
SystemRDL 2.0
Register Description Language

January 2018
Copyright © 2015 - 2018 Accellera. 
 All rights reserved.

January 2018 SystemRDL 2.0
Abstract: Information about the registers in a circuit design is required throughout its lifetime, from initial
architectural specification, through creation of an HDL description, verification of the design, post-silicon
testing, to deployment of the circuit. A consistent and accurate description of the registers is necessary so the
registers specified by the architects and the registers programmed by the users of the final product are the
same. SystemRDL is a language for describing registers in circuit designs. SystemRDL descriptions are used
as inputs to software tools that generate circuit logic, test programs, printed documentation, and other register
artifacts. Generating all of these from a single source ensures their consistency and accuracy. The description
of a register may correspond to a register in an preexisting circuit design, or it can serve as an input to a syn-
thesis tool that creates the register logic and access interfaces. A description captures the behavior of the in-
dividual registers, the organization of the registers into register files, and the allocation of addresses to
registers. A variety of register behaviors can be described: simple storage elements, storage elements with
special read/write behavior (e.g., ‘write 1 to clear’), interrupts, and counters.
Keywords: hardware design, electronic design automation, SystemRDL, hierarchical register description,
control and status registers, interrupt registers, counter registers, register synthesis, software generation, doc-
umentation generation, bus interface, memory, register addressing.
ii Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the
Technical Committee of Accellera. Accellera develops its standards through a consensus development pro-
cess, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve without
compensation. While Accellera administers the process and establishes rules to promote fairness in the con-
sensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any
of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Further-
more, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
mine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
able to provide an instant response to interpretation requests except in those cases where the matter has pre-
viously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
bership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Systems Initiative.
8698 Elk Grove Bldv Suite 1, #114
Elk Grove, CA 95624
USA

Note: Attention is called to the possibility that implementation of this standard may require use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. Accellera shall not
Copyright © 2015 - 2018 Accellera. iii
All rights reserved.

January 2018 SystemRDL 2.0
be responsible for identifying patents for which a license may be required by an Accellera standard
or for conducting inquiries into the legal validity or scope of those patents that are brought to its
attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To
arrange for authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove Bldv
Suite 1, #114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to
photocopy portions of any individual standard for educational classroom use can also be obtained from
Accellera.

Suggestions for improvements to the SystemRDL 2.0 Specification are welcome. They should be sent to the
SystemRDL email reflector

systemrdl@lists.accellera.org
iv Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Introduction

The SystemRDL language was specifically designed to describe and implement a wide variety of registers
and memories. Using SystemRDL, developers can automatically generate and synchronize the register
specification in hardware design, software development, verification, and documentation. The intent behind
standardizing the language is to drastically reduce the development cycle for hardware designers, hardware
verification engineers, software developers, and documentation developers.

SystemRDL is intended for

— RTL generation

— RTL verification

— SystemC generation

— Documentation

— Pass through material for other tools, e.g., debuggers

— Software development
Copyright © 2015 - 2018 Accellera. v
All rights reserved.

January 2018 SystemRDL 2.0
Participants

The following members took part in the SystemRDL Working Group (RDWG):

Miles McCoo, Intel Corporation, Chair RDWG
Joe Daniels, Technical Editor

Allied Member: Michael Faust

Cisco Systems, Inc: Steve Russell, Somasundaram Arunachalam

Intel Corporation: Miles McCoo

Magillem Design Services: Guillaume Godet-Bar

NVIDIA Corporation: John Berendsen

Semifore, Inc: Richard Weber
vi Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Contents

1. Overview.. 1

1.1 Scope .. 1
1.2 Purpose ... 1
1.3 Motivation .. 1
1.4 Backward compatibility ... 2
1.5 Conventions used ... 2

1.5.1 Visual cues (meta-syntax) ... 2
1.5.2 Notational conventions ... 3
1.5.3 Examples ... 3

1.6 Use of color in this standard... 3
1.7 Contents of this standard .. 3

2. References.. 5

3. Definitions, acronyms, and abbreviations.. 7

3.1 Definitions.. 7
3.2 Acronyms and abbreviations.. 8

4. Lexical conventions ... 9

4.1 White space .. 9
4.2 Comments... 9
4.3 Identifiers ... 9
4.4 Keywords ... 10
4.5 Strings... 10
4.6 Numbers ... 11

5. General concepts, rules, and properties ... 13

5.1 Key concepts and general rules .. 13
5.1.1 Defining components .. 13
5.1.2 Instantiating components .. 16
5.1.3 Specifying component properties ... 21
5.1.4 Scoping and namespaces .. 23

5.2 General component properties ... 25
5.2.1 Universal properties .. 25
5.2.2 Structural properties .. 26

5.3 Content deprecation.. 27
5.3.1 Semantics .. 27
5.3.2 Examples ... 27

6. Data types .. 29

6.1 Overview .. 29
6.2 Primary data types.. 29

6.2.1 Signed and unsigned data types .. 29
6.2.2 String data type ... 30
6.2.3 Boolean data type .. 30
6.2.4 Reserved enumeration types ... 30
Copyright © 2015 - 2018 Accellera. vii
All rights reserved.

January 2018 SystemRDL 2.0
6.2.5 Enumerations .. 30
6.2.6 Identifier references .. 32

6.3 Aggregate data types .. 33
6.3.1 Arrays .. 33
6.3.2 Structures .. 35

6.4 Type compatibility ... 37
6.5 Casting.. 37

7. Expressions .. 39

7.1 Overview .. 39
7.2 Operators .. 39

7.2.1 Assignment operators ... 40
7.2.2 Logical operators .. 40

7.3 Expression evaluation rules.. 40
7.3.1 Rules for determining expression types .. 40
7.3.2 Rules for evaluating expressions .. 41

8. Signals.. 43

8.1 Introduction .. 43
8.2 Signal properties... 43

8.2.1 Semantics .. 43
8.2.2 Example .. 43

8.3 Signal definition and instantiation.. 44
8.3.1 Semantics .. 44
8.3.2 Example .. 44

9. Field component .. 45

9.1 Introduction .. 45
9.2 Defining and instantiating fields .. 45
9.3 Using field instances .. 45
9.4 Field access properties ... 46

9.4.1 Semantics .. 47
9.4.2 Example .. 48

9.5 Hardware signal properties... 48
9.5.1 Semantics .. 48
9.5.2 Example .. 48

9.6 Software access properties ... 49
9.6.1 Semantics .. 50
9.6.2 Examples ... 51

9.7 Hardware access properties .. 51
9.7.1 Semantics .. 52
9.7.2 Example .. 53

9.8 Counter properties .. 53
9.8.1 Counter incrementing and decrementing .. 53
9.8.2 Counter saturation and threshold .. 54

9.9 Interrupt properties... 57
9.9.1 Semantics .. 61
9.9.2 Example .. 61

9.10 Miscellaneous field properties ... 61
9.10.1 Semantics .. 62
9.10.2 Example .. 62
viii Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
10. Register component ... 63

10.1 Defining and instantiating registers.. 63
10.2 Instantiating registers ... 63
10.3 Instantiating internal registers .. 64
10.4 Instantiating external registers ... 64
10.5 Instantiating alias registers ... 65

10.5.1 Semantics .. 65
10.5.2 Example .. 65

10.6 Register properties.. 66
10.6.1 Semantics .. 66
10.6.2 Example .. 66

10.7 Understanding field ordering in registers... 67
10.7.1 Semantics .. 67
10.7.2 Examples ... 67

10.8 Understanding interrupt registers ... 68
10.8.1 Semantics .. 68
10.8.2 Example .. 68

11. Memory component ... 69

11.1 Defining and instantiating memories ... 69
11.2 Semantics ... 69
11.3 Memory properties ... 70

11.3.1 Semantics .. 70
11.3.2 Example .. 70

12. Register file component ... 71

12.1 Defining and instantiating register files ... 71
12.2 Semantics ... 72
12.3 Register file properties ... 72

12.3.1 Semantics .. 72
12.3.2 Example .. 73

13. Address map component.. 75

13.1 Introduction .. 75
13.2 Defining and instantiating address maps.. 75
13.3 Semantics ... 75
13.4 Address map properties .. 75

13.4.1 Semantics .. 76
13.4.2 Example .. 77

13.5 Defining bridges or multiple view address maps ... 77
13.5.1 Semantics .. 77
13.5.2 Example .. 77

14. Verification constructs ... 79

14.1 HDL path.. 79
14.1.1 Assigning HDL path ... 79
14.1.2 Examples ... 80

14.2 Constraints.. 81
14.2.1 Describing constraints ... 81
Copyright © 2015 - 2018 Accellera. ix
All rights reserved.

January 2018 SystemRDL 2.0
14.2.2 Constraint component ... 82
14.2.3 Example .. 83

15. User-defined properties.. 85

15.1 Defining user-defined properties.. 85
15.1.1 Semantics .. 86
15.1.2 Example .. 86

15.2 Assigning (and binding) user-defined properties ... 86
15.2.1 Semantics .. 86
15.2.2 Examples ... 87

16. Preprocessor directives .. 89

16.1 Embedded Perl preprocessing .. 89
16.1.1 Semantics .. 89
16.1.2 Example .. 89

16.2 Verilog-style preprocessor ... 89
16.2.1 Verilog-style preprocessor directives ... 90
16.2.2 Limitations on nested file inclusion .. 90

17. Advanced topics in SystemRDL.. 91

17.1 Application of signals for reset .. 91
17.2 Understanding hierarchical interrupts in SystemRDL ... 93

17.2.1 Example structure and perspective ... 94
17.2.2 Code snippet 1 .. 95
17.2.3 Code snippet 2 .. 95
17.2.4 Code snippet 3 .. 96
17.2.5 Code snippet 4 .. 96
17.2.6 Code snippet 5 .. 97
17.2.7 Code snippet 6 .. 98
17.2.8 Code snippet 7 .. 98
17.2.9 Code snippet 8 .. 99
17.2.10 Code snippet 9 .. 100
17.2.11 Code snippet 10 .. 101
17.2.12 Code snippet 11 .. 102

17.3 Understanding bit ordering and byte ordering in SystemRDL .. 102
17.3.1 Bit ordering ... 103
17.3.2 Byte ordering .. 104

Annex A (informative) Bibliography .. 105

Annex B (normative) Grammar .. 107

Annex C (informative) Backward compatibility ... 113

Annex D (normative) Reserved words.. 117

Annex E (normative) Access modes... 119

Annex F (informative) Formatting text strings ... 127

Annex G (informative) Component-property relationships .. 131
x Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
SystemRDL 2.0: A Register
Description Language Specification

1. Overview

This clause explains the scope and purpose of this standard, describes the key features, details the
conventions used, and summarizes its contents.

The formal syntax of SystemRDL is described using Backus-Naur Form (BNF), which is summarized in
Annex B. The rest of this Standard is intended to be consistent with the SystemRDL grammar. If any
discrepancies between the two occur, the grammar in Annex B shall take precedence.

1.1 Scope

SystemRDL is a language for the design and delivery of intellectual property (IP) products used in designs.
SystemRDL semantics supports the entire life-cycle of registers from specification, model generation, and
design verification to maintenance and documentation. Registers are not just limited to traditional
configuration registers, but can also refer to register arrays and memories.

The intent of this standard is to define SystemRDL accurately. Its primary audience are implementers of
tools supporting the language and users of the language. The focus is on defining the valid language
constructs, their meanings and implications for the hardware and software that is specified or configured,
how compliant tools are required to behave, and how to use the language.

1.2 Purpose

SystemRDL is designed to increase productivity, quality, and reuse during the design and development of
complex digital systems. It can be used to share IP within and between groups, companies, and consortiums.
This is accomplished by specifying a single source for the register description from which all views can be
automatically generated, which ensures consistency between multiple views. A view is any output generated
from the SystemRDL description, e.g., RTL code or documentation.

1.3 Motivation

SystemRDL was created to minimize problems encountered in describing and managing registers. Typically
in a traditional environment the system architect or hardware designer creates a functional specification of
the registers in a design. This functional specification is most often text and lacks any formal syntactic or
Copyright © 2015 - 2018 Accellera. 1
All rights reserved.

January 2018 SystemRDL 2.0
semantic rules. This specification is then used by other members of the team including software, hardware,
and design verification. Each of these parties uses the specification to create representations of the data in
the languages which they use in their aspect of the chip development process. These languages typically
include Verilog, VHDL, C, C++, Vera, e, and SystemVerilog. Once the engineering team has an
implementation in a HDL and some structures for design verification, then design verification and software
development can begin.

During these verification and validation processes, bugs are often encountered which require the original
register specification to change. When these changes occur, all the downstream views of this data have to be
updated accordingly. This process is typically repeated numerous times during chip development. In
addition to the normal debug cycle, there are two additional aspects that can cause changes to the register
specification. First, marketing requirements can change, which require changes to a register’s specification.
Second, physical aspects, such as area and timing constraints can drive changes to the register’s
specification. There are clearly a number of challenges with this approach:

a) The same information is being replicated in many locations by many individuals.

b) Propagating the changes to downstream customers is tedious, time-consuming, and error-prone.

c) Documentation updates are often postponed until late in the development cycle due to pressures to
complete other more critical engineering items at hand.

These challenges often result in a low-quality product and wasted time due to having incompatible register
views. SystemRDL was designed to eliminate these problems by defining a rich language that can formally
describe register specifications. Through application of SystemRDL and a SystemRDL compiler, users can
save time and eliminate errors by using a single source of specification and automatically generating any
needed downstream views.

1.4 Backward compatibility

One of the main goals for this update to the SystemRDL specification was to maintain backward
compatibility to SystemRDL 1.0. In some cases, however, this was not possible. Annex C shows the known
areas of incompatibility in advancing the SystemRDL specification from the SystemRDL1.0 to SystemRDL
2.0 versions.

1.5 Conventions used

The conventions used throughout the document are included here.

1.5.1 Visual cues (meta-syntax)

The meta-syntax for the description of the syntax rules uses the conventions shown in Table 1.

Table 1—Document conventions

Visual cue Represents

bold The bold font is used to indicate key terms, text that shall be typed exactly as it appears.
For example, in the following property definition, the keyword “default” and special char-
acter “:” (and optionally “=”) shall be typed as they appear:

default property_name [= value];

italic The italic font in running text represents user-defined variables. For example, a property
name needs to be specified in the following line (after the “default” key term):

default property_name [= value];
2 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
1.5.2 Notational conventions

The terms “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional”
in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.1

1.5.3 Examples

Any examples shown in this Standard are for information only and are only intended to illustrate the use of
SystemRDL.

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text
when initially defined.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:

courier The courier font in running text indicates SystemRDL or HDL code. For example, the
following line indicates SystemRDL code:

field myField {}; // defines a field type named “myField”

plain text The normal or plain text font in the BNF indicates syntactic categories (see Annex B).

[] square brackets Square brackets indicate optional parameters. For example, the value assignment is
optional in the following line:

default property_name [= value];

{ } curly braces Curly braces ({ }) indicate items that can be repeated zero or more times. For example,
the following shows one or more universal properties can be specified for this command:

mnemonic_name = value [{{universal_property;}*}];

* asterisk An asterisk (*) signifies that parameter can be repeated. For example, the following line
means multiple properties can be specified for this command:

field {[property;]*} name = value;

| separator bar The separator bar (|) character indicates alternative choices. For example, the following
line shows the “in” or “out” key terms are possible values for the “-direction” parameter:

-direction <in | out>

1Information on references can be found in Clause 2.

Table 1—Document conventions (Continued)

Visual cue Represents
Copyright © 2015 - 2018 Accellera. 3
All rights reserved.

January 2018 SystemRDL 2.0
— Clause 2 provides references to other applicable standards that are assumed or required for this stan-
dard.

— Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

— Clause 4 defines the lexical conventions used in SystemRDL.

— Clause 5 highlights the general concepts, rules, and properties in SystemRDL.

— Clause 6 defines the SystemRDL data types.

— Clause 7 describes how expressions are used in SystemRDL.

— Clause 8 describes how signals are used in SystemRDL.

— Clause 9 defines the field components.

— Clause 10 defines the register components.

— Clause 11 defines the memory components.

— Clause 12 defines the register file components.

— Clause 13 defines the address map components.

— Clause 14 specifies the verification constructs.

— Clause 15 specifies the user-defined properties.

— Clause 16 defines the preprocessor directives.

— Clause 17 describes advanced uses of SystemRDL.

— Annexes. Following Clause 17 are a series of annexes.
4 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
2. References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEEE Std 1364™, IEEE Standard for Verilog Hardware Description Language.2, 3

IEEE Std 1685™, IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing
IP within Tool Flows.

IEEE Std 1800™, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Verifica-
tion Language.

IEEE Std 1800.2™, IEEE Standard for Universal Verification Methodology Language Reference Manual.

IETF Best Practices Document 14, RFC 2119.

The Apache ASP Embedding Syntax is available from the Apache web site: 
http://www.apache-asp.org/syntax.html.

The HTML 4.01 standard syntax is available from the W3 web site: 
http://www.w3.org/TR/html401/.

The MD5 Message-Digest Algorithm is available from the IETF web site: 
https://tools.ietf.org/html/rfc1321.

The Perl programming language, Version 5, is available from the Perl web site: 
http://www.perl.org/.

The Unicode Standard, Version 9.0.0, is available from The Unicode Consortium web site: 
http://www.unicode.org/versions/Unicode9.0.0/.

2The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
3IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).
Copyright © 2015 - 2018 Accellera. 5
All rights reserved.

January 2018 SystemRDL 2.0
6 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B1]4 should be referenced for terms not defined in this clause.

3.1 Definitions

address map: Defines the organization of the registers, register files, memories, and address maps into a
software addressable space. Address maps can be organized hierarchically.

byte order: The ordering of the bytes from left to right or right to left or from most significant byte to least
significant byte or least significant byte to most significant byte. This is often referred to as endianness. See
also Clause 17.

bit order: The ordering of the bits from left to right or right to left or from most significant bit to least sig-
nificant bit or least significant bit to most significant bit. See also Clause 17.

component: A basic building block in SystemRDL that acts as a container for information. Similar to a
struct or class in programming languages.

constraint: An assertion made for verification purposes that is evaluated at the runtime of the design.

element: An instantiation of any SystemRDL component type.

enumeration: Used in field encodings and component property encodings. An identifier bound to some bit
value or a list of values describing bit field encoding or component property encoding.

field: The most basic component object. Fields serve as an abstraction of hardware storage elements.

keyword: A predefined, non-escaped identifier (see 4.3) that defines a language construct; keywords cannot
be used as identifiers.

memory: A contiguous array of memory data elements. A data structure within a memory can be specified
with virtual registers or register files.

parameter: A generalized value of a component definition that can be modified for each instance of the
component.

property: A characteristic, attribute, or a trait of a component in SystemRDL. Because they exist in their
own namespace, property names do not conflict with the language and are not restricted as identifiers.

RDLFormatCode: A set of formatting tags which can be used on text strings.

register: A set of one or more fields which are accessible by software at a particular address.

register file: A grouping of registers and other register files. Register files can be organized hierarchically.

reserved words: terms which have a similar effect to keywords; all reserved words are explicitly reserved
for future use.

4The number in brackets correspond to those of the bibliography in Annex A.
Copyright © 2015 - 2018 Accellera. 7
All rights reserved.

January 2018 SystemRDL 2.0
signal: A wire used for interconnect or to define additional component inputs and/or outputs.

struct: User-defined structure for use in user-defined properties. See also Clause 15.

3.2 Acronyms and abbreviations

HDL hardware description language

HTML hypertext markup language

IP intellectual property

LSB least significant bit

MSB most significant bit

RTL register transfer level
8 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
4. Lexical conventions

This clause describes SystemRDL in terms of lexical conventions. SystemRDL source code is comprised of
a stream of lexical tokens consisting of one or more characters. SystemRDL files shall use the Universal
Coded Character Set, UCS, encoded using UTF-8. UCS code points beyond the ASCII code page are
restricted to comments and character strings. SystemRDL is case-sensitive. SystemRDL identifiers are
limited to ASCII letters, numbers, and the underscore (_). The support for UTF-8 is limited to strings to
allow for non-English documentation. SystemRDL compilers shall ignore the byte-order mark.

4.1 White space

White space characters are: space (U+0020), horizontal tab (U+0009), line feed (U+000A), and carriage
return (U+000D). All white space characters are syntactically insignificant, except in the following cases.

a) Strings—Any number of consecutive white space characters is treated as a single space for purposes
of generating documentation. See 4.5.

b) Single-line comments—A new-line character (line feed, carriage return, or line feed plus carriage
return) terminates a single-line comment. See 4.2.

c) Where more than one token is being used and spacing is required to separate the tokens.

4.2 Comments

There are two types of comments in SystemRDL: single-line comments and block comments. Single-line
comments begin with // and are terminated by a new-line character. Block comments begin with /* and are
terminated by the next */. Block comments may span any number of lines; they shall not be nested. Within a
block comment, a single-line comment (//) has no significance.

Examples

// single line comment
/*
Block
comment

// This is part of this Block comment
*/

4.3 Identifiers

An identifier assigns a name to a user-defined data type or its instance. There are two types of identifiers:
simple and escaped. Identifiers are case-sensitive. Simple identifiers have a first character that is a letter or
underscore (_) followed by zero or more letters, digits, and underscores. Escaped identifiers begin with \
followed by a simple identifier.

Examples

my_identifier
My_IdEnTiFiEr
x
_y0123
_3
\field // This is escaped because it uses a keyword
Copyright © 2015 - 2018 Accellera. 9
All rights reserved.

January 2018 SystemRDL 2.0
4.4 Keywords

Keywords are predefined, non-escaped identifiers (see 4.3) that define language constructs. Keywords
cannot be used as identifiers. Escaped keywords are treated as identifiers in SystemRDL. The keywords are
listed in Table 2.

The following also apply.

— Reserved words have a similar effect as keywords; reserved words are explicitly reserved for future
use. See also Annex D.

— The SystemRDL-detailed access modes are defined in Annex E.

— Right-hand side values defined in this standard are keywords. See also Annex G.

— Left-hand side values that are not keywords are properties. See also Annex G.

— Because they exist in their own namespace, property names do not conflict with the language and are
not restricted as identifiers.

4.5 Strings

A string is a sequence of characters enclosed by double quotes. The escape sequence \” can be used to
include a double quote within a string. To maintain consistency between all generated documentation
formats, one or more consecutive white space characters within a string shall be converted to a single space
for purposes of documentation generation. SystemRDL also has a set of formatting tags which can be used
on text strings, see Annex F.

Examples

“This is a string”

“This is also

a string!”

