus class generates streams of T transactions. These streams
may be generated by the randomize method of T, or the randomize method of one of its
subclasses. The stream may go indefinitely, until terminated by a call to
stop_stimulus_generation, or we may specify the maximum number of transactions to be
generated.

By using inheritance, we can add directed initialization or tidy up after random stimulus
generation. Simply extend the class and define the run task, calling super.run() when
you want to begin the random stimulus phase of simulation.

While very useful in its own right, this component can also be used as a template for
defining other stimulus generators, or it can be extended to add additional stimulus
generation methods and to simplify test writing.

Summary

uvm_random_stimulus #(T)

A general purpose unidirectional random stimulus class.
Crass HieraRcHY
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_random_stimulus#(T) |

CLass DEcCLARATION

class uvmrandom stinul us #(
t