“This third string contains a \”double quote\““

Table 2—SystemRDL keywords

abstract accesstype addressingtype addrmap alias

all bit boolean bothedge compact

component componentwidth constraint default encode

enum external false field fullalign

hw inside internal level longint

mem na negedge nonsticky number

onreadtype onwritetype posedge property r

rclr ref reg regalign regfile

rset ruser rw rw1 signal

string struct sw this true

type unsigned w w1 wclr

woclr woset wot wr wset

wuser wzc wzs wzt
10 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
4.6 Numbers

There are several number formats in SystemRDL. All numbers in SystemRDL are unsigned.

a) Simple decimal: A sequence of decimal digits 0, ..., 9.

b) Simple hexadecimal: 0x (or 0X) followed by a sequence of decimal digits or characters a through f
(upper- or lower-case).

c) Verilog-style decimal: Begins with a width specifying the number of binary bits (a positive decimal
number) followed by a single quote ('), followed by a d or D for decimal, and then the number itself,
represented as a sequence of digits 0 through 9.

d) Verilog-style hexadecimal: Begins with a width specifying the number of binary bits (a positive
decimal number) followed by a single quote ('), followed by an h or H for hexadecimal), and then
the number itself, represented as a sequence of digits 0 through 9 or characters a through f (upper- or
lower-case).

e) Verilog-style binary: Begins with a width specifying the number of binary bits (a positive decimal
number) followed by a single quote ('), followed by a b or B for binary, and then the number itself,
represented as a sequence of the digits 0 and 1.

The numeric portion of any number may contain multiple underscores (_) at any position, except the width
and first position, which are ignored in the computation of the associated numeric value. Additionally the
width of a Verilog number needs to be specified. Ambiguous width Verilog-style numbers, e.g., ’hFF, are
not supported.

It shall be an error if the value of a Verilog-style number does not fit within the specified bit-width.

Examples

40 // Simple decimal example
0x45 // Simple hexadecimal example
4’d1 // Verilog style decimal example (4 bits)
3’b101 // Verilog style binary example (3 bits)
32’hDE_AD_BE_EF // Verilog style with _’s
32’hdeadbeef // Same as above
7’h7f // Verilog style hex example (7 bits)
Copyright © 2015 - 2018 Accellera. 11
All rights reserved.

January 2018 SystemRDL 2.0
12 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
5. General concepts, rules, and properties

The concepts, rules, and properties described in this clause are common to all component types and do not
determine how a component is implemented in a design.

5.1 Key concepts and general rules

This subclause describes the key concepts of SystemRDL and documents general rules about how to use the
language to define hardware specifications. Subsequent clauses will refine these generic rules for each
component type.

A component in SystemRDL is the basic building block or a container which contains properties that further
describe the component’s behavior. There are several structural components in SystemRDL: field, reg,
mem, regfile, and addrmap. Additionally, there are several non-structural components: signal, enum, and
constraint.

Components can be defined in any order, as long as each component is defined before it is instantiated. All
structural components (and signals) need to be instantiated before being generated.

5.1.1 Defining components

To define components in SystemRDL, each definition statement shall begin with the keyword corresponding
to the component object being defined (as listed in Table 3). All components need to be defined before they
can be instantiated (see 5.1.2).

SystemRDL components can be defined in two ways: definitively or anonymously.

— Definitive defines a named component type, which is instantiated in a separate statement. The defin-
itive definition is suitable for reuse.

— Anonymous defines an unnamed component type, which is instantiated in the same statement (see
also 5.1.2). The anonymous definition is suitable for components that are used once.

A definitive definition of a component appears as follows.

component new_component_name [#(parameter_definition [, parameter_definition]*)] 
{[component_body]} [instance_element [, instance_element]*];

An anonymous definition (and instantiation) of a component appears as follows.

Table 3—Component types

Type Keyword

Field field

Register reg

Register file regfile

Address map addrmap

Signal signal

Enumeration enum

Memory mem

Constraint constraint
Copyright © 2015 - 2018 Accellera. 13
All rights reserved.

January 2018 SystemRDL 2.0
component {[component_body]} instance_element [, instance_element]*;

a) In both cases, component is one of the keywords specified in Table 3.

b) For a definitively defined component, new_component_name is the user-specified name for the
component.

c) For a definitively defined component, parameter_definition is the user-specified parameter as
defined in 5.1.1.1.

d) For a anonymously defined component, instance_element is the description of the instantiation attri-
butes, as defined in 5.1.2 a 3.

e) The component_body is comprised of zero or more of the following.

1) Default property assignments

2) Property assignments

3) Component instantiations

4) Nested component definitions

5) Constraint definitions

6) Struct definitions

f) The first instance name of an anonymous definition is also used as the component type name.

g) The stride (+=), alignment (%), and offset (@) of anonymous instances are the same as the defini-
tive instances in 5.1.2.3.

The following code fragment shows a simple definitive field component definition for myField.

field myField {};

The following code fragment shows a simple anonymous field component definition for myField.

field {} myField;

5.1.1.1 Defining component parameters

All definitive component types, except enumerations and constraints, may be parametrized using Verilog-
style parameters. To define Verilog-style parameters in SystemRDL, parameter definitions shall be specified
after the component's name. parameter_definition is defined as follows.

parameter_type parameter_name [= parameter_value]

where

a) parameter_type is a type reference taken from the list of SystemRDL types (see Table 7).

b) parameter_name is a user-specified parameter name.

c) parameter_value is an expression whose resolved type should be consistent with parameter_type.

5.1.1.2 Semantics

a) If a parameter definition is assigned a parameter value, that value is the default value for the param-
eter.

b) If a parameter is not specified with a default value, every instance of the component needs to provide
a value for the parameter.

c) The name of the parameter may be used elsewhere within the remainder of the component definition
to represent its value.
14 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
d) Nested component definitions do not inherit from their parent’s parameters.

e) Component instance references shall not be used as parameter values (either directly or as part of an
aggregate type).

5.1.1.3 Inserting parameterized types in the type namespace

Each declared component’s type name is added to the type namespace of the enclosing scope of component
declaration. In addition, instances of parameterized components which have parameter overrides create a
new type name based on the parameterized component type name rules in the type namespace of the
component declaration enclosing scope. Subsequent instances of parameterized components with the same
resolved parameter values matching those of a component instance existing type name in the type
namespace of component declaration enclosing shall reuse the existing type name without adding a new type
name.

It shall be an error if a parameterized component instance has a type name which matches an existing type
name that corresponds to a parameterized component instance with different resolved parameter values or
matches any other type name.

5.1.1.4 Generated type naming rules

Most generation targets for elaborated SystemRDL platforms require some means of uniquely identifying
instance types. To provide a minimum level of compatibility between tool outputs, defining the type name
generation process is necessary.

The following steps shall be used to construct the elaborated type names of instance with parameter
arguments.

a) If the instance’s defined arguments match the type’s default parameter values, the instance’s type
name shall be used as is.

b) If the instance’s type is parameterized and all the defined arguments match the type’s default param-
eter values, the instance’s type name shall be used as is.

c) In all other cases, the instance’s generated type name shall be constructed by appending to the
instance’s type name and, for each argument its name, followed by its normalized value, separated
by a single underscore (_). The sequences shall also be joined using single underscores.

type_name{(_param_name_normalized_value)}*

Normalized values shall be derived from the argument’s type and from its resolved expression’s
value as follows.

1) Scalar values shall be rendered using their hexadecimal representation.

2) Boolean values shall be rendered using either t for true or f for false.

3) String values shall be rendered using the first eight characters of their md5 (Message-Digest
Algorithm) checksum.

4) Enum values shall be rendered using their enumerator literal.

5) Arrays shall be rendered by:

i) generating the normalized values of its elements,

ii) joining these elements with single underscores (_) into a single character sequence, and

iii) using the first eight characters of the md5 checksum of this character sequence

… which can be semi-formalized as:

subsequence(md5(join(normalized_values, '_'), 0, 8)

6) Structs shall be rendered by:
Copyright © 2015 - 2018 Accellera. 15
All rights reserved.

January 2018 SystemRDL 2.0
i) generating the normalized value of each member,

ii) joining each member’s name with its normalized value, separated by a single underscore
(_),

iii) joining the member character sequences with single underscores,

iv) using the first eight characters of the md5 checksum of this character sequence

… which can be semi-formalized as:

member_normalization = concat(member_name, '_', normalized_member_value)

subsequence(md5(join(apply(struct_members, member_normalization)), 0, 8)

5.1.2 Instantiating components

In a similar fashion to defining components, SystemRDL components can be instantiated in two ways.

a) A definitively defined component is instantiated in a separate statement, as follows.

type_name [#(parameter_instance [, parameter_instance]*)] 
instance_element [, instance_element]* ;

where

1) type_name is the user-specified name for the component.

2) parameter_instance is specified as

.param_name(param_val)

where param_name is the name of the parameter defined with the component and param_val is
an expression whose result is the value of the parameter for this instance.

3) instance_element is specified as follows.
instance_name [{[constant_expression]}* | [constant_expression : constant_expression]]
[addr_alloc]

i) instance_name is the user-specified name for instantiation of the component.

ii) constant_expression is an expression that resolves to a longint unsigned.

iii) [constant_expression] specifies the size of the instantiated component array (optionally
multidimensional) if the component is an addrmap, a regfile, a reg, or a mem; or the
instantiated component’s bit width if the component is a field or a signal.

iv) [constant_expression : constant_expression] specifies the bit boundaries of the instanti-
ated component. This form of instantiation can only be used for field or signal compo-
nents (see Clause 10 and Clause 8).

v) addr_alloc is an address allocation operator (see 5.1.2.3). These operators shall only be
used when instantiating addrmap, regfile, reg, or mem components.

vi) When using multiple-dimensions, the last subscript increments the fastest.

b) An anonymously defined component is instantiated in the statement that defines it (see also 5.1.1).

Components need to be defined before they can be instantiated. In some cases, the order of instantiation
impacts the structural implementation, e.g., for the assigning of bit positions of fields in registers (see
Clause 6 — Clause 15).

The following code fragment shows a simple scalar field component instantiation.

field {} myField; // single bit field instance named “myField”

The following code fragment shows a simple array field component instantiation.

field {} myField[8]; // 8 bit field instance named “myField”
16 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
5.1.2.1 Specifying instance parameters

SystemRDL components defined with parameters (see 5.1.1.1) may have those parameters overridden or
defined during non-anonymous instantiation.

Parameters are assigned by name, which explicitly links the parameter name and its new value. The name of
the parameter shall be the name specified in the instantiated component. It is not necessary to assign values
to all of the parameters within a component, only parameters that are assigned new values need to be
specified. Parameter values are assigned using Verilog-style syntax, as defined in 5.1.2 a 2.

5.1.2.1.1 Parameter instance example

reg myReg #(longint unsigned SIZE = 32, boolean SHARED = true) {
regwidth = SIZE;
shared = SHARED;
field {} data[SIZE – 1];

};
addrmap myAmap {

myReg reg32;
myReg reg32_arr[8];
myReg #(.SIZE(16)) reg16;
myReg #(.SIZE(8), .SHARED(false)) reg8;

};

5.1.2.1.2 Parameter dependence

a) A parameter (e.g., memory_size) can be defined with an expression containing another parameter
(e.g., word_size).

b) Overriding a parameter effectively replaces the parameter definition with the new expression.

c) Parameters are evaluated following the order in which they are defined in the component definition.
Because memory_size depends on the value of word_size, a modification of word_size
changes the value of memory_size.

For example, in the following parameter declaration, an update of word_size in an instantiation
statement for the component that defined these parameters automatically updates memory_size.
If memory_size is defined in an instantiation statement, however, it will take on that value,
regardless of the value of word_size.

mem fixed_mem #(longint unsigned word_size = 32, 
longint unsigned memory_size = word_size * 4096) {

 mementries = memory_size / word_size ;
 memwidth = word_size ;
} ;

5.1.2.2 Instance address allocation

The offset of an instance within an object is always relative to its parent object. If an instance is not
explicitly assigned an address allocation operator (see Table 4), the compiler assigns the address according
to the alignment (see 5.1.2.2.1) and addressing mode (see 5.1.2.2.2). The address of an instance from the
top level addrmap is calculated by adding the instance offset and the offset of all its parent objects.

5.1.2.2.1 Instance alignment

The alignment property defines the byte value of which the container’s instance addresses shall be a
multiple. This property can be set for addrmaps (see Table 26) and regfiles (see Table 25), and its value
Copyright © 2015 - 2018 Accellera. 17
All rights reserved.

January 2018 SystemRDL 2.0
shall be a power of two (1, 2, 4, etc.). Its value is inherited by all of the container’s non-addrmap children.
By default, instantiated objects shall be aligned to a multiple of their width (e.g., the address of a 64-bit
register is aligned to the next 8-byte boundary).

5.1.2.2.2 Addressing modes

There are three addressing modes defined in SystemRDL: compact, regalign (the default), and fullalign.
These addressing modes are set using the addressing address map property (see Table 26).

a) compact

Specifies the components are packed tightly together while still being aligned to the accesswidth
parameter (see Table 23).

Example 1

Sets accesswidth=32.

addrmap some_map {
 default accesswidth=32;
 addressing=compact;

 reg { field {} a; } a; // Address 0
 reg { regwidth=64; field {} a; } b; // Address 4
 reg { field {} a; } c[20]; // Address 0xC - Element 0
 // Address 0x10 - Element 1

 // Address 0x14 - Element 2
};

Example 2

Sets accesswidth=64.

addrmap some_map {
 default accesswidth=64;
 addressing=compact;

 reg { field {} a; } a; // Address 0
 reg { regwidth=64; field {} a; } b; // Address 8
 reg { field {} a; } c[20]; // Address 0x10 - Element 0
 // Address 0x14 - Element 1

 // Address 0x18 - Element 2
};

b) regalign

Specifies the components are packed so each component’s start address is a multiple of its size (in
bytes). Array elements are aligned according to the individual element’s size (this results in no gaps
between the array elements). This generally results in simpler address decode logic.

Example 3

Uses the default accesswidth of 32.

addrmap some_map {
 addressing = regalign;

 reg { field {} a; } a; // Address 0
 reg { regwidth=64; field {} a; } b; // Address 8
18 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
 reg { field {} a; } c[20]; // Address 0x10
 // Address 0x14 - Element 1
 // Address 0x18 - Element 2

};

c) fullalign

The assigning of addresses is similar regalign, except for arrays. The alignment value for the first
element in an array is the size in bytes of the whole array (i.e., the size of an array element multiplied
by the number of elements), rounded up to nearest power of two. The second and subsequent ele-
ments are aligned according to their individual size (so there are no gaps between the array ele-
ments).

Example 4

Uses the default accesswidth of 32.

addrmap some_map {
 addressing = fullalign;

 reg { field {} a; } a; // Address 0
 reg { regwidth=64; field {} a; } b; // Address 8
 reg { field {} a; } c[20]; // Address 0x80 - Element 0

 // Address 0x84 - Element 1
 // Address 0x88 - Element 2

};

5.1.2.3 Address allocation operators

When instantiating regs, regfiles, mems, or addrmaps, the address may be assigned using one of
the address allocation (addr_alloc) operators in Table 4.

5.1.2.4 Semantics

a) Addresses in SystemRDL are always byte addresses.

b) Addresses are assigned in incrementing order.

c) The operator %= is a more localized version of the alignment property (see Table 25).

d) The expression used for address specification shall be resolvable to a longint unsigned.

e) The += operator is only used when instantiating arrayed addrmap, regfile, reg, or mem compo-
nents.

Table 4—Address allocation operators

Property Implementation/Application

@ expression Specifies the address for the component instance. This expression resolves to a
longint unsigned.

+= expression Specifies the address stride when instantiating an array of components (controls the
spacing of the components). The address stride is relative to the previous instance’s
address. This expression resolves to a longint unsigned.

%= expression Specifies the alignment of the next address when instantiating a component (con-
trols the alignment of the components). The initial address alignment is relative to
the previous instance’s address. This expression resolves to a longint
unsigned.
Copyright © 2015 - 2018 Accellera. 19
All rights reserved.

January 2018 SystemRDL 2.0
f) The @ and %= operators are mutually exclusive per instance.

g) The alignment of an array instance specifies the alignment of the start of the array and the increment
specifies the offset from one array element to the next array element.

5.1.2.5 Examples

The following set of examples demonstrate the usage of the operators defined in Table 4. The final addresses
(as indicated in the comments in the example) are valid for an addressing mode called regalign, which is the
default addressing mode (see Clause 13), with the default regwidth=32. The regfile component is defined in
Clause 12.

Example 1

Using the @ operator.

addrmap top {
regfile example {

reg some_reg { field {} a; };
some_reg a @0x0;
some_reg b @0x4;
some_reg c; // Implies address of 8

// Address 0xC is not implemented or specified
some_reg d @0x10;

};
};

Example 2

Using the += operator.

addrmap top {
regfile example {

reg some_reg { field {} a; };
some_reg a[10]; // So these will consume 40 bytes

// Address 0,4,8,C....
some_reg b[10] @0x100 += 0x10; // These consume 160-12 bytes of space

 // Address 0x100 to 0x103, 0x110 to 0x113,....
};

};

Example 3

Using the %= operator.

addrmap top {
regfile example {

reg some_reg { field {} a; };
some_reg a[10]; // So these will consume 40 bytes

// Address 0,4,8,C....
some_reg b[10] @0x100 += 0x10; // These consume 160-12 bytes of space

 // Address 0x100 to 0x103, 0x110 to 0x113,....
some_reg c %=0x80; // This means ((address % 0x80) == 0))

// So this would imply an address of 0x200 since
// that is the first address satisfying address>=0x194
// and ((address % 0x80) == 0)
20 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
};
};

5.1.3 Specifying component properties

Each property is associated with at least one data type defined in Clause 6 (and summarized in Table 7).
Property types include primitive types and aggregate types.

5.1.3.1 Property assignment

Each component type has its own set of pre-defined properties. Properties may be assigned in any order.
User-defined properties can also be specified to add additional properties to a component that are not pre-
defined by the SystemRDL specification (see Clause 15). A specific property shall only be set once per
scope (see 5.1.4). All component property assignments are optional.

A property assignment appears as follows.

property_name [= expression];

The descriptions for the data types of expression results that are legal for each property_name (and
exceptions to those rules) are explained in the corresponding clause for each individual component (see
Clause 8 — Clause 14).

When expression is not specified, it is presumed the property_name is of type boolean and the default value
is set to true.

Example

field myField {
 rclr; // Bool property assign, set implicitly to true
 woset = false; // Bool property assign, set explicitly to false
 name = “my field”; // string property assignment
 sw = rw; // accesstype property assignment
};

5.1.3.2 Assigning default values

Default values for a given property can be set within the current or any enclosing lexical scope (see 5.1.4).
Any components defined in the same or enclosed lexical scope as the default property assignment shall use
the default values for properties in the component not explicitly assigned in a component definition. A
specific property default value shall only be set once per scope.

A default property assignment appears as follows.

default property_name [= value];

The descriptions for the types of values that are legal for each property_name (and exceptions to those rules)
are explained in the corresponding clause for each individual component (see Clause 8 — Clause 14).

When the value is not specified, the property shall be assigned the boolean value true.

Example

field {} outer_field ;
reg {
 default name = “default name”;
Copyright © 2015 - 2018 Accellera. 21
All rights reserved.

January 2018 SystemRDL 2.0
 field {} f1; // assumes the name “default name” from above
 field { name = “new name”; } f2; // name assignment overrides “default name”
 outer_field f3 ; // name is undefined, since outer_field is not defined in the

// scope of the default name
} some_reg;

5.1.3.3 Dynamic assignment

Some properties may have their values assigned or overridden on a per-instance basis. When a property is
assigned after the component is instantiated, the assignment itself is referred to as a dynamic assignment.
Properties of a referenced instance shall be accessed via the arrow operator (->).

A dynamic assignment appears as follows.

instance_name -> property_name [= value];

where

a) instance_name is a previously instantiated component (see 5.1.2).

b) When value is not specified, it is presumed the property_name is of type boolean and the value is set
to true.

c) The dynamically assignable properties for each component type are explained in the corresponding
clause for each individual component (see Clause 8 — Clause 14).

d) In the case where instance_name is an array, the following possible dynamic assignment scenarios
exist.

1) If the component type is field or signal, the fact the component is an array does not matter—the
assignment is treated as if the component were a not an array.

2) If the component type is reg, regfile, mem, or addrmap

i) The user can dynamically assign the property for all elements of the array by eliminating
the square brackets ([]) and the array index from the dynamic assignment.

array_instance_name -> property_name [= value];

ii) The user can dynamically assign the property for an individual index of the array by using
square brackets ([]) and specifying the index to be assigned within the square brackets.

array_instance_name {[index]}* -> property_name [= value];

Example 1

This example assigns a simple scalar.

reg {
 field {} f1;
 f1->name = “New name for Field 1”;
} some_reg;

Example 2

This example assigns an array.

reg {
 field {} f1;
 f1->name = “New name for Field 1”;
} some_reg[8];
some_reg->name = “This value is applied to all elements in the array”;
some_reg[3]->name = “Only applied to the 4th item in the array of 8”;
22 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
5.1.3.4 Property assignment precedence

There are several ways to set values on properties. The precedence for resolving them is (from highest to
lowest priority):

a) dynamic assignment (see 5.1.3.3)

b) property assignment (see 5.1.3.1)

c) default property assignment (see 5.1.3.2)

d) SystemRDL default value for property type (see Table 7)

Example

reg {
 default name =”def name”;
 field f_type { name = “other name”; };
 field {} f1;
 field { name = “property assigned name”; } f2;
 f_type f3;

 f3->name = “Dynamic Assignment”;
} some_reg;

Results

// Final Values of all fields
// f1 name is “def name”
// f2 name is “property assigned name”
// f3 name is “dynamic assignment”

5.1.4 Scoping and namespaces

A scope defines the conditions in which an identifier may be associated with an entity. SystemRDL is a
statically (or lexically) scoped language.

The body of a component (or struct) definition defines a local scope. A valid SystemRDL description is,
therefore, an aggregation of nested local scopes, ultimately nested into the outermost global (or root) scope.

Each local scope contains two independent namespaces, to which different scoping rules apply:

— Type names (component definitions, enum types, and struct types);

— Element (e.g., reg and field instantiations; struct members) names and parameter names.

Identifiers shall be unique within a namespace in a scope. Namespaces are differentiated implicitly by
syntax. There are no namespace operators or limiters.

The root scope contains a third namespace for property names. All property references (standard and user-
defined) shall be resolved by searching this namespace.

Example 1

property foo {
component = field ;
type = string ;
} ;
reg foo {
Copyright © 2015 - 2018 Accellera. 23
All rights reserved.

January 2018 SystemRDL 2.0
 field {
 foo = "abc" ;
 } foo ;
} ;
foo foo ; // instantiate reg type foo to generate instance called foo
foo.foo -> foo = "xyz" ; // property foo of field foo of reg foo gets value "xyz"

The root scope shall only contain component type and struct type definitions and signal instantiations.
No other component instantiations shall be allowed in the root scope. The root(s) of an addrmap hierarchy
are those addrmaps that are defined, but not subsequently instantiated.

By definition, a component scope contains component type and struct type definitions, as well as element
references. A struct scope only contains member declarations. All type names shall be unique in the type
namespace and all element names shall be unique within the element namespace. However, there can be a
type and element with the same name in the same scope. Additionally, types shall be defined and elements
declared before they are referenced in the sequence of statements.

Type references are resolved from the local scope up the enclosing lexical scope to the global scope.

a) Elements referenced in the left-hand side of an expression shall be declared in the local scope.

b) Elements referenced in the right-hand side of an expression shall be declared in the local scope or up
in the enclosing lexical scope if the referenced element is a signal.

c) If two types (or elements) in different scopes share the same name, the type (respectively, element)
name from the scope that is lexically closest to the local scope shall take precedence.

Children elements—as elements contained in the local scope of the parent scope’s type—may be referenced
via the dot operator (.).

A element reference appears as follows.

element_name [. child_element_name]*

where

a) element_name is a previously declared element in the current scope (see 5.1.2).

b) the first use of child_element_name shall exist in element_name’s local type scope.

c) for all other child_element_names, any subsequent child_element_name shall exist in the previous
child_element_name’s local type scope.

Element references from an assignment located in a constraint body are resolved from the constraint
body’s enclosing lexical scope, then up the lexical scope. Such an element reference may either be a direct
field reference, or use the dot operator (.) to navigate down the referenced element’s instance hierarchy to
target a field instance.

Example 2

regfile foo {
reg {

field {} a ;
constraint {

a < 0xc ; // direct field reference
} const1 ;

} regA ;
constraint {

regA.a > 0x4 ; // indirect field reference
} const2 ; } ;
24 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Dynamic assignments can be layered in SystemRDL from the innermost to the outermost scope; i.e.,
dynamic assignments that are specified at an outer scope override those that are specified at an inner scope.
No more than one assignment of a property per scope is allowed in SystemRDL.

Example 3

regfile foo_rf {
reg some_reg_r {

field {} a[2]=2'b00;// End of field: a
a->reset = 2'b01;// Dynamic Assignment overriding reset val
field {} b[23:16]=8'hFF; // End of field: b

};

some_reg_r rega;
some_reg_r regb;

rega.a->reset = 2'b10; // This overrides the other dynamic assign
rega.b->reset = 8'h00;
rega.b->reset = 8'h5C; // Error two assigns from the same scope

}; // End addrmap: foo
addrmap bar {

foo_rf foo;
foo.rega.a->reset = 2'b11;
// Override the reset value again at the outermost scope

}; // End addrmap: bar

Any reference to an element in the right-hand side of an assignment shall be resolved statically, i.e., by
considering the elements visible from the assignment’s local scope.

Example 4

signal {} my_signal ;
field my_field {
 resetsignal = my_signal ; // will resolve to the signal instance
 // declared in the global scope
} ;
addrmap top {
 signal {} my_signal ;
 reg {
 my_field a ; // the field instance's resetsignal will
 // still be resolved as the global scope's my_signal
 } reg_a ;
} ;

5.2 General component properties

This subclause details properties that generally apply to SystemRDL components.

5.2.1 Universal properties

The name and desc properties can be used to add descriptive information to the SystemRDL code. The use
of these properties encourages creating descriptions that help generate rich documentation. All components
have a instance name already specified in SystemRDL; name can provide a more descriptive name and desc
can specify detailed documentation for that component.
Copyright © 2015 - 2018 Accellera. 25
All rights reserved.

January 2018 SystemRDL 2.0
Table 5 lists and describes the universal SystemRDL component properties.

5.2.1.1 Semantics

If name is undefined, it is presumed to be the instance name.

5.2.1.2 Example

This example shows usage of the name and desc properties.

reg {
field {

name="Interface Communication Control";
 // If name is not specified its implied to be ICC

desc="This field is used [...] desired low power state.";
} ICC[4];

} ICC_REG; // End of Reg: ICC_REG

5.2.2 Structural properties

Table 6 lists and describes the structural component properties.

5.2.2.1 Semantics

a) These properties can be applied as a boolean or a bit mask (bit) to a field component. A mask shall
have the same width as the field. Masked bits (bits set to 1) are not tested (donttest) or compared
(dontcompare).

b) They can also be applied to reg, regfile, and addrmap components, but only as a boolean.

c) donttest and dontcompare

1) cannot both be set to true,

2) cannot have one true and the other non-zero, and

3) the bitwise AND of their masks shall be zero (0) for a particular component (i.e., donttest &
dontcompare = 0).

Table 5—Universal component properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

name Specifies a more descriptive name (for documentation purposes). string Yes

desc Describes the component’s purpose. string Yes

Table 6—Structural component properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

donttest This testing property indicates the component is not included in struc-
tural testing.

boolean or
bit

Yes

dontcom-
pare

This is testing property indicates the components read data shall be dis-
carded and not compared against expected results.

boolean or
bit

Yes
26 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
5.2.2.2 Example

This example shows usage of the donttest and dontcompare properties.

reg {
field { donttest;} a;
field {} b[8];
field { dontcompare;} c;
b->dontcompare = 8’hF0; // The upper four bits of this 8 bit field will

// not be compared.
} some_reg;

5.3 Content deprecation

The ispresent universal property can be used to configure the activation of SystemRDL component
instances. Setting ispresent to false causes the given component instance to be removed from the final
specification.

5.3.1 Semantics

a) ispresent is a universal property on all component instances (addrmap, reg, signal, etc.) other than
enums.

b) The default value of ispresent is true.

c) Instance names shall be unique within a scope even before the values of ispresent are resolved. This
feature does not enable replacement of instances.

d) ispresent values may not be dependent on values contained in SystemRDL constructs. No reference
values are allowed. Otherwise, the rules of expressions apply.

e) Setting ispresent to false removes the instance.

f) Setting a property on an element that is removed due to ispresent does not constitute an error, e.g., if
an instance belong to a removed addrmap, modifications to the instance are acceptable.

g) Instance positions are computed presuming all instances are present. Removing an instance can
introduce a hole.

h) If a component is instantiated twice, setting ispresent to false on one of them causes the hardware
implementation to be removed from that instantiation.

i) If a present instance includes references (e.g., signals), the referred objects need to also be present.

j) If a present instance is an alias register (see 10.5), the primary register needs to also be present. Con-
versely, if a register acting as a primary register is not present, then all the alias registers that refer to
it shall not be present either.

k) Component instances shall not be empty. Setting ispresent on all children of a parent instance to
false shall be an error.

5.3.2 Examples

Some examples are shown highlighting simple, complex, and corner case usage.

5.3.2.1 Simple example

addrmap submap {
 reg { field {} a[32] ; } rega, regb, ahb_specific ;
} ;
Copyright © 2015 - 2018 Accellera. 27
All rights reserved.

January 2018 SystemRDL 2.0
addrmap bridge {
 bridge ;
 submap ahb ;
 submap axi ;
 axi.ahb_specific -> ispresent = false ;
} ;

5.3.2.2 Complex example

reg some_reg #(boolean RESERVED = false) {
 ispresent = !RESERVED ;
 field {} a, b, c ;
 b -> ispresent = false ;
 field { ispresent = false ; } d ;
// the default bitfield layout should be: a[0:0], c[2:2]
} ;

some_reg #(.RESERVED(true)) reserved_reg ; // entire reg not present
some_reg partially_reserved_reg ;
some_reg not_reserved_reg ; // all fields present with dynamic assigns below
not_reserved_reg.b -> ispresent = true ;
not_reserved_reg.d -> ispresent = true ;

5.3.2.3 Corner case

field {} a, b ;
b -> next = a ;
a -> ispresent = false ; // This is an error w.r.t clause (h) "If a present
 // instance includes references (e.g., signals), the
 // referred objects need to also be present.”
28 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
6. Data types

6.1 Overview

This section presents all the data primary and aggregate data types used in SystemRDL. While some data
types, such as boolean or onreadtype, are specific to SystemRDL, the data types and its associated type
system are consistent with SystemVerilog semantics as specified in IEEE Std 1800-2012, unless noted
otherwise.

Table 7 summarizes all the data types discussed in this document.

6.2 Primary data types

A subset of the SystemVerilog data types are used by the SystemRDL Expression Language, namely bit,
longint unsigned, and string (with some changes).

Complex, user-defined, and time data types shall not be supported in SystemRDL. Unknown (x) and high
impedance (z) values shall not be supported either.

6.2.1 Signed and unsigned data types

All SystemRDL number types are integral and unsigned. In order to maintain direct compatibility with the
SystemRDL Expression Language, SystemRDL only supports bit and longint unsigned. Expressions

Table 7—Data types

Type
Parameter or

struct member
type name

Definition Default

boolean boolean true or false. false

string string See 4.5 and 6.2.2. ""

bit bit An unsigned integer with the value of 0 or a Ver-
ilog-style number, see 4.6 (c - e) and 6.2.1.

Undefined

longint unsized longint unsigned A 64-bit unsigned long integer, see 4.6 (a and b)
and 6.2.1.

Undefined

accesstype accesstype One of rw, wr, r, w, rw1, w1, or na. See 9.4. rw

addressingtype addressingtype One of compact, regalign, or fullalign. See 13.4. regalign

onreadtype onreadtype One of rclr, rset, or ruser. See 9.6. Undefined

onwritetype onwritetype One of woset, woclr, wot, wzs, wzc, wzt, wclr,
wset, or wuser. See 9.6.

Undefined

precedencetype One of hw or sw. Cannot be used as a parameter or
struct member type. See 9.4.

sw

struct struct reference A reference to a struct. Undefined

array array reference A reference to an array. Empty array

enum enum reference A reference to a user-defined enumeration. Undefined

instance reference ref A reference to a component instance, component
instance property, parameter, or struct instance
member.

Undefined
Copyright © 2015 - 2018 Accellera. 29
All rights reserved.

January 2018 SystemRDL 2.0
resolving into a negative value shall be cast to the two’s complement of the value, e.g, the expression 
1 - 2, which occurs in a longint unsigned context whose bit width is 64, is resolved as 
0xFFFFFFFFFFFFFFFF.

6.2.2 String data type

The SystemRDL Expression Language string data type is encoded in UTF-8.

A SystemRDL string can be seen as an immutable, unsized object, for which only the binary equality,
concatenation, and replication operators are supported (see Table 9).

6.2.3 Boolean data type

The additional type boolean is introduced as a result type for logical operations, as well as for compatibility
with previous SystemRDL versions. Boolean values shall be cast to the single bit values 1'b1 and 1'b0
(from true and false, respectively) for preserving sufficient compatibility with the SystemVerilog
Expression Language, as defined in Clause 7.

6.2.4 Reserved enumeration types

The additional types: accesstype, onreadtype, onwritetype, and addressingtype shall be considered as
reserved enumerations with no associated integral values for all purposes.

Reserved enumeration types only support binary equality operations.

6.2.5 Enumerations

An enumerated type encloses a set of constant named integral values into the enumeration’s scope. There are
no properties for the enum component beyond the universal properties defined in 5.2.1.

6.2.5.1 Defining enumerations

Unlike other SystemRDL components, enumerations are not instantiated and can only be defined
definitively (i.e., anonymous definitions are not allowed). Enumerated types can either be assigned to a
field’s encode property (see 9.10) or their enumerators can be referenced in expressions. Enumerator
references shall be prefixed with their enumerated type name and two colons (::), e.g.,
MyEnumeration::MyValue.

An enum component definition appears as follows.

enum enum_name { encoding; [encoding;]* };

where

a) enum_name is a user-defined name for the enumeration

b) encoding is specified as follows

mnemonic_name [= value [{{universal_property;}*}];

where

1) mnemonic_name is a user-defined name for a specific value. This name shall be unique within
a given enum.

2) value shall be of an integral type.

3) All values shall be unique, even if the value is automatically assigned.

4) universal_property is as defined in 5.2.1.
30 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Example

This is an example of bit-field encoding.

enum myBitFieldEncoding {
 first_encoding_entry = 8'hab;
 second_entry = 8'hcd {
 name = "second entry";
 };
 third_entry = 8'hef {
 name = "third entry, just like others";
 desc = "this value has a special documentation";
 };
 fourth_entry = 8'b10010011;
};

field {
 encode = myBitFieldEncoding;
} a[8];

6.2.5.2 Automatically assigned enumerator values

When the first enumerator value is unspecified, it is assigned 0. Other enumerator values are incremented by
1, based on the value of the previous enumerator. Automatically assigned values cannot break the unique
value constraint when automatically assigning all the values of an enumeration using longint unsigned
values.

Examples

These are examples of automatically assigned and partially assigned enumeration definitions.

enum myAutoEnum { first_value ; second_value ; third_value ; } ;
// first_value = 0, second_value = 1, third_value = 2

enum myPartiallyAssignedEnum { a ; b ; c = 8'h6 ; d ; e = 8'h12 ; f ; } ;
// a = 8'h0, b = 8'h1, d = 8'h7, f = 8'h13

6.2.5.3 Type consistency

Enumerated types are strongly typed, therefore user-defined properties, struct members, or parameters of a
given enumerated type are type-checked when used in assignments or with relational operators. In other
expression contexts, enumerators are automatically cast to their integral values.

Example

The example below illustrates the use of enumerated types in operations and assignments.

enum FirstEnum {
 VAL1 = 3'h0 ;
 VAL2 = 3'h1 ;
 VAL3 = 3'h2 ;
} ;

enum SecondEnum {
 VAL1 = 3'h0 ;
 VAL2 = 3'h1 ;
Copyright © 2015 - 2018 Accellera. 31
All rights reserved.

January 2018 SystemRDL 2.0
 VAL3 = 3'h2 ;
} ;

property MyUDP { component = addrmap ; type = FirstEnum ; } ;

addrmap top {
 reg some_reg { field {} a[3] ; } ;

 addrmap {
 MyUDP = FirstEnum::VAL1 ; // Allowed
 some_reg regA ;

 regA.a -> reset = FirstEnum::VAL2 + SecondEnum::VAL3 ; // Enumerators are
cast to their integer value and added

 } submap1 ;

 addrmap {
 reg {
 shared = longint'(FirstEnum::VAL1) == longint'(SecondEnum::VAL2) ; //

Allowed since we're first casting the enumerators to their underlying
integral values

 field {} b ;
 } other_shared_reg ;
 } submap2 ;
} ;

6.2.6 Identifier references

SystemRDL struct members, parameters, and component instances that are in the scope of a SystemRDL
statement in which the expression is defined can be referenced from the expression.

In addition, the SystemRDL rules for escaped identifiers, (see 4.3) shall apply to references inside the
SystemRDL Expression Language.

Hierarchical struct members and component instances are referenced using a dot delimiter (.) (see 5.1.4).

Example

struct inner_struct {
 string foo ;
} ;

struct my_struct {
 inner_struct inner ;
} ;

addrmap top {
 regfile some_regfile #(my_struct arg) {
 reg {
 desc = arg.inner.foo ;
 field {} a ;
 } regA ;
 } ;

 some_regfile #(.arg(my_struct'{ inner: inner_struct'{ foo: "reg desc" } }
)) regFA[2] ;
32 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
 regFA[0].regA.a -> desc = "field desc from regFA[0]" ;
 regFA[1].regA.a -> desc = "field desc from regFA[1]" ;
} ;

6.3 Aggregate data types

6.3.1 Arrays

A SystemRDL array describes an ordered collection of elements. Each array element shall be identified with
a unique array index. Arrays may be used as struct members, or in property or parameter declarations.

a) An array shall be declared as follows:

array_type declaration []

where

1) array_type specifies the type allowed for each array element. All the types defined in Table 7,
excepting array types, may be used as array types.

Effectively, multi-dimensional arrays are not supported. This limitation may be circumvented
by defining arrays of structs containing arrays.

2) declaration may be a struct member or a parameter name.

For example:

reg some_reg #(string NAME_AND_DESC[]) {
 field {} a ;
} ;

b) A user-defined property array shall be declared as follows:

array_type []

where

array_type specifies the type allowed for each array element. All the types defined in Table 31,
excepting array type (type []), may be used as user-defined property array types.

For example:

property myUDP { component = field ; type = longint unsigned[] ; } ;

c) An array may be assigned a sequence of values as follows:

left_hand_side = '{ [expr [, expr]*]? }

where

1) left_hand_side corresponds to the struct member, parameter, or property to which the array is
being assigned.

2) expr is an expression whose resolved type shall be assignment compatible with the type of the
array (see 6.4).

For example:

some_reg #(.NAME_AND_DESC('{ "hello", "world" }) regA ;

d) An empty array may be declared as follows:

left_hand_side = '{}

e) Array elements may be used in expressions by referencing their position in the array, as follows:

array_reference [index]

where

1) array_reference is a reference to the array containing the array element.

2) index is an expression that shall resolve to a longint unsigned.
Copyright © 2015 - 2018 Accellera. 33
All rights reserved.

January 2018 SystemRDL 2.0
For example:

regA -> name = NAME_AND_DESC[0] ;

6.3.1.1 Semantics

a) Array indices are 0-based and strictly sequential.

b) Arrays are immutable and can only be modified by recreating an array (i.e., single values cannot be
reassigned).

c) SystemRDL arrays are not constrained with respect to their sizes: a given array may be reassigned
with a new array of a different size.

d) An array element cannot reference another element from the same array.

e) An out of bound array reference shall raise an error.

6.3.1.2 Examples

6.3.1.2.1 User-defined property with array type

property MyUDP { component = reg ;
 type = longint unsigned[] ;
 default = '{1, 2} ; } ;

reg some_reg {
 MyUDP = '{ 2, 34, 73 } ;
} ;

6.3.1.2.2 User-defined property with aggregate type array type

struct mystruct { string foo; longint unsigned bar ; } ;
property MyUDP { component = all ;
 type = mystruct[] ; } ;

reg some_reg {
 MyUDP = '{ mystruct' { foo: "hello", bar: 23 },
 mystruct'{ foo: "world", bar: 42 } } ;
} ;

6.3.1.2.3 User-defined property with enum type array type

enum Location { Mem = 0, PCI = 1, DMA = 2 } ;
property MyUDP { component = reg ; type = Location[] ; } ;

reg some_reg {
 MyUDP = '{ Location::Mem, Location::Mem, Location::PCI } ;
} ;

6.3.1.2.4 Struct defining an array type member

struct mystruct { string[] foo } ;
property StructUDP { component = all ; type = mystruct ; } ;

reg other_reg {
 StructUDP = 'mystruct { foo: '{ "hello", "world"} } ;
} ;
34 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
6.3.1.2.5 Array element reference

field some_field #(string NAME_AND_DESC[]) {
 name = NAME_AND_DESC[0] ;
 desc = NAME_AND_DESC[1] ;
} ;

6.3.2 Structures

Structs enable the creation of structured properties for more complex extension of component types.

6.3.2.1 Defining structures

6.3.2.1.1 struct definition

A struct definition appears as follows.

[abstract] struct struct_name [: base_struct_name]

{{member_type member_name;}*};

where

a) abstract optionally defines the struct as an abstract struct.

b) struct_name specifies the new struct type name.

c) base_struct_name specifies optional inheritance or derivation.

d) member_type is the type of the composed value.

e) member_name is the name of the value. Member names shall be unique within a struct and its base
class, recursively.

6.3.2.1.2 Semantics for defined structs

a) A struct can be used within user-defined property definitions, parameters, arrays, and other structs.

b) The name of the struct is added to the type name namespace. Struct type names shall be unique.

c) Structs may include all of the types defined in Table 7.

d) Structs may not include items that directly or indirectly refer to the struct being defined (i.e., no cir-
cular dependencies).

e) A struct may be declared as abstract, which specifies that it cannot be directly instantiated. Struct
types derived from an abstract struct are not abstract, unless specified explicitly using the abstract
keyword.

6.3.2.2 Deriving structures

6.3.2.2.1 struct derivation

A struct declaration may derive from another struct by specifying the base struct’s name after a colon (:),
e.g.,

struct base_struct {
 bit foo ;
} ;

struct derived_struct : base_struct {
 longint unsigned bar ;
} ;
Copyright © 2015 - 2018 Accellera. 35
All rights reserved.

January 2018 SystemRDL 2.0
struct final_struct : derived_struct { 
// final_struct's members are foo, bar, and baz.

 string baz ;
} ;

6.3.2.2.2 Semantics for derived structs

a) A derived struct inherits all its base’s members, recursively.

b) Any member declared in the derived struct shall be unique, relative to both the derived struct and
its base, recursively.

c) Parameters and user-defined properties declaring a struct type may be initialized using any derived,
non-abstract, struct instance in their assignment’s right-hand side (i.e., derived types are considered
as assignment compatible with all their base types, following the definition from 6.4). Derived
struct instances passed in this way shall preserve all their member values (for code generation pur-
poses), even though only the members from the declared struct type shall be visible from the Sys-
temRDL code.

6.3.2.3 Defining struct literals

6.3.2.3.1 struct literal definition

A struct literal is defined as follows:

struct_name '{ [member_name : member_value {, member_name : member_value}*] }

where

a) struct_name is the name of the struct literal that is being defined.

b) member_name is the name of a member as specified in the struct’s definition.

c) member_value is the value being assigned.

6.3.2.3.2 Semantics for instantiated structs

a) Struct assignments are always by value.

b) When defining struct member values, unassigned members shall receive a default value depending
on their type, when available, as defined in Table 7.

c) All the members from a struct instance shall be assigned a value, either explicitly or by default.
Undefined struct members shall raise an error.

6.3.2.4 Examples

Example 1

This example defines a simple struct and uses it in a user-defined property.

struct struct1 {
bool abool;
string astring;

};
property p1 {

component = field;
type = struct1;
default = struct1'{abool:true, astring:"hello"};

};
36 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Example 2

This example defines a struct that declares a member which is also struct.

struct struct_composed {
struct1 s;
string str;

};
field my_field #(struct_composed PARAM) {} ;

my_field #(.PARAM(struct_composed'{ str:"world",
 s: struct1'{ abool:true,
 astring:"blah"}}
)
) f1 ;

Example 3

This example defines and derives an abstract struct.

abstract struct absstruct {
string astring;

};
struct substruct:absstruct {

bool abool;
};
property p3 {

component = field;
type = absstruct ;
default =substruct'{abool:false, astring:"foo"};

};

6.4 Type compatibility

As SystemRDL uses only a subset of the data types defined in the SystemVerilog, only three levels of type
compatibility shall effectively be used when resolving SystemRDL expressions: matching, assignment
compatible, and incompatible. All three levels match their SystemVerilog equivalent. Type coercion, as
happens in the context of assignments (i.e., between assignment compatible types), is detailed in 6.5.

In the context of assignments, if the left hand-side expects a given abstract struct type, all derived struct
types shall be considered as compatible.

6.5 Casting

SystemRDL only supports static (i.e., type-based) and constant expression (i.e., bit length-based) casts from
SystemVerilog. The additional types introduced in SystemRDL are bound by the casting rules in Table 8.

Supported static types are: boolean, bit, longint unsigned, string, accesstype, addressingtype,
onreadtype, and onwritetype. Table 8 defines which expression types are compatible with static type casts
(x corresponds to a conversion that is assignment compatible — and, thus, also cast compatible).
Copyright © 2015 - 2018 Accellera. 37
All rights reserved.

January 2018 SystemRDL 2.0
Static cast operations shall be resolved according to the following rules.

a) All types can be cast to themselves.

b) When casting boolean to bit or longint unsigned, true shall be converted to 1'b1 and
false to 1'b0.

c) When casting a bit or longint unsigned, if the bit width of the target type does not match,
this results in the upper bit zero-extension or truncation of the most significant bits.

d) When casting bit or longint unsigned to boolean, zero (0) shall be converted to false,
any other value shall be converted to true.

Table 8—Allowed cast operations (cast and assignment compatible types)

Type boolean bit longint
unsigned string access

type
addressing

type
onread

type
onwrite

type

boolean x x x

bit x x x

longint
unsigned

x x x

string x

accesstype x

addressing
type

 x

onreadtype x

onwritetype x
38 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
7. Expressions

7.1 Overview

The SystemRDL Expression Language is based on the SystemVerilog Expression Language as specified in
IEEE Std 1800-2012.

The goal of the SystemRDL Expression Language is for it to be a strict subset of SystemVerilog, i.e., the
expressions defined in SystemRDL should be easily ported-to or incorporated-into a SystemVerilog file and
interpreted by any SystemVerilog processor.

In order to represent and manipulate types and concepts proper to SystemRDL, the SystemVerilog
Expression Language has been functionally limited and changes introduced.

7.2 Operators

Table 9 gives an overview of the SystemVerilog operators and how SystemRDL supports them (or not).

Table 9—SystemVerilog operators

Operator
token Name Operand data type

= Binary assignment operator Only supported for specific cases (see 7.2.1)

+= -= /= *= Binary arithmetic assignment operators Assignments are not supported

%= Binary arithmetic modulus assignment operator Assignments are not supported

&= |= ^= Binary bit-wise assignment operator Assignments are not supported

>>= <<= Binary logical shift assignment operators Assignments are not supported

>>>= <<<= Binary arithmetic shift assignment operators Assignments are not supported

?: Conditional operator First operand: boolean, other operands: any

+ - Unary arithmetic operator Integral

++ -- Unary decrement/increment operators Assignments are not supported

! Unary logical negation operator Integral

~ Unary bitwise negation operator Integral

& ~& | ~| ^ ~^
^~

Unary reduction operators Integral

+ - * / ** Binary arithmetic operators Integral

% Binary modulus operator Integral

& | ^ ~^ ^~ Binary bitwise operators Integral

>> << Binary logical shift operators Integral

>>> <<< Binary arithmetic shift operators Not supported

&& || Binary logical operators Integral
Copyright © 2015 - 2018 Accellera. 39
All rights reserved.

January 2018 SystemRDL 2.0
Additional support considerations for SystemVerilog operators are detailed below.

7.2.1 Assignment operators

Since the SystemRDL Expression Language does not allow using variables, it only supports single value
assignments for which the left-hand side is a property, a parameter (in the context of a parameter
declaration), or a struct member reference (in the context of a post-property assignment). All other
assignment operators are not supported.

7.2.2 Logical operators

The result of the evaluation of one of the supported SystemVerilog logical operators (i.e., AND (&&) and OR
(||)) shall be one of the boolean values true or false.

Similarly, the unary logical negation operator (!) converts a true value into false and a false value
into true.

Also, the binary logical equality operators (== and !=), aggregate types may be compared for equality by
comparing the values of their individual members, recursively. Primary type members are compared by
applying the default type and value equality rules.

7.3 Expression evaluation rules

Due to the data types supported by SystemRDL, the rules for determining expression types and evaluating
expressions are more restrictive than those defined in IEEE Std 1800-2012, subclause 11.8.

7.3.1 Rules for determining expression types

The following rules shall be applied for determining the resulting type of an expression.

— Expression type depends only on the operands. It does not depend on the left-hand side (if any).

— All numbers and expression results are unsigned.

< <= > >= Binary relational operators Integral, user-defined enums

== != Binary logical equality operators Any, except structural instance references

=== !== Binary case equality operators Unknown or high-impedance values are not
supported

==? !=? Binary wildcard equality operators Unknown or high-impedance values are not
supported

inside Binary set membership operator Only used within top level of constraints

dist Binary distribution operator Randomization is not supported

{} {{}} Concatenation and replication operator Integral, string, boolean, reserved enums

{<<{}} {>>{}} Stream operators Not supported

Table 9—SystemVerilog operators (Continued)

Operator
token Name Operand data type
40 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
— The size of any self-determined operand is determined by the operand itself and independent of the
remainder of the expression.

— Any expression that would result in an unknown (x) value shall instead raise an error.

7.3.2 Rules for evaluating expressions

All expressions are evaluated in a self-determined context, as specified in IEEE Std 1800-2012, subclause
11.6.1, which implies that the left-hand side of a property assignment is never taken into consideration when
evaluating expressions.
Copyright © 2015 - 2018 Accellera. 41
All rights reserved.

January 2018 SystemRDL 2.0
42 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
8. Signals

8.1 Introduction

A signal is a non-structural component used to define and instantiate wires (as additional inputs and/or
outputs). Signals create named external ports on an implementation and can connect certain internal
component design properties to the external world. Signal definitions have the same definition and
instantiation as other SystemRDL components; see 5.1. To use signals to control resets in SystemRDL, see
17.1.

8.2 Signal properties

Table 10 shows the signal properties.

8.2.1 Semantics

a) sync and async shall not be set to true on the same signal.

b) A signal that does not specify sync or async is considered sync.

c) activelow and activehigh shall not be set to true on the same signal.

d) A signal that does specify activehigh or activelow has no formal specified active state.

e) field_reset and cpuif_reset follow the rules of application as defined in 17.1.

f) cpuif_reset property can only be set true for one instantiated signal within a lexical scope.

g) field_reset property can only be set to true for one instantiated signal within a lexical scope.

8.2.2 Example

See the example in 8.3.2.

Table 10—Signal properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

signalwidth Width of the signal. longint
unsigned

No

sync Signal is synchronous to the clock of the component. boolean Yes

async Signal is asynchronous to the clock of the component. boolean Yes

cpuif_reset Default signal to use for resetting the software interface logic. If
cpuif_reset is not defined, this reverts to the default reset signal. This
parameter only controls the CPU interface of a generated slave.

boolean Yes

field_reset Default signal to use for resetting field implementations. If field_reset
is not defined, this reverts to the default reset signal.

boolean Yes

activelow Signal is active low (state of 0 means ON). boolean Yes

activehigh Signal is active high (state of 1 means ON). boolean Yes
Copyright © 2015 - 2018 Accellera. 43
All rights reserved.

January 2018 SystemRDL 2.0
8.3 Signal definition and instantiation

In addition to the general rules for component definition and instantiation (see 5.1), the following rules also
apply.

8.3.1 Semantics

a) If signalwidth (see 8.2) is not defined, signal instances may be declared as single-bit or multi-bit
signals, as defined in (5.1.2).

b) If signalwidth is not predefined in the component definition, a signal type may be instantiated as
any width.

c) If signalwidth is predefined during signal definition, any specified signal width shall match the
predefined width.

8.3.2 Example

This example defines an 8-bit field and connects it to a signal so the reset value for this field is supplied
externally.

addrmap foo {
reg { field {} a[8]=0; } reg1;
signal { signalwidth=8;} mySig[8];
reg1.a->reset = mySig; // Instead of resetting this field to a constant

// we connect it to a signal to provide an
// External reset value

};
44 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
9. Field component

9.1 Introduction

The field component is the lowest-level structural component in SystemRDL. No other structural
component can be defined within a field component; however, signal, enumeration (enum), and constraint
components can be defined within a field component. The field component is also the most varied
component in SystemRDL because it is an abstraction representing different types of storage element
structures. Field definitions have the same definition and instantiation as other SystemRDL components; see
5.1.

Typically, a field component describes a flip-flop or wire/bus, along with the logic to set and sample its
value for each instantiated field in the design. Properties specified for a field serve multiple purposes, from
determining the nature of the behavior that is implied for a field to naming and describing a field. Storage
elements accessed by software may contain a single entity or a number of bit-fields each with its own
meaning and purpose. In SystemRDL, each entity in a software read or write is termed a field.

9.2 Defining and instantiating fields

Since a field component describes the lowest-level components within SystemRDL, it cannot contain other
fields. Fields are instantiated in a register (reg) component (see Clause 10). Fields are defined and
instantiated as described in 5.1, with the following additional semantics. See also 9.3.

a) No other types of structural components shall be defined within a field component.

b) Fields shall be instantiated only within a register component.

c) Unless bit allocation is explicitly defined, fields shall be positioned sequentially in the order they are
instantiated in a register, starting with the least significant bit. lsb0 mode defines 0 as the least sig-
nificant bit, which is the default, and msb0 defines regwidth-1 as the least significant bit.

d) In the default mode lsb0, unless bit allocation is explicitly defined, fields shall be positioned sequen-
tially in the order they are instantiated in a register, starting at bit 0 with no padding between fields.
(Each subsequent field’s least significant bit (LSB) shall be made equal to one (1) greater than the
most significant bit (MSB) of the previous field.)

e) In the mode msb0, unless bit allocation is explicitly defined, fields shall be positioned sequentially
in the order they are instantiated in a register, starting at bit regwidth-1 with no padding between
fields. (Each subsequent field’s least significant bit (LSB) shall be made equal to one (1) less than
the most significant bit (MSB) of the previous field.)

f) The exact bit position of instantiated fields in a register may be determined by the SystemRDL com-
piler as described in d or e ,or specified explicitly by using exact indices (see Clause 10).

g) The msb0 and lsb0 properties shall only be applied to an address map component (see Clause 13).

h) A field instantiation which is not followed by a specific size or index contained square brackets ([])
defaults to size of the field definition’s fieldwidth parameter. If the definition is anonymous, the
default fieldwidth is 1.

9.3 Using field instances

Fields can be instantiated as single or multiple bits. Fields shall be instantiated in a register component and
the field’s bit position can be derived implicitly by a compiler or specified explicitly by a user. For the field
component only, the field's bit position can be implicitly or explicitly specified. This notation is of the form



Copyright © 2015 - 2018 Accellera. 45
All rights reserved.

January 2018 SystemRDL 2.0
a) for definitive field instantiation

field_type [#(field_parameter_instance [, field_parameter_instance]*)] field_instance_element
[, field_instance_element]*;

where

1) field_type is the user-specified name for a previous definitively defined component of type
field.

2) field_parameter_instance is specified as

.field_param_name(field_param_val)

where field_param_name is the name of the parameter defined with the field and
field_param_val is an expression whose result is the value of the parameter for this instance
(see 5.1.2 a).

b) for anonymous field instantiation

field {field_body} field_instance_element [, field_instance_element]*;

where

field_body is as described in 5.1.1, subject to limitations for a definitive field instantiation (see
a).

c) For both field instantiation types, field_instance_element is defined as

field_instance_name [[constant_expression] | [constant_expression : constant_expression]] 
[= constant_expression]

where

i) field_instance_name is the user-specified name for instantiation of the component.

ii) constant_expression is an expression that resolves to a longint unsigned.

[constant_expression] specifies the instantiated field’s bit width.

[constant_expression : constant_expression] is termed a range and defines the msb and
lsb of the field within the context of the register within which it is instantiated.

= constant_expression specifies the field instance’s reset value (see 9.5).

Examples

These are examples of the anonymous form.

field {} singlebitfield; // 1 bit wide, not explicit about position

field {} somefield[4]; // 4 bits wide, not explicit about position

field {} somefield2[3:0]; // a 4 bit field with explicit indices

field {} somefield3[15:8]; // an 8 bit field with explicit indices

field {} somefield4[0:31]; // a 32 bit field with explicit indices

How the compiler resolves bit positions for implicit fields is detailed in 10.1, which describes the register
component. Single element arrays may be treated by a SystemRDL compiler as a scalar or an array.

9.4 Field access properties

The combination of field access properties specified for a field component determines the component’s
behavior. Table 11 lists the available field access properties and describes how they are implemented.
46 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
9.4.1 Semantics

a) All fields are given full sw and rw access (read and write) by default.

b) rw (and wr) signify a field is both read and write; r indicates read-only; w indicates write-only; and
na specifies no read/write access is allowed.

c) All hardware-writable fields shall be continuously assigned unless a write enable is specified.

d) When a field is writable by software and write-only by hardware (but not write-enabled), all soft-
ware writes shall be lost on the next clock cycle. This shall reported as an error.

e) After a reset occurs on a field with rw1 or w1 software access, that field can only be written once by
software. All subsequent software writes are then ignored until the field is reset again.

f) The standard implementation behavior is based on the combination of read and write properties
shown in Table 12.

Table 11—Field access properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

hw Design’s ability to sample/update a field. access
type

No

sw Programmer’s ability to read/write a field. access
type

Yes

Table 12—Field behavior based on properties

Software Hardware Code sample Implementation

R+W R+W field f { sw = rw; hw = rw; }; Storage element

R+W R field f { sw = rw; hw = r; }; Storage element

R+W W field f { sw = rw; hw = w; }; Storage element

R+W - field f { sw = rw; hw = na; }; Storage element

R R+W field f { sw = r; hw = rw; }; Storage element

R R field f { sw = r; hw = r; }; Wire/Bus – constant value

R W field f { sw = r; hw = w; }; Wire/Bus – hardware assigns value

R - field f { sw = r; hw = na; }; Wire/Bus – constant value

W R+W field f { sw = w; hw = rw; }; Storage element

W R field f { sw = w; hw = r; }; Storage element

W W field f { sw = w; hw = w; }; Error – meaningless

W - field f { sw = w; hw = na; }; Error – meaningless

- R+W field f { sw = na; hw =rw; }; Undefined

- R field f { sw = na; hw = r; }; Undefined

- W field f { sw = na; hw = w; }; Error – unloaded net

- - field f { sw = na; hw = na; }; Error – nonexistent net
Copyright © 2015 - 2018 Accellera. 47
All rights reserved.

January 2018 SystemRDL 2.0
NOTE—Any hardware-writable field is inherently volatile, which is important for verification and test purposes.

9.4.2 Example

See Table 12.

9.5 Hardware signal properties

While all of the hardware signal properties can be set within a field definition, typically they are assigned
after instantiation as these properties refer to items external to the field itself. By default, the reset value of
fields shall be unknown, e.g., x in Verilog. A specification can use static or dynamic reset values; however,
only static reset values shall be specified during field instantiation. The reset value, which is considered a
property in SystemRDL, shall follow an equal sign (=) after the instance name and the eventual size or
MSB/LSB information.

For the syntax for specifying reset values, see 9.3.

Table 13 defines the hardware signal properties.

9.5.1 Semantics

a) Any integral value can be used to specify the reset value of a field.

b) When a field has access properties of sw=r and hw=w without having a write enable, the existence
of a reset value shall implement a storage element and the reset value only holds until the reset is
deasserted.

c) The reset value cannot be larger than can fit in the field or an error shall be reported.

d) When reset is a reference, it shall reference another field of the same size. Upon reset, the field is
reset to the current value of the referenced field.

e) next and reset cannot be self-referencing.

f) reset always has priority over next when resetsignal is asserted.

g) If no reset value given, the field is not reset, even if it has a resetsignal.

9.5.2 Example

This example shows different types of hardware signal properties set during field instantiations.

signal {} some_reset;
field { reset = 1’b1; } a;
field {} b=0;
field {} c=0;
c->resetsignal = some_reset;
field {} d=0x0;

Table 13—Hardware signal properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

next The next value of the field; the D-input for flip-flops. reference Yes

reset The reset value for the field when resetsignal is asserted. bit or ref-
erence

Yes

resetsignal Reference to the signal used to reset the field (see 17.1). reference Yes
48 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
d->next = a; // d gets the value of a. D lags a by 1 clock.
field {} e[23:21]=3’b101;
b->reset = 3’b1; // Override the default reset value of e from 101 to 001

9.6 Software access properties

The software access field properties provide a means of specifying commonly used software modifiers on
register fields. All the software properties which are defined as boolean values have a default value of false.
Some of these properties perform operations that directly effect the value of a field (rclr, woset, and woclr),
others allow the surrounding logic to effect software operations (swwe and swwel), and still others allow
software operations effecting the surrounding logic (swmod and swacc). The onread property enables
setting values equivalent to rclr and rset, while the onwrite property enables setting values equivalent to
woclr and woset.

Table 14 defines the software access properties and uses pseudo-code snippets to define the behaviors. The
pseudo-code is of Verilog style and should be interpreted as such. The exact behavior of these properties
depends upon the semantics of the HDL generated by a particular SystemRDL implementation, together
with the execution environment (e.g., simulator) for that HDL.

Table 14—Software access properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

rclr Clear on read (field = 0). boolean Yes

rset Set on read (field = all 1’s). boolean Yes

onread Read side-effect. See Table 15. onread-
type

Yes

woset Write one to set (field = field | write_data). boolean Yes

woclr Write one to clear (field = field & ~write_data). boolean Yes

onwrite Write function. See Table 16. onwrite-
type

Yes

swwe Software write-enable active high (field = swwe ? new : cur-
rent).

boolean or
reference

Yes

swwel Software write-enable active low (field = swwel ? current :
new).

boolean or
reference

Yes

swmod Assert when field is modified by software (written or read with a set
or clear side effect).

boolean Yes

swacc Assert when field is software accessed. boolean Yes

singlepulse The field asserts for one cycle when written 1 and then clears back to 0
on the next cycle. This creates a single-cycle pulse on the hardware
interface.

boolean Yes
Copyright © 2015 - 2018 Accellera. 49
All rights reserved.

January 2018 SystemRDL 2.0
9.6.1 Semantics

a) swmod indicates a generated output signal shall notify hardware when this field is modified by soft-
ware. The precise name of the generated output signal is beyond the scope of this document. Addi-
tionally, this property may be used on the right-hand side of an assignment to another property.

NOTE—Since rclr, rset, and onread modify the field value with a software read transaction, the implementa-
tion of properties like swmod are asserted during software reads when rclr or rset are true or onread has a
value.

b) swacc indicates a generated output signal shall notify hardware when this field is accessed by soft-
ware. The precise name of the generated output signal is beyond the scope of this document. Addi-
tionally, this property may be used on the right-hand side of an assignment to another property.

c) Fields specified with software access properties in Table 14 need to consider how they effect the
behavior defined in Table 12. For example, if a field is rclr, this results in a storage element regard-
less of whether or not the field is writable by software.

d) swwe and swwel have precedence over the software access property in determining its current
access state, e.g., if a field is declared as sw=rw, has a swwe property, and the value is currently
false, the effective software access property is sw=r.

e) swwe and swwel are mutually exclusive.

f) When specified, rclr resets a field to 0 and not its default value.

g) singlepulse fields shall be instantiated with a width of 1 and the reset value shall be specified as 0.

h) onread, rclr and rset are mutually exclusive; only one can be set per field.

Table 15—Software read side-effect onread value

onread
property

value
 Behavior/Application

rclr All the bits of the field are cleared on read (field = 0).

rset All the bits of the field are set on read (field = all 1’s).

ruser The read modifies the field in a way which does not match the other
defined read side-effects.

Table 16—Software write function onwrite values

onwrite
property

value
 Behavior/Application

woset Bitwise write one to set (field = field | write_data).

woclr Bitwise write one to clear (field = field & ~write_data).

wot Bitwise write one to toggle (field = field ^ write_data).

wzs Bitwise write zero to set (field = field | ~write_data).

wzc Bitwise write zero to clear (field = field & write_data).

wzt Bitwise write zero to toggle (field = field ~^ write_data).

wclr All bits of the field are cleared on write (field = 0).

wset All bits of the field are set on write (field = all 1’s).

wuser The write modifies the field in a way which does not match the other
defined write functions and is not a write without a write function.
50 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
i) A field with an onread property shall have software read access.

j) A field with an onread value of ruser shall be external.

k) onwrite, woclr, and woset are mutually exclusive; only one can be set per field.

l) A field with an onwrite property shall have software write access.

m) A field with an onwrite value of wuser shall be external.

9.6.2 Examples

Example 1

This example applies software properties using implicit and explicit methods of setting the properties.

field {
rclr; // Implicitly set the rclr property to true
swwe = true; // Explicitly set the swwe property to true

} a;

Example 2

This example uses the default keyword with these software properties and then overrides them.

reg example2 {
default woclr = true; // Explicitly set default of woclr to true
default swmod; // Implicitly set default of swmod to true

field {} a; // Assumes defaults
field {} b; // Assumes defaults
b->rclr=false; // Dynamic Assignment to false
field {rclr = false; } c;// Overrides rclr default
field {swmod = false; } d;// Overrides swmod default
field {rclr = false; swmod = false; } e;// Overrides both defaults
d->next = b->swmod;

// next value of d will be field b's 1-bit software mod flag generated
// by SystemRDL

};

9.7 Hardware access properties

Hardware access properties can be applied to fields to determine when hardware can update a hardware
writable field (we and wel), generate input pins which allow designers to clear or set the field (hwclr and
hwset) by asserting a single pin, or generate output pins which are useful for designers (anded, ored, and
xored).

Write-enable is critical for certain software-writable fields. The clear on read feature (rclr, see Table 14)
returns the next value (see 9.5) to software before clearing the field. In the case of counters, the write-enable
is used to determine when a counter can be incremented.

The hwenable and hwmask properties can specify a bus showing which bits may be updated after any
write-enables, hardware-clears/-sets or counter-increment has been performed. The hwenable and hwmask
properties are similar to we and wel, but each has unique functionality. The we and wel act as write enables
to an entire field for a single bit or multiple bits. The hwmask and hwenable are essentially write enables or
write masks, but are applied on a bit basis. The priority of assignments a SystemRDL compiler should use is
shown in Table 17, which depicts a flow of information from left to right showing the stages that happen
when updating a field from its current value to determine its next state value.
Copyright © 2015 - 2018 Accellera. 51
All rights reserved.

January 2018 SystemRDL 2.0
A field’s width is typically determined when it is instantiated; however, there are times when specifying a
field’s width up-front is critical. If specified, the fieldwidth property forces all instances of the field to be a
specified width. If a field is instantiated without a specified width, the field shall be fieldwidth bits wide. It
shall be an error if the field is instantiated with an explicitly specified width that differs from the fieldwidth.

Table 18 defines the hardware access properties.

9.7.1 Semantics

a) we determines this field is hardware-writable when set, resulting in a generated input which enables
hardware access.

b) wel determines this field is hardware-writable when not set, resulting in a generated input which
enables hardware access.

Table 17—Assignment priority

Event stage -> Hardware next stage -> Field next stage -> Register assign stage

we / wel / intr edge logic counter incr / counter decr SW/HW selection wire / dff assign

counter load / counter
we logic

hwset / hwclr

intr mask/en/sticky

Table 18—Hardware access properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

we Write-enable (active high). boolean or
reference

Yes

wel Write-enable (active low). boolean or
reference

Yes

anded Logical AND of all bits in field. boolean Yes

ored Logical OR of all bits in field. boolean Yes

xored Logical XOR of all bits in field. boolean Yes

fieldwidth Determines the width of all instances of the field. This number shall be
a numeric. The default value of fieldwidth is undefined.

longint
unsigned

No

hwclr Hardware clear. This field need not be declared as hardware-writable. boolean or
reference

Yes

hwset Hardware set. This field need not be declared as hardware-writable. boolean or
reference

Yes

hwenable Determines which bits may be updated after any write enables, hard-
ware clears/sets or counter increment has been performed. Bits that are
set to 1 will be updated.

reference Yes

hwmask Determines which bits may be updated after any write enables, hard-
ware clears/sets or counter increment has been performed. Bits that are
set to 1 will not be updated.

reference Yes
52 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
c) we and wel are mutually exclusive.

d) hwenable and hwmask are mutually exclusive.

9.7.2 Example

This example shows the application of a write-enable and the boolean anded.

reg example {
default sw = r;

field { anded;} a[4]=0; // This field will update its value every clock
// cycle. hw=rw by default. This field will also have
// an output ANDing the 4 bits of the field together

field { we; } b=0;// This field will only update on clock cycles
 // where the we is asserted. The name of the we signal is
 // a function of the SystemRDL Compiler.

};

9.8 Counter properties

SystemRDL defines several special purpose fields, including counters. A counter is a special purpose field
which can be incremented or decremented by constants or dynamically specified values. Additionally,
counters can have properties that allow them to be cleared, set, and indicate various status conditions like
overflow and underflow.

9.8.1 Counter incrementing and decrementing

When a field is defined as a counter, the value stored by the field is the counter’s current value. There is an
implication of an additional input which shall increment/decrement the counter when asserted. Counter
incrementing and decrementing in SystemRDL are controlled via the counter’s incrvalue/decrvalue and
incrwidth/decrwidth properties. The incrvalue/decrvalue property defaults to a value of 1, but can be set
to any constant that can be represented by the width of the counter. Additionally, the incrvalue/decrvalue
can be assigned to any signal or other field in the current address map scope so counters can increment using
dynamic or variable values. The incrwidth/decrwidth properties can be used as an alternative to incrvalue/
decrvalue so an external interface can be used to control the incrvalue/decrvalue externally from
SystemRDL. A SystemRDL compiler shall imply the nature of a counter as a up counter, a down counter, or
an up/down counter by the properties specified for that counter field.

By default, counters are incremented/decremented by one (1), but another static or dynamic increment/
decrement value can be specified. The increment/decrement value shall be equal to or smaller than the
field’s width.

Dynamic values may be another field instance in the address map of the same or smaller width, or another
signal in the design. If an externally defined signal is used for dynamic incrementing, its input is inferred to
have the same width as the counter.

Additionally, the properties incr and decr can be used to control the increment and decrement events of a
counter. These do not control the increment or decrement values, as incrvalue and decrvalue, but the actual
increment of the counter (as shown in Example 2). These properties can be only be assigned as references to
another component.

Example 1

This shows counter incrementing and decrementing.
Copyright © 2015 - 2018 Accellera. 53
All rights reserved.

January 2018 SystemRDL 2.0
field counter_f { counter; };

counter_f count1[4]; // Define a 4 bit counter from 3 down to 0
 count1->incrvalue=4’3; // Increment the counter by 3 when incrementing

// count1 implies an UP counter

counter_f count2[3]; // Define a 3 bit counter from 6 down to 4
 count2->decrwidth=2; // provide 2 bit interface for a user to decide the decr

// value. This implies a down counter.
counter_f count3[5]=0; // Defines a 5 bit counter from 11 down to 7
 count3->incrvalue=2; // Define a an Up/Down Counter
 count3->decrvalue=4;

field {} count4_incr[8] = 8’h0f; // define a field to control the incr
// value of another field.

counter_f count4[8]=0;
 count4->incrvalue = count4_incr; // Counter is incremented by the value of

// another field in the same register.

Example 2

This example uses incr to connect two 16-bit counters together to create a 32-bit counter.

field some_counter {
 counter;
 we;
}; // End of Reg: some_counter

reg some_counter_reg {
 regwidth=16;
 some_counter count[16]=0; // Create 16 bit counter POR to 0
}; // End of Reg:

// Example 32 bit up counter
some_counter_reg count1_low;
some_counter_reg count1_high;

count1_high.count->incr = count1_low.count->overflow;
// Daisy chain the counters together to create a 32 bit counter from the 2
// 16 bit counters

9.8.2 Counter saturation and threshold

Counters are unsaturated by default, e.g., a 4-bit counter with a value of 0xf that is incremented by 1 has
the value 0x0. This is referred to as rolling over. The value of a incrsaturate saturating counter shall never
exceed the increment saturation value and the value of a decrsaturate saturating counter shall never be less
than the decrement saturation value. By default, the increment saturation value is the maximum value that
the counter can hold and the decrement saturation value is zero (0). Assigning a static or dynamic saturated
value is similar to assigning increment/decrement values, see 9.8.1.

Counters in SystemRDL may have an optional (static or dynamic) threshold value. The threshold properties
do not cap the value of a counter in the way saturate properties do; instead, threshold counters are inferred to
contain an output which designates whether the counter’s values meets or exceeds the threshold. See also
9.8.1.
54 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
saturate and threshold counters may be used individually and specified in any order.

Example 1

This shows counter saturation and thresholds.

field counter_f { counter; };
counter_f count1[4]; // Define a 4 bit counter from 3 down to 0
count1->incrsaturate=4’he; // keeps the counter from counting past 4’he

counter_f count2[3]; // Define a 3 bit counter from 6 down to 4
count2->decrthreshold=3’h2; // provide threshold indication when

// count reaches 2 or lower

counter_f count3[5]=0; // Defines a 5 bit counter from 11 down to 7
count3->incrsaturate;// Implies 5’h1F by default
count3->decrsaturate; // Implies 5’h00 by default
count3->decrthreshold=5’h3;

field {} count4_sat[4] = 4’ha; // define a field to control the saturate value
// of another field

field {} count4_thresh[4] =4’h2;

counter_f count4[4]=0; // This counters saturate and threshold are both dynamic
count4->incrthreshold = count4_thresh;
count4->incrsaturate = count4_sat;

Besides assigning values or references to the saturate or threshold properties on the left-hand side of an
assignment in SystemRDL, these properties can also be referenced on the right-hand side of an expression to
indicate the threshold has been crossed or the counter has saturated. This is often useful for generating an
interrupt indicating a specific condition has occurred.

Example 2

This shows right-hand side usage of saturate and threshold.

field {} count4_sat[4] = 4’h2; // define a field to control the saturate value
// of another field

field {} count4_thresh[4] =4’ha;
field {} is_at_threshold=0;
field {} is_saturated=0;

counter_f count4[4]=0; // This counters saturate and threshold are both dynamic
count4->incrthreshold = count4_thresh;
count4->incrsaturate = count4_sat;

// Single-bit result of threshold comparison assigned to is_at_threshold field
is_at_threshold->next = count4->incrthreshold;
is_saturated->next = count4->incrsaturate;

Counters can also use the properties underflow and overflow to indicate the counter has wrapped (either
decrementing when 0 for underflow or incrementing when all 1s for overflow). These are useful for many
applications such as generating an interrupt based on a counter overflow/underflow.

Example 3

This shows overflow and underflow counter properties.
Copyright © 2015 - 2018 Accellera. 55
All rights reserved.

January 2018 SystemRDL 2.0
field counter_f { counter; };
field {} has_overflowed;

counter_f count1[5]=0; // Defines a 5 bit counter from 6 down to 1
count1->incrthreshold=5’hF;

has_overflowed->next = count1->overflow;

Table 19 defines the counter field properties.

Table 19—Counter field properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

counter Field implemented as a counter. boolean Yes

threshold This is an alias of incrthreshold. boolean,
bit, or ref-
erence

Yes

saturate This is an alias of incrsaturate. boolean,
bit, or ref-
erence

Yes

incrthresh-
old

Indicates the counter has a threshold in the incrementing direction. A
comparison value or the result of a comparison. See also: 9.8.2.1.

boolean,
bit, or ref-
erence

Yes

incrsaturate Indicates the counter saturates in the incrementing direction. A compar-
ison value or the result of a comparison. See also: 9.8.2.1.

boolean,
bit, or ref-
erence

Yes

overflow Overflow signal asserted when counter overflows or wraps. boolean Yes

underflow Underflow signal asserted when counter underflows or wraps. boolean Yes

incrvalue Increment counter by specified value. bit or ref-
erence

Yes

incr References the counter’s increment signal. Use to actually increment
the counter, i.e, the actual counter increment is controlled by another
component or signal (active high).

reference Yes

incrwidth Width of the interface to hardware to control incrementing the counter
externally.

longint
unsigned

Yes

decrvalue Decrement counter by specified value. bit or ref-
erence

Yes

decr References the counter’s decrement signal. Use to actually decrement
the counter, i.e, the actual counter decrement is controlled by another
component or signal (active high).

reference Yes

decrwidth Width of the interface to hardware to control decrementing the counter
externally.

longint
unsigned

Yes

decrsatu-
rate

Indicates the counter saturates in the decrementing direction. A compar-
ison value or the result of a comparison. See also: 9.8.2.1.

boolean,
bit, or ref-
erence

Yes

decrthresh-
old

Indicates the counter has a threshold in the decrementing direction. A
comparison value or the result of a comparison. See also: 9.8.2.1.

boolean,
bit, or ref-
erence

Yes
56 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
9.8.2.1 Semantics

a) incrwidth and incrvalue are mutually exclusive (per counter).

b) decrwidth and decrvalue are mutually exclusive (per counter).

c) When incrsaturate has the Boolean value true, the incrementing saturate value is the maximum
value (2^(number of counter bits) -1) of the counter. When incrsaturate has the Boolean value
false, the counter does not saturate in the incrementing direction.

d) When incrthreshold has the Boolean value true, the incrementing threshold value is the maximum
value (2^(number of counter bits) -1) of the counter. When incrthreshold has the Boolean value
false, the counter does not have a threshold in the incrementing direction.

e) When decrsaturate has the Boolean value true, the decrementing saturate value is 0. When
decrsaturate has the Boolean value false, the counter does not saturate in the decrementing
direction.

f) When decrthreshold has the Boolean value true, the decrementing threshold value is 0. When
decrthreshold has the Boolean value false, the counter does not have a threshold in the decre-
menting direction.

g) incrthreshold/decrthreshold used on the left-hand side of an assignment in SystemRDL assigns
the counter’s threshold to the number or reference specified in the right-hand side of the assignment.

h) incrsaturate/decrsaturate used on the left-hand side of an assignment in SystemRDL assigns the
counter’s saturation property to the number or reference specified in the right-hand side of the
assignment.

i) incrthreshold/decrthreshold used on the right-hand side of an assignment in SystemRDL is refer-
encing the counter’s threshold output, which is a single bit value indicating whether the threshold
has been crossed. This value shall only be asserted to 1 when the value is greater than or equal to
incrthreshold/threshold or is less than or equal to decrthreshold.

j) incrsaturate/decrsaturate used on the right-hand side of an assignment in SystemRDL is referenc-
ing the counter’s saturate output, which is a single bit value indicating whether the saturation has
occurred. This value shall only be asserted to 1 when the value of the counter meets or exceeds the
saturation value specified.

k) All static values used in Table 19 shall fit within the width of the field. All references need to be the
same width.

9.8.2.2 Example

See Examples 1 - 3 in 9.8.2.

9.9 Interrupt properties

Designs often have a need for interrupt signals for various reasons, e.g., so software can disable or enable
various blocks of logic when errors occur. Interrupts are unlike most field properties in that they operate on
both the register level and the field level. Any register which instantiates an interrupt field (a field with the
intr property specified) is considered an interrupt register. Each interrupt register has an associated
interrupt signal which is the logical OR of all interrupt fields in the register (post-masked/enabled if the
fields are masked or enabled). By default, this interrupt signal is inferred as an output; however, register files
and/or address maps can be used to further aggregate these interrupts (see Clause 12, Clause 13, and the
hierarchical interrupt example in 17.2). Interrupts may be masked, or enabled by other fields or externally
defined signals—they have an easy way of being turned on and off by software if desired.

By default, all interrupt fields have the stickybit property; this can be suppressed (using nonsticky) or
changed to sticky. The stickybit and sticky properties are similar as they both define a field as sticky,
meaning once hardware or software has written a one (1) into any bit of the field, the value is stuck until
Copyright © 2015 - 2018 Accellera. 57
All rights reserved.

January 2018 SystemRDL 2.0
software clears the value (using a write or clear on read). The difference between stickybit and sticky is
each bit in a stickybit field is handled individually, whereas sticky applies a sticky state to all bits in an
instantiated field (which is useful when designers need to store a multi-bit value, such as an address). For
single-bit fields, there is no difference between stickybit and sticky.

By default, all interrupts are level-triggered, i.e., the interrupt is triggered at the positive edge of the clock if
the next value of the interrupt field is asserted. Since interrupts are typically stickybit, the value is latched
and held until software clears the interrupt. The edge-interrupt triggering mechanisms (posedge, negedge,
and bothedge), like level-triggered interrupts, are synchronous.

A nonsticky interrupt is typically used for hierarchical interrupts, e.g., a design has a number of interrupt
registers (meaning a number of registers with one or more interrupt fields instantiated within). Rather than
promoting a number of interrupt signals, the developer can specify an aggregate interrupt register (typically
unmasked, though a mask/enable may be specified) containing the same number of fields as there are
interrupt signals to aggregate. Each field is defined as a nonsticky interrupt and the next value of each
interrupt is directly assigned an interrupt pin for each interrupt register to be aggregated. Interrupt types are
defined with modifiers to the intr property. These modifiers are not booleans and are only valid in
conjunction with the intr property. The nonsticky modifier can be used in conjunction with posedge,
negedge, bothedge, and level.

The syntax for a interrupt property modifiers appears as follows.

[posedge | negedge | bothedge | level | nonsticky] intr;

Table 20 lists and describes the available interrupt types.

Furthermore, there are additional interrupt properties that can be used to mask or enable an interrupt. The
enable, mask, haltenable, and haltmask properties (see Table 21) are all properties of type reference that
are used to point to other fields or signals in the SystemRDL description. The mask and haltmask
properties can be assigned to fields and used to control the propagation of an interrupt. If an interrupt bit is
set and connected to a mask/enable, the interrupt’s final value is gated by the mask/enable. The logical
description of this operation is

final interrupt value = interrupt value & enable;
final interrupt value = interrupt value & !mask;
final halt interrupt value = interrupt value & haltenable;
final halt interrupt value = interrupt value & !haltmask.
//Further information on interrupts and their behavior as well a more complete
//example can be found in 17.2.

Table 20—Interrupt types

Interrupt Description

posedge Interrupt when next goes from low to high.

negedge Interrupt when next goes from high to low.

bothedge Interrupt when next changes value.

level Interrupt while the next value is asserted and main-
tained (the default).

nonsticky Defines a non-sticky (hierarchical) interrupt; the associ-
ated interrupt field shall not be locked. This modifier can
be specified in conjunction with the other interrupt
types.
58 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Example

addrmap top {
 reg block_int_r {
 name = "Example Block Interrupt Register";
 desc = "This is an example of an IP Block with 3 int events. 2
 of these events are non fatal
 and the third event multi_bit_ecc_error is fatal";

 default hw=w; // HW can Set int only
 default sw=rw; // SW can clear
 default woclr; // Clear is via writing a 1

 field {
 desc = "A Packet with a CRC Error has been received";
 level intr;
 } crc_error = 0x0;
 field {
 desc = "A Packet with an invalid length has been received";
 level intr;
 } len_error = 0x0;
 field {
 desc="An uncorrectable multi-bit ECC error has been received";
 level intr;
 } multi_bit_ecc_error = 0 ;
 }; // End of Reg: block_int

 reg block_int_en_r {
 name = "Example Block Interrupt Enable Register";
 desc = "This is an example of an IP Block with 3 int events";

 default hw=na; // HW can't access the enables
 default sw=rw; // SW can control them

 field {
 desc = "Enable: A Packet with a CRC Error has been received";
 } crc_error = 0x1;

 field {
 desc = "Enable: A Packet with an invalid length has been
 received";
 } len_error = 0x1;

 field {
 desc = "Enable: A Packet with an invalid length has been received";/

/ Mask this off as it's a fatal interrupt
 } multi_bit_ecc_error = 0x0;
 }; // End of Reg: block_int_en_r

 reg block_halt_en_r {
 name = "Example Block Halt Enable Register";
 desc = "This is an example of an IP Block with 3 int events";

 default hw=na; // HW can't access the enables
 default sw=rw; // SW can control them

 field {
 desc = "Enable: A Packet with a CRC Error has been received";
Copyright © 2015 - 2018 Accellera. 59
All rights reserved.

January 2018 SystemRDL 2.0
 } crc_error = 0x0; // not a fatal error do not halt
 field {
 desc = "Enable: A Packet with an invalid length has been received";
 } len_error = 0x0; // not a fatal error do not halt
 field {
 desc = "Enable: A Packet with an invalid length has been received";
 } multi_bit_ecc_error = 0x1; // fatal error that will

cause device to halt
 }; // End of Reg: block_halt_en_r

 // Block A Registers

 block_int_r block_a_int; // Instance the Leaf Int Register
 block_int_en_r block_a_int_en; // Instance the corresponding Int
 //Enable Register
 block_halt_en_r block_a_halt_en; // Instance the corresponding halt
 // enable register

 // This block connects the int bits to their corresponding int enables and
 // halt enables
 block_a_int.crc_error->enable = block_a_int_en.crc_error;
 block_a_int.len_error->enable = block_a_int_en.len_error;
 block_a_int.multi_bit_ecc_error->enable =

block_a_int_en.multi_bit_ecc_error;
 block_a_int.crc_error->haltenable = block_a_halt_en.crc_error;
 block_a_int.len_error->haltenable = block_a_halt_en.len_error;
 block_a_int.multi_bit_ecc_error->haltenable =

block_a_halt_en.multi_bit_ecc_error;
} ;

Table 21 defines the interrupt properties.

Table 21—Field access interrupt properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

intr Interrupt, part of interrupt logic for a register. boolean Yes

enable Defines an interrupt enable (the inverse of mask); i.e., which bits in an
interrupt field are used to assert an interrupt.

 reference Yes

mask Defines an interrupt mask (the inverse of enable); i.e., which bits in an
interrupt field are not used to assert an interrupt.

 reference Yes

haltenable Defines a halt enable (the inverse of haltmask); i.e., which bits in an
interrupt field are set to de-assert the halt out.

 reference Yes

haltmask Defines a halt mask (the inverse of haltenable); i.e., which bits in an
interrupt field are set to assert the halt out.

reference Yes

sticky Defines the entire field as sticky; i.e., the value of the associated inter-
rupt field shall be locked until cleared by software (write or clear on
read).

boolean Yes

stickybit Defines each bit in a field as sticky (the default); i.e., the value of each
bit in the associated interrupt field shall be locked until the individual
bits are cleared by software (write or clear on read).

boolean Yes
60 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
9.9.1 Semantics

a) enable and mask are mutually exclusive.

b) haltenable and haltmask are mutually exclusive.

c) nonsticky, sticky, and stickybit are mutually exclusive.

d) The sticky and stickybit properties are normally used in the context of interrupts, but may be used
in other contexts as well.

e) Assignments of signals or fields to the enable, mask, haltenable, and haltmask properties shall be
of the same bit width as the field.

f) posedge, negedge, bothedge, and level are only valid if intr is true and can only be specified as
modifiers to the intr property—they cannot be specified by themselves.

g) posedge, negedge, bothedge, and level are mutually exclusive.

9.9.2 Example

This example illustrates the use of sticky and stickybit interrupts.

field { level intr; } some_int=0;
field {} some_mask = 1’b1;
field {} some_enable = 1’b1;

some_int->mask = some_mask;
some_int->haltenable = some_enable;

field { level intr; rclr;} a_multibut_int[4]=0;
// Individual bits being set 1 will
// Accumulate as this is stickybit by default

field { posedge intr; sticky; woclr; } some_multibit_int[4]=0;
// This field will hold the first value written to it until its cleared by
// writing ones

9.10 Miscellaneous field properties

There are additional properties for fields which do not fall into any of the previous categories. This
subclause describes these additional miscellaneous properties.

a) The encode property enumerates a field definition for additional clarification purposes. encode can
only be applied to a validly scoped component of type enum.

b) The precedence property specifies how contention issues are resolved during field updates, e.g., a
field which has hw=rw and sw=rw.

1) precedence = sw (the default) indicates software takes precedence over hardware on accessing
registers (over the hardware updates of type we, wel, incr, decr, hwset, and hwclr). This is a
field-only property and does not affect the other fields in the register.

2) precedence = hw indicates hardware takes precedence over software on accessing registers (on
the hardware updates of type we, wel, incr, decr, hwset, and hwclr). This is a field-only prop-
erty and does not affect the other fields in the register.

3) In some cases of collisions between hardware and software, both operations can be satisfied,
but this is beyond the scope of this document and such behavior is undefined.

c) The paritycheck property can be applied to a field to indicate it should be covered and checked by
parity.
Copyright © 2015 - 2018 Accellera. 61
All rights reserved.

January 2018 SystemRDL 2.0
1) The default is false (no check occurs).

2) Not all fields in a register need to have the same paritycheck property value.

3) Parity is calculated each cycle on the next value of every qualifying bit and the result is stored.

4) Parity is checked each cycle by comparing the generated parity on the current value of each
qualifying bit with the stored parity result. A parity_error output for the addrmap is set
to 1 when the generated value and stored parity do not match.

Table 22 details the miscellaneous field properties.

9.10.1 Semantics

a) An encode property shall be assigned to an enum type.

b) The enumeration’s values shall fit inside the field width.

9.10.2 Example

This example shows paritycheck, precedence, and encode. Here hdrPreamble is covered by and
checked by parity, while hdrType is not.

enum cfg_header_type_enum {

 normal = 7'h00 { desc = "Type 0 Configuration Space Header"; };

 pci_bridge = 7'h01 { desc = "PCI to PCI Bridge"; };

 cardbus_bridge = 7'h10 { desc = "PCI to CardBus Bridge"; };

 };

field {

 hw = rw; sw = rw;

 precedence = sw;

encode = cfg_header_type_enum;

 } hdrType [6:0]=0;

field {

 hw = rw; sw = rw;

 paritycheck;

 } hdrPreamble [15:8]=0;

Table 22—Miscellaneous properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

encode Binds an enumeration to a field. reference
to enum

Yes

precedence Controls whether precedence is granted to hardware (hw) or software
(sw) when contention occurs.

prece-
dencetype

Yes

paritycheck Indicates whether this field is to be checked by parity. boolean No
62 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
10. Register component

In SystemRDL, a register is defined as a set of one or more SystemRDL field instances that are atomically
accessible by software at a given address. A register definition specifies its width and the types and sizes of
the fields that fit within that width (the register file and address map components determine address
allocation; see Clause 12 and Clause 13).

Registers can be instantiated in three forms.

— internal implies all register logic is created by the SystemRDL compiler for the instantiation (the
default form).

— external signifies the register/memory is implemented by the designer and the interface is inferred
from instantiation.

— alias allows software to access another register with different properties (i.e., read, write, woclr,
etc.). Alias registers are used where designers want to allow alternate software access to registers.
SystemRDL allows designers to specify alias registers for internal or external registers.

10.1 Defining and instantiating registers

Register components (reg) have the same definition and instantiation syntax as other SystemRDL
components; see 5.1. The following semantics apply for all registers.

a) Within a register, the only components that can be instantiated are field components, signals, and
constraints.

b) Within a register, the only components that can be defined are field components, enums, con-
straints and signals.

c) At least one field shall be instantiated within a register.

d) Two field instances shall not occupy overlapping bit positions within a register unless one field is
read-only and the other field is write-only.

e) Field instances shall not occupy a bit position exceeding the MSB of the register. The default width
of a register (regwidth) is 32 bits.

f) All registers shall have a width = 2N, where N >=3.

g) Field instances that do not have explicit bit positions specified are automatically inferred based on
the addrmap mode of lsb0 (the default) or msb0.

h) Registers shall not overlap, unless one contains read-only fields and the other contains only write-
only or write-once-only fields.

10.2 Instantiating registers

All register instantiations follow the same syntax and semantics, with minor differences depending on the
instantiated register’s internal or external state. Unless specified as external (see 10.4), registers are, by
default, internal.

a) A definitive register instantiation appears as follows.

[external] reg_name [#(parameter_instance [, parameter_instance]*)] 
reg_instance_element [, reg_instance_element]* ;

where

1) reg_name is the user-specified register name.

2) parameter_instance is specified as follows (see 5.1.2 a).

.param_name(param_val)
Copyright © 2015 - 2018 Accellera. 63
All rights reserved.

January 2018 SystemRDL 2.0
3) reg_instance_element is defined as follows.

reg_instance_name [{[constant_expression]}* [addr_alloc]

where

i) reg_instance_name is the user-specified name for instantiation of the register.

ii) constant_expression is an expression that resolves to a longint unsigned.

iii) [constant_expression] specifies the size of the instantiated reg array (optionally multidi-
mensional).

iv) addr_alloc is an address allocation operator (see 5.1.2.3).

v) When using multiple-dimensions, the last subscript increments the fastest.

b) An anonymous definition (and instantiation) of a register appears as follows.

reg {[reg_body]} [external] reg_instance_element [, reg_instance_element]*;

where

1) reg_body is as described in 5.1.1, subject to the following limitations.

i) Component definitions are limited to field, constraint, signal, and enum components.

ii) Component instantiations are limited to field, constraint, and signal instances.

2) reg_instance_element is the description of the register instantiation attributes, as defined in
10.2 a 3.

10.3 Instantiating internal registers

Registers whose implementation can be built by a SystemRDL compiler are called internal registers.

Example

This example illustrates the definition and instantiation of internal registers.

reg myReg { field {} data[31:0]; };
myReg intReg; // single internal register
myReg intArray[32]; // internal register array of size 32

10.4 Instantiating external registers

SystemRDL can describe a register’s implementation as external, which is applicable for large arrays of
registers and provides an alternate implementation to what a SystemRDL compiler might provide. External
registers are identical to internal registers, except the actual implementation of the register is not created by
the compiler and the fields of an external register are not inferred to be implemented as wires and flip-flops.

Registers shall be instantiated as external registers by placing the keyword external before the register type
name or by instantiating the component as described in 10.2.

Example

This example illustrates the definition and instantiation of external registers.

reg myReg { field {} data[31:0]; };
external myReg extReg; // single external register
external myReg extArray[32]; // external register array of size 32
64 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
10.5 Instantiating alias registers

An alias register is a register that appears in multiple locations of the same address map. It is physically
implemented as a single register such that a modification of the register at one address location appears at all
the locations within the address map. The accessibility of this register may be different in each location of
the address block.

Alias registers are allocated addresses like physical registers and are decoded like physical registers, but
they perform these operations on a previously instantiated register (called the primary register). Since alias
registers are not physical, hardware access and other hardware operation properties are not used. Software
access properties for the alias register can be different from the primary register.

10.5.1 Semantics

Registers shall be instantiated as alias registers by placing the keyword alias before the register type name.

a) An instantiation of an alias register appears as follows.

reg_name reg_primary_inst;

alias reg_primary_inst reg_name reg_instance;

where

1) reg_name is the user-specified register name.

2) reg_instance is the user-specified name for instantiation of the component.

3) reg_primary_inst is the primary register to which the alias is bound

b) Every field in the alias register needs to have the same instance name as a field in the primary regis-
ter (though the field type may differ) and the two fields shall have the same position and size in each
(corresponding) register.

c) The alias register is not required to have all the fields from the primary register.

d) The alias register shall have the same width as the primary register.

e) Only the following SystemRDL properties may be different in an alias: desc, name, onread,
onwrite, rclr, rset, sw, woclr, woset, and any user-defined properties.

f) If the alias instance type (internal or external) is specified, it shall match the primary register
instance type. If the alias instance type not specified, it uses the primary register instance type.

10.5.2 Example

This example shows the usage of register aliasing and how the primary register and its alias can have
different properties.

reg some_intr_r { field { level intr; hw=w; sw=r; woclr; } some_event; };
addrmap foo {

some_intr event1;
// Create an alias for the DV team to use and modify its properties
// so that DV can force interrupt events and allow more rigorous structural
// testing of the interrupt.
alias event1 some_intr event1_for_dv;

event1_for_dv.some_event->woclr = false;
event1_for_dv.some_event->woset = true;

};

The alias above could be done with a different register type as well, without dynamic assigns.

alias event1 some_intr_rw event1_for_dv;
Copyright © 2015 - 2018 Accellera. 65
All rights reserved.

January 2018 SystemRDL 2.0
10.6 Register properties

Table 23 lists and describes the register properties.

10.6.1 Semantics

a) All registers shall have a regwidth = 2N, where N >=3.

b) All registers shall have a accesswidth = 2N, where N >=3.

c) The value of the accesswidth property shall not exceed the value of the regwidth property.

d) The default value of the accesswidth property shall be identical to the width of the register.

e) Partial software reads of all fields without read side-effects are valid.

f) Any field that is software-writable or clear on read shall not span multiple software accessible sub-
words (e.g., a 64-bit register with a 32-bit access width may not have a writable field with bits in
both the upper and lower half of the register).

g) If a register instance is not explicitly assigned an address, a compiler needs to automatically assign
the address (see 13.4). Addressing is inherited from the enclosing lexical scope and applies to any
direct child instances.

h) errextbus is only valid for external registers. It specifies an external register implementation indi-
cating that a transaction terminated with an error. This error status is incorporated in the addrmap
implementation transaction error indication.

10.6.2 Example

These are examples of using register properties.

reg my64bitReg { regwidth = 64;
field {} a[63:0]=0;

};
reg my32bitReg { regwidth = 32;

accesswidth = 16;
field {} a[16]=0;
field {} b[16]=0;

};

Table 23—Register properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

regwidth Specifies the bit-width of the register (power of two). longint
unsigned

No

accesswidth Specifies the minimum software access width (power of two) operation
that may be performed on the register.

longint
unsigned

Yes

errextbus The associated register has error input. boolean No

intr Represents the inclusive OR of all the interrupt bits in a register after
any field enable and/or field mask logic has been applied.

N/A No

halt Represents the inclusive OR of all the interrupt bits in a register after
any field haltenable and/or field haltmask logic has been applied.

N/A No

shared Defines a register as being shared in different address maps. This is only
valid for register components and shall only be applied to shared com-
ponents. See 13.5 for more information.

boolean No
66 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
10.7 Understanding field ordering in registers

Users can specify bit ordering implicitly and explicitly in two different ways. These approaches are called
msb0 and lsb0 in SystemRDL (see Table 26). Users who explicitly specify bit indexes when instantiating
fields in registers do not need to specify one of these attributes, as the explicit indexes imply one of these bit
ordering schemes. See also 17.3.

a) The syntax:

field_type field_instance [high:low] 
implies the use of lsb0 ordering (the default)

b) Alternately:

field_type field_instance [low:high] 
implies the use of msb0 ordering

where

1) low and high are longint unsigned;

2) low == high implies a single bit field at the specified location;

3) for multi-bit fields, low < high.

4) The left-value is the index of the most significant bit of the field; the right-value is the index of
is the least significant bit of the field.

If a form specifying only a field’s size is used, then any fields are packed contiguously, end-to-end, starting
at index 0 for lsb0 registers and starting at index regwidth-1 for msb0 registers.

10.7.1 Semantics

a) Both the [low:high] and [high:low] bit specification forms shall not be used together in the
same register.

b) As long as all the registers in an address map are consistently msb0 or lsb0, no explicit msb0 or lsb0
property needs to be defined.

c) Setting lsb0=true implies msb0=false; setting msb0=true implies lsb0=false.

10.7.2 Examples

This example shows how fields are packed when using lsb0 bit ordering.

lsb0;
reg {

field {} A; // Single bit from 0 to 0
field {} B[3]; // 3 bits from 3 down to 1

// 4 bits from 7 down to 4 are reserved and unused
field {} C[15:8]; // 8 Bits from 15 to 8
field {} C[5]; // 5 Bits from 20 down to 16

} regA;

This example shows how fields are packed when using msb0 bit ordering.

msb0;
reg {

field {} A; // Single bit from 31 to 31
field {} B[3]; // 3 bits from 28 to 30

// 12 bits from 16 to 27 are reserved and unused
field {} C[8:15]; // 8 Bits from 8 to 15
Copyright © 2015 - 2018 Accellera. 67
All rights reserved.

January 2018 SystemRDL 2.0
field {} C[5]; // 5 Bits from 3 to 7
} regA;

10.8 Understanding interrupt registers

As discussed in 9.9, the field property intr also affects registers. Any register that contains an interrupt field
has two implied properties: intr and halt. These properties are outputs of the register. The intr register
property represents the inclusive OR of all the interrupt bits in a register after any field enable and/or field
mask logic has been applied. The halt register property represents the inclusive OR of all the interrupt bits in
a register after any field haltenable and/or field haltmask logic has been applied.

10.8.1 Semantics

a) The intr and halt register properties are outputs; they should only occur on the right-hand side of an
assignment in SystemRDL.

b) The intr property shall always be present on a intr register even if no mask or enables are specified.

c) The halt property shall only be present if haltmask or haltenable is specified on at least one field in
the register.

10.8.2 Example

This example connects an implicit intr output property to another field.

reg {
 field { intr; } some_intr;
 field { intr; } some_other_intr;
} some_intr_reg;
reg {
 field {} a;
} some_status_reg;
some_status_reg.a->next = some_intr_reg->intr;
68 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
11. Memory component

A memory is an array of storage consisting of a number of entries of a given bit width. The physical memory
implementation is technology dependent and memories shall be external. Child instances within a memory
are virtual instances. A virtual instance does not have a physical implementation, but, it is a software view of
the memory data. A memory can contain instances of virtual registers and fields within a virtual register are
virtual fields.

11.1 Defining and instantiating memories

Memory components have the same definition as other SystemRDL components; see 5.1.1. Memories
introduce the concepts of address allocation and their supporting operators. These address allocation
operators are applied after the instance name of the component. All addressing in SystemRDL is done based
on byte addresses.

a) A definitive definition of a memory instantiation appears as follows.

external mem_name [#(parameter_instance [, parameter_instance]*)] 
mem_instance_element [, mem_instance_element]* ;

where

1) mem_name is the user-specified memory name.

2) parameter_instance is specified as follows (see 5.1.2 a).

.param_name(param_val)

3) mem_instance_element is defined as follows.

mem_instance_element [{[constant_expression]}* [addr_alloc]

where

i) mem_instance_element is the user-specified name for instantiation of the memory.

ii) constant_expression is an expression that resolves to a longint unsigned.

iii) [constant_expression] specifies the size of the instantiated mem array (optionally multidi-
mensional).

iv) addr_alloc is an address allocation operator (see 5.1.2.3).

v) When using multiple-dimensions, the last subscript increments the fastest.

b) An anonymous definition (and instantiation) of a memory appears as follows.

mem {[mem_body]} external mem_instance_element [, mem_instance_element]* ;

where

1) mem_body is as described in 5.1.1, subject to the following limitations.

i) Component definitions are limited to field, reg, constraint, and enum components.

ii) Component instantiations are limited to reg and constraint instances.

2) mem_instance_element is the description of the memory instantiation attributes, as defined in
11.1 a 3.

11.2 Semantics

a) All mem instances shall have an external instance type specified.

b) Addresses in SystemRDL are always byte addresses.

c) Within a memory, the only components that can be instantiated shall be virtual register components.

d) Memories can contain reg instances. Instances of reg instances within a memory are virtual regis-
ters.
Copyright © 2015 - 2018 Accellera. 69
All rights reserved.

January 2018 SystemRDL 2.0
e) Virtual register width is limited to the minimum power of two bytes, which can contain the memory
width, and all the virtual fields shall fit within the memory width.

f) Virtual registers, register files, and fields shall have the same software access (sw property value) as
the parent memory.

g) Hardware properties on virtual register and fields are ignored.

h) Virtual fields cannot have software properties other sw.

i) The address space occupied by virtual registers shall be less than or equal to the address space pro-
vided by the memory.

j) Virtual registers cannot overlap.

k) Virtual register instances are optional.

l) A mem cannot be prefixed by alias.

11.3 Memory properties

Table 24 lists and describes the memory properties.

11.3.1 Semantics

a) mementries shall be greater than 0.

b) mementries defaults to 1.

c) memwidth shall be greater than 0.

d) memwidth defaults to regwidth.

11.3.2 Example

This example shows an application of memory component properties.

mem fifo_mem {

mementries = 1024;

memwidth = 32;

};

Table 24—Memory properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

mementries The number of memory entries. longint
unsigned

No

memwidth The memory entry bit width. longint
unsigned

No

sw Programmer’s ability to read/write a memory. access
type

Yes
70 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
12. Register file component

A register file is as a logical grouping of one or more register and register file instances;. The register file
provides address allocation support, which is useful for introducing an address gap between registers. The
only difference between the register file component (regfile) and the addrmap component (see Clause 13)
is an addrmap defines an RTL implementation boundary where the regfile does not. Since addrmaps
define a implementation block boundary, there are some specific properties that are only specified for
address maps (see Clause 13) and not specified for regfiles.

12.1 Defining and instantiating register files

Register file components have the same definition as other SystemRDL components; see 5.1.1. Register
files introduce the concepts of address allocation and their supporting operators. These address allocation
operators are applied after the instance name of the component. All addressing in SystemRDL is done based
on byte addresses.

a) A definitive register file instantiation appears as follows.

[external | internal] regfile_name [#(parameter_instance [, parameter_instance]*)] 
regfile_instance_element [, regfile_instance_element]* ;

where

1) regfile_name is the user-specified regfile name.

2) parameter_instance is specified as follows (see 5.1.2 a).

.param_name(param_val)

3) regfile_instance_element is defined as follows.

regfile_instance_name [{[constant_expression]}* [addr_alloc]

where

i) regfile_instance_name is the user-specified name for instantiation of the register file.

ii) constant_expression is an expression that resolves to a longint unsigned.

iii) [constant_expression] specifies the size of the instantiated regfile array (optionally multi-
dimensional).

iv) addr_alloc is an address allocation operator (see 5.1.2.3).

v) When using multiple-dimensions, the last subscript increments the fastest.

b) An anonymous definition (and instantiation) of a register file appears as follows.

regfile {[regfile_body]} [external | internal] 
regfile_instance_element [, regfile_instance_element]* ;

where

1) regfile_body is as described in 5.1.1, subject to the following limitations.

i) Component definitions are limited to field, reg, regfile, signal, constraint, and enum
components.

ii) Component instantiations are limited to reg, regfile, constraint, and signal instances.

2) regfile_instance_element is the description of the register file instantiation attributes, as defined
in 12.1 a 3.
Copyright © 2015 - 2018 Accellera. 71
All rights reserved.

January 2018 SystemRDL 2.0
12.2 Semantics

a) Addresses in SystemRDL are always byte addresses.

b) Within a regfile, the only components that can be instantiated shall be a regfile, reg, constraint, and
signal.

c) At least one reg or regfile shall be instantiated within a regfile.

d) A regfile may contain heterogeneous internal, external, and alias registers.

e) A regfile cannot be prefixed by alias. Only individual registers can be aliased.

f) If a regfile is declared internal, all registers in it are coerced to be internal, regardless of any inter-
nal or external declaration on the register instantiations. Similarly, if the regfile is declared exter-
nal, all registers are coerced to be external; in this case, aliased registers need to be handled
externally as well. If the regfile is not declared as either, the register instances are internal, alias, or
external according to their individual declarations.

12.3 Register file properties

Table 25 lists and describes the register file properties.

12.3.1 Semantics

a) All alignment values shall be a power of two (1, 2, 4, etc.) and shall be in units of bytes.

b) The default for alignment is the address (of the register file) aligned to the width of the component
being instantiated (e.g., the address of a 64-bit register is aligned to the next 8-byte boundary).

c) The sharedextbus property is only relevant when dealing with multiple external components.

1) It creates a single set of control signals for entire regfile, instead of per register.

2) Write data is common to all, with max MSB and min LSB from all registers, and populated
based on each register’s field positions.

3) Read data is common to all, with max MSB and min LSB from all registers, and extracted
based on each register’s field positions.

4) For regfiles without an instance type, selects for each external register or regfile accompany
the common control signals.

5) For external regfiles, an address bus with an offset relative to the beginning of the regfile is
provided.

Table 25—Register file properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

alignment Specifies alignment of all instantiated components in the associated reg-
ister file.

longint
unsigned

No

sharedext-
bus

Forces all external registers to share a common bus. boolean No

errextbus For an external regfile, the associated regfile has an error input. boolean No
72 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
d) The errextbus property is only considered for external regfiles and, when nested, only the outer-
most external regfile. errextbus specifies an external regfile implementation indicating a transac-
tion terminated with an error. This error status is incorporated in the top addrmap implementation
transaction error indication.

e) If a register file instance is not explicitly assigned an address, an application needs to automatically
assign the address.

12.3.2 Example

This example shows an application of register file component properties.

regfile fifo_rfile {
 alignment = 8;
 reg {field {} a;} a; // Address of 0
 reg {field {} a;} b; // Address of 8. Normally would have been 4
};
regfile {
 external fifo_rfile fifo_a;// Single regfile instance
 external fifo_rfile fifo_b[64]; // Array of regfiles
sharedextbus; // Create a common external bus for both of these instantiations
 // rather than separate external interfaces
} top_regfile;
Copyright © 2015 - 2018 Accellera. 73
All rights reserved.

January 2018 SystemRDL 2.0
74 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
13. Address map component

An address component map (addrmap) contains registers, register files, memories, and/or other address
maps and assigns a virtual address or final addresses; this map defines the boundaries of an implementation
(e.g., RTL). A virtual address is used on an address map that is intended to be used as a component in a
higher-level, or hierarchical, address map. A final address is used for the top-level address map (one that is
not contained in any other address maps). There is no difference in how addresses are specified. All
addresses are virtual until the root of the tree is reached.

13.1 Introduction

During generation, the address map can be converted into an HDL module. All registers and fields
instantiated within an address map file shall be generated within this module. Therefore, some properties are
only valid for addrmaps and not for regfiles. Other than these properties and their suggested behavior, there
is no difference between address maps and register files.

13.2 Defining and instantiating address maps

Address map components have the same definition and instantiation syntax as other SystemRDL
components; see 5.1. The address allocation operators are shown in 5.1.2.3.

13.3 Semantics

a) The components instantiated within an address map shall be registers, register files, memories,
address maps, or signals.

b) At least one register, register file, memory, or address map shall be instantiated within an address
map.

13.4 Address map properties

A compiler generating an implementation based on SystemRDL has to create an external interface for each
external component created. The sharedextbus property can be used to combine multiple external
components into a single interface.

The other critical aspect to understand about address maps is how the global addressing modes work. There
are three addressing modes defined in SystemRDL: compact, regalign, and fullalign. See 5.1.2.2.2.

Table 26 describes the address map properties.

Table 26—Address map properties

Property Implementation/Application Type Dynamica

alignment Specifies alignment of all instantiated components in the address map. longint
unsigned

No

sharedext-
bus

Forces all external registers to share a common bus. boolean No

errextbus The associated addrmap instance has an error input. boolean No

bigendian Uses big-endian architecture in the address map. boolean Yes

littleendian Uses little-endian architecture in the address map. boolean Yes
Copyright © 2015 - 2018 Accellera. 75
All rights reserved.

January 2018 SystemRDL 2.0
13.4.1 Semantics

a) The default for the alignment shall be the address is aligned to the width of the component being
instantiated (e.g., the address of a 64-bit register is aligned to the next 8-byte boundary).

b) All alignment values shall be a power of two (1, 2, 4, etc.) and shall be in units of bytes.

c) The sharedextbus property is only relevant when the addrmap contains external component
instances.

1) sharedextbus creates a single set of control signals for the entire addrmap, instead of per
external reg, regfile, or mem instance.

2) Any outgoing data is common to all direct external instances.

3) Any incoming data is common to all direct external instances.

4) addrmap instances are always considered external. An address with offset relative to the
beginning of the addrmap instance is provided.

5) If errextbus exists for an addrmap instance, an error input shall exist for that addrmap
instance in the parent addrmap.

d) errextbus specifies an addrmap implementation indicating a transaction terminated with an error.
This error status is incorporated in the top addrmap implementation transaction error indication.

e) regalign is identical to compact, except when dealing with mems, regfiles, or addrmaps. If an
array of components is 256 items deep and 8 bytes wide, then the next address is (addr[2:0] ==
0) and it is only aligned to the size of the regfile, not the total size of the array.

f) fullalign is identical to compact, except when dealing with mems, regfiles, or addrmaps. If an
array of components is 256 items deep and 8 bytes wide, then the next address is aligned to 256*8
or 2048.

g) rsvdsetX does not affect SystemRDL generated implementations; it can be used to verify legacy
designs which do not have consistent data values for reserved fields.

h) rsvdset and rsvdsetX are mutually exclusive.

i) msb0 and lsb0 are mutually exclusive.

j) The bigendian and littleendian properties are used for controlling byte ordering and have no effect
on bit ordering.

addressing Controls how addresses are computed in an address map. address-
ingtype

No

rsvdset The read value of all fields not explicitly defined is set to 1 if rsvdset is
True; otherwise, it is set to 0.

boolean No

rsvdsetX The read value of all fields not explicitly defined is unknown if rsvd-
setX is True.

boolean No

msb0 Specifies register bit-fields in an address map are defined as 0:N versus
N:0. This property affects all fields in an address map.

boolean No

lsb0 Specifies register bit-fields in an address map are defined as N:0 versus
0:N. This property affects all fields in an address map. This is the
default.

boolean No

aIndicates whether a property can be assigned dynamically.

Table 26—Address map properties (Continued)

Property Implementation/Application Type Dynamica
76 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
13.4.2 Example

See the examples shown in 5.1.2.2.2.

13.5 Defining bridges or multiple view address maps

A bridge addrmap is a container for address maps which can be accessed by multiple masters. Table 27 lists
and describes these address map bridge properties.

13.5.1 Semantics

To create a bridge, use a parent address map with a bridge property which contains two or more sub
address maps representing the different views.

13.5.2 Example

This example below shows a bridge between two bus protocols.

addrmap some_bridge { // Define a Bridge Device
desc="overlapping address maps with both shared register space and
orthogonal register space";
bridge; // This tells the compiler the top level map contains other maps

 reg status {// Define at least 1 register for the bridge
shared; // Shared property tells compiler this register

 // will be shared by multiple addrmaps
field {

 hw=rw;
 sw=r;
 } stat1 = 1'b0;
 };

 reg some_axi_reg {
 field {
 desc="credits on the AXI interface";
 } credits[4] = 4'h7; // End of field: {}
 }; // End of Reg: some_axi_reg

 reg some_ahb_reg {
 field {

 desc="credits on the AHB Interface";
 } credits[8] = 8'b00000011 ;
 };

addrmap {
littleendian;
some_ahb_reg ahb_credits; // Implies addr = 0
status ahb_stat @0x20; // explicitly at address=20

Table 27—Bridge properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

bridge Defines the parent address map as being a bridge. This shall only be
applied to the root address map which contains the different views of
the sub address maps.

boolean No
Copyright © 2015 - 2018 Accellera. 77
All rights reserved.

January 2018 SystemRDL 2.0
ahb_stat.stat1->desc = "bar"; // Overload the registers property in
// this instance

} ahb;

addrmap { // Define the Map for the AXI Side of the bridge
bigendian; // This map is big endian
some_axi_reg axi_credits; // Implies addr = 0
status axi_stat @0x40; // explicitly at address=40

 axi_stat.stat1->desc = "foo"; // Overload the registers property
 // in this instance

} axi;
}; // Ends addrmap bridge
78 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
14. Verification constructs

This clause describes certain special constructs which are specifically used for creating verification models
from the SystemRDLspecification.

14.1 HDL path

An HDL path specifies the hierarchical path of the design storage element corresponding to the address map,
register, register field, or memory. By specifying an HDL path, the verification environment can have direct
access to memory, register, and field implementation nets in a Design Under Test (DUT). The complete
HDL path of a component is the concatenation of all HDL paths from the top-level down to the component.

An hdl_path_slice or hdl_path_gate_slice can be put on a field or mem component. It can be used when
the corresponding RTL or gate-level netlist is not contiguous. The property value is an array of hdl_path
strings, each pointing to the corresponding element in the RTL or gate-level netlist.

14.1.1 Assigning HDL path

An HDL path can be assigned using property hdl_path or hdl_path_gate. Table 28 lists and describes the
HDL path properties.

14.1.1.1 hdl_path and hdl_path_gate

hdl_path and hdl_path_gate are properties which contain a string-based path to the storage in an RTL or
gate-level netlist.

hdl_path = "path";

hdl_path_gate = "path";

where

path is the path specified as an argument to the method calls in IEEE 1800.2, subclause 19.6.

The RHS value of hdl_path can contain a bit slice, which is specified by using [:], e.g.,
"reg1[31:12]".

14.1.1.2 hdl_path_slice and hdl_path_gate_slice

hdl_path_slice and hdl_path_gate_slice are properties which contain an array of string-based paths to the
storage in an RTL or gate-level netlist.

Table 28—HDL path properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

hdl_path Assigns the RTL hdl_path for an addrmap, reg, or regfile. string Yes

hdl_path_
slice

Assigns a list of RTL hdl_path for a field or mem. string [] Yes

hdl_path_
gate

Assigns the gate-level hdl_path for an addrmap, reg, or regfile. string Yes

hdl_path_
gate_slice

Assigns a list of gate-level hdl_path for a field or mem. string [] Yes
Copyright © 2015 - 2018 Accellera. 79
All rights reserved.

January 2018 SystemRDL 2.0
hdl_path_slice = ‘{"path" [, "path"]*};

hdl_path_gate_slice = ‘{"path" [, "path"]*};

hdl_path_slice’s shall be used when the component has multiple storage elements in the RTL or gate.

14.1.2 Examples

Example 1

The corresponding (TOP) diagram for this example is shown in Figure 1.

addrmap block_def #(string ext_hdl_path = "ext_block") {
 hdl_path = "int_block" ;

 reg {
 hdl_path = { ext_hdl_path, ".externl_reg" } ;
 field {
 hdl_path_sice = '{ "field1" } ;
 } f1 ;
 } external external_reg ;

 reg {
 hdl_path = "int_reg" ;
 field {
 hdl_path_slice = '{ "field1" } ;
 } f1 ;
 } internal_reg ;
} ;

addrmap top {
 hdl_path = "TOP" ;
 block_def #(.ext_hdl_path("ext_block0")) int_block0 ;
 int_block0 -> hdl_path = "int0" ;
 block_def #(.ext_hdl_path("ext_block1")) int_block1 ;
 int_block1 -> hdl_path = "int1" ;
} ;
80 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Figure 1—TOP diagram

Example 2

addrmap top{
reg {

field {
hdl_path_slice = ‘{"rtl_f1_1", "rtl_f1_0"};

} f1[1:0];
field {

hdl_path_slice = ‘{"rtl_f2"};
} f2[5:3];

} Reg1 ;
Reg1.f2 -> hdl_path_slice = ‘{"rtl_f2_5_4", "rtl_f2_3"};
// the hdl_path for Reg1.f2 has been overridden dynamically

};

14.2 Constraints

A constraint is a value-based condition on one or more components; e.g., constraint-driven test generation
allows users to automatically generate tests for functional verification. Constraints can be instantiated within
all structural components.

14.2.1 Describing constraints

Constraints can be assigned using a constraint component. A constraint component can contain one or
more constraint expressions. A constraint expression is a value-based condition on one or more fields
visible from the scope in which the constraint component is defined. The field references may only be to a
field instance and not a property of the field. Fields can also be specified using the hierarchical operator
(.) (see 5.1.4). If the constraint is instantiated inside a field, the this keyword can be used to reference the
enclosing field.
Copyright © 2015 - 2018 Accellera. 81
All rights reserved.

January 2018 SystemRDL 2.0
Note that the this keyword is legal only in the context of expressions defined in constraint components.
Expressions defined in constraint components are not evaluated by SystemRDL compilers and should be
transferred as written for runtime evaluation, except when translating field and enum type references.

A field can be limited to values in a set using the inside keyword and the set operator ({}). Values in a set
can be specified separated by commas (,) or a range can be specified using the [:] syntax. The right-hand
side of an inside can also be an enum type reference. When translating enum type references to
SystemVerilog, the reference shall be replaced by the list of enumerators defined in the enum type.

Any constraint can be disabled by setting the constraint’s constraint_disable property (see Table 29) to
true.

14.2.2 Constraint component

a) Definitive definition

constraint constraint_component_name {[constraint_body]};

constraint_component_name constraint_inst;

where

1) constraint_component_name is the user-specified constraint name.

2) constraint_body can contain one of more of the following.

i) LHS operator RHS

where

LHS can be a field name reference or the this keyword.

operator can be any relational operator (see Table 7).

RHS can be any valid SystemRDL expression.

ii) LHS inside {open_range_list}

where

LHS can be a field name reference or the this keyword.

open_range_list is defined as follows

 constraint_value [, constraint_value]*

and constraint_value is defined as either an expression or a range, as follows.

 constant_expression | [constant_expression : constant_expression]

iii) LHS inside enum_type_ref

where

LHS can be a field name reference or the this keyword.

enum_type_ref is an enum type reference.

iv) An assignment to a universal property (see Table 5) or constraint_disable (see Table 29).

3) constraint_inst is the user-specified name for instantiation of the component.

b) Anonymous definition

constraint {[constraint_body]} constraint_component_name;

where

1) constraint_body can contain one of more of the following.

i) LHS operator RHS

where

LHS can be a field name reference or the this keyword.

operator can be any relational operator (see Table 7).
82 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
RHS can be any valid SystemRDL expression.

ii) LHS inside {open_range_list}

where

LHS can be a field name reference or the this keyword.

open_range_list is defined as follows

 constraint_value [, constraint_value]*

and constraint_value is defined as either an expression or a range, as follows.

 constant_expression | [constant_expression : constant_expression]

iii) LHS inside enum_type_ref

where

LHS can be a field name reference or the this keyword.

enum_type_ref is an enum type reference.

iv) An assignment to a universal property (see Table 5) or constraint_disable (see Table 29).

2) constraint_component_name is the user-specified constraint name.

Table 29 lists and describes the constraint properties.

14.2.3 Example

constraint not_valid { this != 0; }; //definitive constraint
constraint max_value { this < 256; };

reg example_reg {
field {

hw=rw; sw=rw;
not_valid not0; // instantiate not_valid constraint,

// where "this" resolve to current field value.
max_value max0;

} f3 [17:31]=1;
};

enum color {
red = 0 { desc = " color red ";};
green = 1 { desc = " color green ";};
blue = 2 { desc = " color blue ";};

};

reg register1 {
field { hw = rw; sw = rw; }limit[0:2]=0;
field {

hw = rw; sw = rw;
max_value max1; // another instance.

} f1 [3:9]=3;

Table 29—Constraint properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

constraint_
disable

Specifies whether to disable (true) or enable (false) constraints. boolean Yes
Copyright © 2015 - 2018 Accellera. 83
All rights reserved.

January 2018 SystemRDL 2.0
constraint { f1 > limit; } min; //anonymous constraint

field {

hw = rw; sw = rw; encode=color;

constraint { this == red || this == green; } rg1;

constraint { this inside {red, green}; } rg2;

constraint { this inside color; } rgb; // full range of encode

} f2 [10:31];

};

struct RGB {

 longint unsigned red1;

 longint unsigned green1;

 longint unsigned blue1;

} ;

reg regfoo {

RGB pixelvalue;

};

addrmap constraint_component_example {

example_reg reg1;

example_reg reg2;

register1 r1;

register1 r2;

constraint {

reg1.f3 inside {5,8,[9:12],3}; // adding a new constraint by

// hierarchically referring to a field

} cont1;

r1.min->constraint_disable = true; // disable a particular constraint

// disable all constraints on f2 individually

r2.f2.rg1->constraint_disable = true;

r2.f2.rg2->constraint_disable = true;

r2.f2.rgb->constraint_disable = true;

regfoo my_struct;

constraint {

my_struct.pixelvalue.blue1 == my_struct.pixelvalue.red1;

} limit;

};
84 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
15. User-defined properties

User-defined properties enable the creation of custom properties that extend the structural component types
in a SystemRDL design. A user-defined property specifies one or more structural component types (e.g.,
reg) to which it can be bound, has a single value-type (e.g., ref), and (optionally) a default value. Unlike
built-in properties, user-defined properties are not automatically bound to every instance of the specified
component’s type; instead they need to be bound per instance and/or component definition.

15.1 Defining user-defined properties

A user-defined property definition appears as follows.

property property_name {attribute; [attribute;]*};

where

a) property_name specifies the new property.

b) attributes are specified as attribute=value pairs, e.g., type=number (see 5.1.3.1).

Component attribute values can also be combined by using the | symbol.

c) attributes may be specified in any order.

Table 30 specifies which attributes can be set in a user-defined property.

Table 31 details each of the possible user-defined property types.

Table 30—Attributes for user-defined properties

Attribute Description Allowable values Required

component The structural component type with which
the property is associated. This attribute
shall be one or more of the allowable val-
ues. If more than one value is specified the |
operator (inclusive OR) is used.

field, reg, regfile, addrmap, mem,
signal, constraint, or all.

Yes

type The type of the property.
This may also be arrayed by adding []
after the type’s name.

 See Table 31. Yes

default The default value for the property. Optional; needs to match the type
of the property. Properties of type
ref or any component type shall not
reference an instance of a parame-
terized type as a default.

No

constraint Additional constraints on the property’s
value. Currently limited to compo-
nentwidth for type bit.

componentwidth. No

Table 31—User-defined types

Type Description Example

number A bit value (see Table 7). Used for backward compat-
ibility.

0x10 or 8'h8c

string Any valid string (see Table 7). “Some String”

boolean A two-state value (see Table 7). true or false

ref A reference to a component instance (see Table 7). chip.block.reg.field
Copyright © 2015 - 2018 Accellera. 85
All rights reserved.

January 2018 SystemRDL 2.0
15.1.1 Semantics

a) User-defined properties are global and defined in the root scope.

b) A user-defined property definition shall include the component property specification.

c) A user-defined property definition shall include its type definition (see Table 31).

d) The default attribute can result in some inconsistencies relative to the behavior of built-in properties
to the language, especially relating to boolean properties. Built-in booleans in SystemRDL are
inherently defaulted to false. With user-defined boolean properties, the default can be specified to
be true or false. A default of true creates an inconsistency with respect to SystemRDL property
assignments.

e) The default value shall be assignment compatible with the property type, as defined in 6.4.

f) Field values shall not require more bits than are available in the field.

g) If constraint is set to componentwidth, the assigned value of the property shall not have a value of
1 for any bit beyond the width of the field.

15.1.2 Example

This example defines several user-defined properties.

property a_map_p { type = string; component = addrmap | regfile; };
property some_bool_p { type = boolean; component = field; default = false; };

15.2 Assigning (and binding) user-defined properties

User-defined properties may be assigned like general properties (see 5.1.3).

A user-defined property is bound when it is instantiated within a component definition or assigned a value.

15.2.1 Semantics

a) User-defined properties can be dynamically assigned to any component in its component attribute.

b) It shall be an error if there is an attempt to assign a user-defined property in a component that is not
specified in its component attribute.

bit An unsigned integer with the value of 0 or a Verilog-
style number (see Table 7).

8'h8c, 4'b1010

longint
unsigned

A 64-bit unsigned long integer (see Table 7). 0x10, 256

enumerator An enumerator from a user-defined enumeration. myEnum::VAL_2

struct literal A struct instance consistent with the given type (see
Table 7).

'myStruct{foo: 8'h10,
bar: '{"hello",
"world"} }

type[] An array of values whose type shall be picked from
this table, excepting array.

'{ 8'h80, 8'h8F, 8'h08,
8'h0F }

addrmap, reg-
file, reg, mem,
field

A specialization of the ref keyword to instances of
given type.

submap or submap.regA

Table 31—User-defined types (Continued)

Type Description Example
86 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
c) User-defined properties can be bound to a component without setting a value.

d) If a user-defined property has an enumeration type, any value assignment to the property shall be
one of the named enumerators of that enumeration type.

15.2.2 Examples

These examples show the definition and assignment of several user-defined properties.

Example 1

property a_map_p { type = string; component = addrmap | regfile; };
property some_bool_p { type = boolean; component = field; default = false; };

property some_ref_p { type = ref; component = all; };
property some_num_p { type = number; default = 0x10; component = field | reg

| regfile };

addrmap foo {
 reg{
 field { some_bool_p; } field1; // Attach some_bool_p to the field
 // with a value of false;

 field { some_bool_p = true; some_num_p; } field2;
// Attach some_bool_p to the field with a value of true;

 field1->some_ref_p = field2; // create a reference
 some_num_p = 0x20; // Assign this property to the reg and give it value
 } bar;

 a_map_p; // The property has been bound to the map but it has not been
// assigned a value so its value is undefined

};

Example 2

enum myEncoding {
alpha = 1’b0;

beta = 1’b1;
};

property my_enc_prop {
type = myEncoding;

component = field;
default = beta;

};

addrmap top {

reg {
field { my_enc_prop = alpha ; } f ;

} regA ;
} ;
Copyright © 2015 - 2018 Accellera. 87
All rights reserved.

January 2018 SystemRDL 2.0
88 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
16. Preprocessor directives

SystemRDL provides for file inclusion and text substitution through the use of preprocessor directives.
There are two phases of preprocessing in SystemRDL: embedded Perl preprocessing and a more traditional
Verilog-style preprocessor. The embedded Perl preprocessing is handled first and the resulting substituted
code is passed through a traditional Verilog-style preprocessor.

16.1 Embedded Perl preprocessing

The SystemRDL preprocessor provides more power than traditional macro-based preprocessing without the
dangers of unexpected text substitution. Instead of macros, SystemRDL allows designers to embed snippets
of Perl code into the source.

16.1.1 Semantics

a) Perl snippets shall begin with <% and be terminated by %>; between these markers any valid Perl
syntax may be used.

b) Any SystemRDL code outside of the Perl snippet markers is equivalent to the Perl print 'RDL
code' and the resulting code is printed directly to the post-processed output.

c) <%=$VARIABLE%> (no whitespace is allowed) is equivalent to the Perl print $VARIABLE.

d) The resulting Perl code is interpreted and the result is sent to the traditional Verilog-style preproces-
sor.

16.1.2 Example

This example shows the use of the SystemRDL preprocessor.

// An example of Apache’s ASP standard for embedding Perl
reg myReg {

<% for($i = 0; $i < 6; $i += 2) { %>
myField data<%=$i%> [<%=$i+1%>:<%=$i%>];
<% } %>

};

When processed, this is replaced by the following.

// Code resulting from embedded Perl script
reg myReg {

myField data0 [1:0];
myField data2 [3:2];
myField data4 [5:4];

};

16.2 Verilog-style preprocessor

SystemRDL also provides for file inclusion and text substitution through the use of Verilog-style
preprocessor directives. A SystemRDL file containing file inclusion directives shall be equivalent with one
containing each included file in-lined at the place of its inclusion directive. A SystemRDL file containing a
text substitution directive shall be equivalent to one containing the text resolved according to the text
substitution directive in-lined at the place of the text inclusion directive.

The Verilog-style preprocessing always takes any embedded Perl preprocessing output as its source.
Copyright © 2015 - 2018 Accellera. 89
All rights reserved.

January 2018 SystemRDL 2.0
16.2.1 Verilog-style preprocessor directives

These directives are a subset of those defined by the SystemVerilog (IEEE Std 1800™) and Verilog (IEEE
Std 1364™) standards to allow SystemRDL source files to include other files and provide protection from
definition collisions due to the multiple inclusions of a file. The text macro define directives are defined by
the SystemVerilog standard and the other directives are defined by the Verilog standard.

Table 32 shows which preprocessor are included in SystemRDL.

All other directives defined by the SystemVerilog and Verilog standards are removed during preprocessing,
i.e., ‘begin_keywords, ‘celldefine, ‘default_nettype, ‘end_keywords,
‘endcelldefine, ‘nounconnected_drive, ‘pragma, ‘resetall, ‘timescale, and
‘unconnecteded_drive.

SystemRDL does not support the SystemVerilog predefined include files or the SystemVerilog or
Verilog languages beyond the directives given in Table 32.

16.2.2 Limitations on nested file inclusion

Nested includes are allowed, although the following restrictions are placed on this.

a) The number of nesting levels for include files shall be bounded.

b) Implementations may limit the maximum number of levels to which include files can be nested, but
the limit shall be at least 15 levels.

Table 32—Verilog-style preprocessor directives

Directive Defining standard Description

`define SystemVerilog Text macro definition

`if Verilog Conditional compilation

`else Verilog Conditional compilation

`elsif Verilog Conditional compilation

`endif Verilog Conditional compilation

`ifdef Verilog Conditional compilation

`ifndef Verilog Conditional compilation

`include Verilog File inclusion

`line Verilog Source filename and number

`undef Verilog Undefine text macro
90 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
17. Advanced topics in SystemRDL

The concept of signals was introduced in Clause 8 and the signal properties were described in 8.2. Signals,
in addition to providing a means of interconnecting components in SystemRDL, have a very critical role in
controlling resets for generated hardware. This clause explains the advanced signal properties (see Table 10)
and their application.

17.1 Application of signals for reset

There are many ways to do resets in hardware and this is where the advanced use of signals applies. Signal
components have properties, such as sync, async, activelow, and activehigh, which are used to describe the
use behavior of the signal, but when that signal is specified as a reference to the resetsignal property of a
field then they affect the field’s reset behavior as well. A signal does not become a reset signal until a signal
instance is referenced by a field’s resetsignal property. The following signal properties can also be used to
accommodate more complex scenarios.

a) The field_reset property specifies all fields in the address map shall be reset by the signal to which
this property is attached unless the field instance has a resetsignal property specified. This property
cannot be specified on more than one signal instance in an address map and the address map’s non-
address map instances. This does not mean, however, that all fields then have to be reset by this sig-
nal. The user can still use the resetsignal property to override the default for specific fields. See c
for priority and propagation rules.

b) The cpuif_reset property specifies the reset for the CPU interface to which the registers are con-
nected. The designer may wish to be able to reset the CPU interface/bus while retaining the values of
the registers. In the default case, the fields and the CPU interface/bus are both reset by the default
signal. This property gives the designer the ability to customize such behavior. This property cannot
be specified on more than one signal instance in an address map and its address maps non-address
map instances.

cpuif_reset is inherited from the enclosing lexical scope.

c) The value of a field component with a specified reset value is updated to this value or a field with
write-once access is returned to a writable state when the field component reset signal is asserted.
The field component reset signal is specified with the following priority (highest priority first).

1) The dynamic assignment to the field instance resetsignal property.

2) The resetsignal property assignment within the field component declaration.

3) The default resetsignal property assignment inherited from the field component declaration’s
enclosing scope.

4) The signal component with the field_reset property within the same scope as the field type
definition.

5) The signal component with the field_reset property following the scoping rules from the
field instantiation.

6) The implementation port specified by the CPU interface bus protocol as the reset signal.

7) An implementation-dependent port or net.

The following examples highlight two different ways to customize reset behavior.

Example 1

This example shows usage of resetsignal.

addrmap top{
signal { activelow; async; } reset_l; // Define a single bit signal
reg {
Copyright © 2015 - 2018 Accellera. 91
All rights reserved.

January 2018 SystemRDL 2.0
field {} field1=0; // This field is reset by the default IMPLIED reset
 // signal which is named RESET and is activehigh and sync

field {
resetsignal = reset_l;

} field2=0; // This field is now reset by reset_l and the generated
 // flops will be active low and asynchronously reset.

} some_reg_inst;
};

Here the resetsignal property is used to customize the reset behavior. Although this approach is always
valid, it can be cumbersome if a user wishes to vary from the default significantly with a large number of
fields. In those cases, field_reset and cpuif_reset can be used to accommodate those more complex
scenarios, as shown in Example 2.

Example 2

This example shows usage of cpuif_reset and field_reset from the PCI Type 0 Config Header.

signal {
 name="PCI Soft Reset";
 desc="This signal is used to issue a soft reset to the PCI(E) device";
 activelow; // Define this signal is active low
 async; // define this reset type is asynchronous
 field_reset; // define this signal to reset the fields by default

 // This signal will be hooked to registers PCI defines as NOT Sticky.
 // This means they will be reset by this signal.
} pci_soft_reset;

 signal {
 name="PCI Hard Reset";
 desc="This signal the primary hard reset signal for the PCI(E) device";
 async; // define this reset type is asynchronous
 activelow; // Define this signal as active low
 cpuif_reset; // This signal will be or'd with the PCI Soft Reset Signal
 // to form the master hard reset which will reset all flops.

 // The soft reset signal above will not reset flops that PCI
 // defines as STICKY.
 } pci_hard_reset;

reg { // PCIE_REG_BIST
 name = "BIST";
 desc = "This optional register is used for control and status of BIST.

 Devices that do not support BIST always returns a value of 0
 (i.e., treat it as a reserved register). A device whose
 BIST is invoked shall not prevent normal operation of the PCI bus.

 Figure 6-4 shows the register layout and Table 6-3 describes the
 bits in the register.";
 regwidth = 8;

 field {
 name = "cplCode";
 desc = "A value of 0 means the device has passed its test. Non-zero values
 mean the device failed. Device-specific failure codes can be encoded
 in the non-zero value.";
 hw = rw; sw = r;
 fieldwidth = 4;
 } cplCode [3:0];// since this signal has no resetsignal property it defaults
92 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
 // to using the signal with field reset which is
 // the pci_soft_reset signal

 field {
 name = "start";
 desc = "Write a 1 to invoke BIST. Device resets the bit when BIST is
 complete. Software should fail the device if BIST is not complete
 after 2 seconds.";
 hw = rw; sw = rw;
 fieldwidth = 1;
 } start [6:6]; // resetsignal is also pci_soft_reset

 field {
 name = "capable";

desc = "Return 1 if device supports BIST. Return 0 if the device is not BIST
 capable.";
 hw = rw; sw = rw;
 fieldwidth = 1;
 resetsignal = pci_hard_reset;
 } capable [7:7]=0; // resetsignal is explicitly specified as pci_hard_reset

 } PCIE_REG_BIST;

17.2 Understanding hierarchical interrupts in SystemRDL

SystemRDL also provides the capability to create a hierarchy of interrupts. This can be useful for describing
a complete interrupt tree of a design (see Figure 2).

Figure 2—Hierarchical interrupt structure

Within each level of the hierarchical description, interrupt registers and enable registers can be used to gate
the propagation of interrupts. The detailed diagram for a block depicted in the hierarchy shown in Figure 2 is
represented by the example shown in Figure 3.
Copyright © 2015 - 2018 Accellera. 93
All rights reserved.

January 2018 SystemRDL 2.0
Figure 3—Block interrupt example

Multiple levels of hierarchy are needed to effectively demonstrate this interrupt tree. The example shown in
the following subclauses is quite long (and broken into multiple code segments), but tries to show the use of
the interrupt constructs in a practical application.

17.2.1 Example structure and perspective

The (example) SystemRDL code needed to match the hierarchical interrupt structure shown in Figure 2
needs to contain four leaf blocks. Each of these leaf blocks needs to contain three interrupt events. These
lowest level events are stickybit and the OR of the three interrupts propagates that interrupt to the next level
in the tree. This OR’d output indicates some block in the design actually has a interrupt pending. Finally, the
four blocks are aggregated to create a single interrupt pin. Enables are used throughout this example, but it
could just as easily be a mask instead.

This example is broken into sections to make it more readable. The previous description and example are
built from a bottom-up perspective.

Considering this example from a software driver’s viewpoint (from the top down), there are two top-level
signals that are emitted to software: one indicates a interrupt of some priority has occurred; the other
indicates an interrupt of another priority has occurred. These could map to fatal and non-fatal interrupts or
anything else the user desires. For each level on the tree, there is enabling so the software can easily disable/
enable these interrupts at each level of the tree.

So the software begins the process by seeing if an intr or halt is set in the top-level register. Once that has
been determined, the software needs to read the master interrupt register and determine in which block(s) the
interrupt has occurred. Once that has been determined, the leaf interrupt for that block can be read to
determine which specific interrupt bits have been set. The software can then address the leaf interrupts and
clear them when appropriate. Since the master level and global level are defined as nonsticky in this
example, the software only needs to clear the leaf and then the next two levels of the tree will clear
themselves automatically.
94 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
17.2.2 Code snippet 1

The first code snippet section defines a basic block’s interrupt register, which contains three single-bit
interrupts. It also has a single multi-bit sticky field used for capturing the cause of the multi-bit error
correcting code interrupt. These interrupt events are created by hardware and cleared by software. The
software then needs to do a write one to clear. Notice how the default keyword is used to reduce the size of
the code.

//--
// Block Level Interrupt Register
//--

reg block_int_r {
 name = "Example Block Interrupt Register";
 desc = "This is an example of an IP Block with 3 int events. 2 of these
 are non-fatal and the third event multi_bit_ecc_error is fatal";

 default hw=w; // HW can Set int only
 default sw=rw; // SW can clear
 default woclr; // Clear is via writing a 1

 field {
 desc = "A Packet with a CRC Error has been received";
 level intr;
 } crc_error = 0x0;

 field {
 desc = "A Packet with an invalid length has been received";
 level intr;
 } len_error = 0x0;

 field {
 desc="An uncorrectable multi-bit ECC error has been received";
 level intr;
 } multi_bit_ecc_error = 0 ;

 field {
 desc="Master who was active when ECC Error Occurred";
 sticky;
 } active_ecc_master[7:4] = 0; // Example of multi-bit sticky field
 // This field is not an intr
}; // End of Reg: block_int_r

17.2.3 Code snippet 2

This next code snippet only defines the enable register associated with the interrupt register from 17.2.2—it
does not instantiate the register or connect it up at this point.

reg block_int_en_r {
 name = "Example Block Interrupt Enable Register";
 desc = "This is an example of an IP Block with 3 int events";

 default hw=na; // HW can't access the enables
 default sw=rw; // SW can control them

 field {
 desc = "Enable: A Packet with a CRC Error has been received";
 } crc_error = 0x1;
Copyright © 2015 - 2018 Accellera. 95
All rights reserved.

January 2018 SystemRDL 2.0
 field {
 desc = "Enable: A Packet with an invalid length has been received";
 } len_error = 0x1;

 field {
 desc = "Enable: A multi-bit error has been detected";
 } multi_bit_ecc_error = 0x0;
}; // End of Reg: block_int_en_r

17.2.4 Code snippet 3

This next code snippet only defines a second-priority enable register associated with the interrupt register
from 17.2.2—it does not instantiate the register or connect it up at this point.

reg block_halt_en_r {
 name = "Example Block Halt Enable Register";
 desc = "This is an example of an IP Block with 3 int events";

 default hw=na; // HW can't access the enables
 default sw=rw; // SW can control them

 field {
 desc = "Enable: A Packet with a CRC Error has been received";
 } crc_error = 0x0; // not a fatal error do not halt

 field {
 desc = "Enable: A Packet with an invalid length has been received";
 } len_error = 0x0; // not a fatal error do not halt

 field {
 desc = "Enable: A Packet with an invalid length has been received";
 } multi_bit_ecc_error = 0x1; // fatal error that will
 // cause device to halt
}; // End of Reg: block_halt_en_r

17.2.5 Code snippet 4

This next code snippet defines the next level up interrupt register (called the master interrupt register). Each
of the outputs of the leaf block’s interrupt registers will connect into this block later. This section is made
nonsticky, so the leaf interrupts are automatically cleared by this register.

//--
// Master Interrupt Status Register
//--

reg master_int_r {
 name = "Master Interrupt Status Register";
 desc = "This register contains the status of the 4 lower Module interrupts.
 Also an interrupt signal (myMasterInt) is generated which is the 'OR'
 of the four Module interrupts. A Halt signal is also generated which
 represents the bitwise or the masked/enabled halt bits";

 default nonsticky intr; // Unless we want to have to clear this separately
 // from the leaf intr this should be non sticky
 default hw=w; // HW normally won't want to access this but it could
 default sw=r; // Software can just read this. It clears the leaf intr's
 // to clear this
96 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
 field {
 desc = "An interrupt has occurred with ModuleD.
 Software must read the ModuleD Master Interrupt Register
 in order to determine the source of the interrupt.";
 } module_d_int[3:3] = 0x0;

 field {
 desc = "An interrupt has occurred with ModuleC.
 Software must read the ModuleC Master Interrupt Register
 in order to determine the source of the interrupt.";
 } module_c_int[2:2] = 0x0;

 field {
 desc = "An interrupt has occurred with ModuleB.
 Software must read the ModuleB Interrupt Register
 in order to determine the source of the interrupt.";
} module_b_int[1:1] = 0x0;

field {
 desc = "An interrupt has occurred with ModuleA.
 Software must read the ModuleA Master Interrupt Register
 in order to determine the source of the interrupt.";
 } module_a_int[0:0] = 0x0;
};

17.2.6 Code snippet 5

This next code snippet defines the enable register for the master interrupt register set in 17.2.5.

//
// The following is the accompanying enable register. Since the combinatorial
// logic for processing the interrupt is internal to the generated verilog,
// there's no need for an external port - which is realized by assigning "na"
// to the hw attribute of the specific field. This could have been defined as
// a mask register just as easily...
//

//--
// Interrupt Enable Register
//--

reg master_int_en_r {
 name = "Master Interrupt Enable Register";
 desc = "Configurable register used in order to enable the corresponding
 interrupts found in myMasterInt register.";

 default hw = na;
 default sw = rw;

 field {
 desc = "Interrupt enable for ModuleD Interrupts. 1 = enable, 0 = disable";
 } module_d_int_en[3:3] = 0x0;

 field {
 desc = "Interrupt enable for ModuleC Interrupts. 1 = enable, 0 = disable";
 } module_c_int_en[2:2] = 0x0;
Copyright © 2015 - 2018 Accellera. 97
All rights reserved.

January 2018 SystemRDL 2.0
 field {
 desc = "Interrupt enable for ModuleB Interrupts. 1 = enable, 0 = disable";
 } module_b_int_en[1:1] = 0x0;

 field {
 desc = "Interrupt enable for ModuleA Interrupts. 1 = enable, 0 = disable";
 } module_a_int_en[0:0] = 0x0;
};

17.2.7 Code snippet 6

This next code snippet defines an alternate enable register for the master interrupt register set in 17.2.5.

//--
// Halt Enable Register
//--

// The halt en is another enable or mask that could be used to generate an
// alternate signal like a halt that represents a fatal error in the system or
// some other event NOTE: It does not have to mean fatal as the name implies
// its just another priority level for interrupts...

reg master_halt_en_r {
 name = "Master Halt Enable Register";
 desc = "Configurable register used in order to enable the corresponding
 interrupts found in myMasterInt register.";

 default hw = na;
 default sw = rw;

 field {
 desc = "Halt enable for ModuleD Interrupts. 1 = enable, 0 = disable";
 } module_d_halt_en[3:3] = 0x0;

 field {
 desc = "Halt enable for ModuleC Interrupts. 1 = enable, 0 = disable";
 } module_c_halt_en[2:2] = 0x0;

 field {
 desc = "Halt enable for ModuleB Interrupts. 1 = enable, 0 = disable";
 } module_b_halt_en[1:1] = 0x0;

 field {
 desc = "Halt enable for ModuelA Interrupts. 1 = enable, 0 = disable";
 } module_a_halt_en[0:0] = 0x0;
};

17.2.8 Code snippet 7

Now, the third level up from the leaf in the interrupt tree needs to be addressed (called the global interrupt
register). This register distills down the fact there is an interrupt present in at least one of the four blocks into
a single intr signal and a single halt signal.

//--
// Global Interrupt Status Register
//--
98 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
// This takes the block int which feeds the master int and then distills it
// down one more level so we end up with a single bit intr and single bit halt...

//--
// Global Interrupt/Halt Enable Register
//--

reg final_en_r {
 name = "My Final Enable Register";
 desc = "This enable allows all interrupts/halts to be suppressed
 with a single bit";

 default hw = na;
 default sw = rw;

 field {
 desc = "Global Interrupt Enable. 1 = enable, 0 = disable";
 } global_int_en = 0x0;

 field {
 desc = "Global Halt Enable. 1 = enable, 0 = disable";
 } global_halt_en = 0x0;

};

reg final_int_r {
 name = "My Final Int/Halt Register";
 desc = "This distills a lower level interrupts into a final bit than can be
 masked";
 default sw = r; // sw does not need to clear global_int
 // (global_int is of type final_int_r)
 // instead it clears itself when all master_int intr
 // bits get serviced

 default nonsticky intr;
 default hw = w; // w needed since dyn assign below implies interconnect to hw
 // global_int.global_int->next = master_int->intr;

 field {
 desc = "Global Interrupt";
 } global_int = 0x0;

 field {
 desc = "Global Halt";
 } global_halt = 0x0;
};

17.2.9 Code snippet 8

Once all the components for the three-level interrupt tree have been defined, an address map needs to be
defined and any previously defined components need to be instantiated and interconnected. This section
does all this—it is the most critical part of the example to understand.

addrmap int_map_m {

 name = "Sample ASIC Interrupt Registers";
 desc = "This register map is designed how one can use interrupt concepts

effectively in SystemRDL";
Copyright © 2015 - 2018 Accellera. 99
All rights reserved.

January 2018 SystemRDL 2.0
// Leaf Interrupts

 // Block A Registers

 block_int_r block_a_int; // Instance the Leaf Int Register
 block_int_en_r block_a_int_en; // Instance the corresponding Int Enable
 // Register
 block_halt_en_r block_a_halt_en; // Instance the corresponding halt enable
 // register

 // This block connects the int bits to their corresponding
 // int enables and halt enables
 //
 block_a_int.crc_error->enable = block_a_int_en.crc_error;
 block_a_int.len_error->enable = block_a_int_en.len_error;
 block_a_int.multi_bit_ecc_error->enable =

block_a_int_en.multi_bit_ecc_error;

 block_a_int.crc_error->haltenable = block_a_halt_en.crc_error;
 block_a_int.len_error->haltenable = block_a_halt_en.len_error;
 block_a_int.multi_bit_ecc_error->haltenable =

block_a_halt_en.multi_bit_ecc_error;

17.2.10 Code snippet 9

17.2.9 instances the leaf interrupt, instances its enable and halt enable, and assigns enable and haltenable
properties to reference the respective enable registers. This code snippet repeats this process three more
times: one each for blocks b, c, and d.

 // Block B Registers

 block_int_r block_b_int @0x100;
 block_int_en_r block_b_int_en;
 block_halt_en_r block_b_halt_en;

 block_b_int.crc_error->enable = block_b_int_en.crc_error;
 block_b_int.len_error->enable = block_b_int_en.len_error;
 block_b_int.multi_bit_ecc_error->enable =

block_b_int_en.multi_bit_ecc_error;

 block_b_int.crc_error->haltenable = block_b_halt_en.crc_error;
 block_b_int.len_error->haltenable = block_b_halt_en.len_error;
 block_b_int.multi_bit_ecc_error->haltenable =

block_b_halt_en.multi_bit_ecc_error;

 // Block C Registers

 block_int_r block_c_int @0x200;
 block_int_en_r block_c_int_en;
 block_halt_en_r block_c_halt_en;

 block_c_int.crc_error->enable = block_c_int_en.crc_error;
 block_c_int.len_error->enable = block_c_int_en.len_error;
 block_c_int.multi_bit_ecc_error->enable =

block_c_int_en.multi_bit_ecc_error;
100 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
 block_c_int.crc_error->haltenable = block_c_halt_en.crc_error;
 block_c_int.len_error->haltenable = block_c_halt_en.len_error;
 block_c_int.multi_bit_ecc_error->haltenable =

block_c_halt_en.multi_bit_ecc_error;

 // Block D Registers

 block_int_r block_d_int @0x300;
 block_int_en_r block_d_int_en;
 block_halt_en_r block_d_halt_en;

 block_d_int.crc_error->enable = block_d_int_en.crc_error;
 block_d_int.len_error->enable = block_d_int_en.len_error;
 block_d_int.multi_bit_ecc_error->enable =

block_d_int_en.multi_bit_ecc_error;

 block_d_int.crc_error->haltenable = block_d_halt_en.crc_error;
 block_d_int.len_error->haltenable = block_d_halt_en.len_error;
 block_d_int.multi_bit_ecc_error->haltenable =

block_d_halt_en.multi_bit_ecc_error;

17.2.11 Code snippet 10

This code snippet instances the master interrupt register and its associated enables. The interesting part of
this section is how the leaf register’s intr property (which represents the OR of all the interrupts in the leaf
register) are connected together.

 //
 // Master Interrupts
 //

 master_int_r master_int @0x01000;
 master_int_r master_halt ;
 master_int_en_r master_int_en ;
 master_halt_en_r master_halt_en ;

 // Associate the INT’s with the EN’s
 master_int.module_d_int->enable = master_int_en.module_d_int_en;
 master_int.module_c_int->enable = master_int_en.module_c_int_en;
 master_int.module_b_int->enable = master_int_en.module_b_int_en;
 master_int.module_a_int->enable = master_int_en.module_a_int_en;
 // Associate the HALT’s with the EN’s
 master_halt.module_d_int->haltenable = master_halt_en.module_d_halt_en;
 master_halt.module_c_int->haltenable = master_halt_en.module_c_halt_en;
 master_halt.module_b_int->haltenable = master_halt_en.module_b_halt_en;
 master_halt.module_a_int->haltenable = master_halt_en.module_a_halt_en;

 // Now hook the lower level leaf interrupts to the higher level interrupts

 // This connects the Implicit Or from Block A's INT reg after
 // masking/enable to the next level up (master)
 master_int.module_a_int->next = block_a_int->intr;

 // This connects the Implicit Or from Block B's INT reg after
 // masking/enable to the next level up (master)
 master_int.module_b_int->next = block_b_int->intr;
Copyright © 2015 - 2018 Accellera. 101
All rights reserved.

January 2018 SystemRDL 2.0
 // This connects the Implicit Or from Block C's INT reg after
 // masking/enable to the next level up (master)
 master_int.module_c_int->next = block_c_int->intr;

 // This connects the Implicit Or from Block D's INT reg after
 // masking/enable to the next level up (master)
 master_int.module_d_int->next = block_d_int->intr;

 // This connects the Implicit Or from Block A's HALT reg after
 // masking/enable to the next level up (master)
 master_halt.module_a_int->next = block_a_int->halt;

 // This connects the Implicit Or from Block B's HALT reg after
 // masking/enable to the next level up (master)
 master_halt.module_b_int->next = block_b_int->halt;

 // This connects the Implicit Or from Block C's HALT reg after
 // masking/enable to the next level up (master)
 master_halt.module_c_int->next = block_c_int->halt;

 // This connects the Implicit Or from Block D's HALT reg after
 // masking/enable to the next level up (master)
 master_halt.module_d_int->next = block_d_int->halt;

17.2.12 Code snippet 11

This final section of the example instantiates a single top-level interrupt register containing a single intr and
a single halt signal. This constitutes the final resolved interrupt that has been fully masked/enabled
throughout the tree.

 final_int_r global_int @0x1010;
 // Inst the global int/halt register

 final_en_r global_int_en @0x1014;
 // Inst the global int/halt enable register

 global_int.global_int->enable = global_int_en.global_int_en;
 // Associate the INT with the EN

 global_int.global_halt->haltenable = global_int_en.global_halt_en;
 // Associate the HALT with the EN

 global_int.global_int->next = master_int->intr;
 // Take the or of the 4 blocks in the master
 // Int and create one final interrupt

 global_int.global_halt->next = master_halt->halt;
 // Take the or of the 4 blocks in the master
 // Int and create one final halt

};

17.3 Understanding bit ordering and byte ordering in SystemRDL

Bit ordering and byte ordering are common source of confusion for many engineers. This subclause
discusses the bit ordering and byte ordering rules in SystemRDL and also illustrates their use with some
examples.
102 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
17.3.1 Bit ordering

The most common bit ordering is called lsb0. This is demonstrated in the scheme below, where the least
significant bit is 0.

Bit: 76543210

Value: 10010110 (decimal 150)

The alternative scheme is called msb0. This is demonstrated in the scheme below, where the least significant
bit is 7.

Bit: 01234567

Value: 10010110 (decimal 150)

In SystemRDL, a user can define address maps using both conventions, but a single addrmap needs to have
homogeneous lsb0 or msb0 descriptions. The compiler shall determine lsb0 and msb0 when explicit indices
for a register are defined, e.g., [0:7], but it is not possible to determine the bit order when the first field
uses implicit indices and leaves the choice of assigning final indexes to the compiler.

Example 1

In this case, the first field is explicit and defines the map as msb0, therefore no explicit keyword is needed.

addrmap some_map {
 reg {

field {}f1[12:19] = 8’b10010110;
// In this example its clear the compiler should use
// msb0 mode as the first field infers this by its
// use of explicit indices. Register bit 12 is reset to a 1.

field {}f2[4] = 4’b1010;
// f2 is from register bits 8 to 11
// reset value of bit 8 is 1, bit 9 is 0,
// bit 10 is 1, and bit 11 is 0

 } reg1;
};

Example 2

In this case, the first field is implicit and the compiler needs to see a keyword to decide bit ordering.

addrmap some_map {
 lsb0;
 reg {

field {}f1[8] = 8’b10010110;
 // In this example the compiler can’t tell if it’s [7:0] or [0:7]
 // without the lsb0 keyword above.
 // It could be either bit order.
 // Here register bit 0 is reset to a 0.

field {}f2[4] = 4’b1010;
 } reg1;

// f2 is from register bits 11 to 8
// reset value of bit 8 is 0, bit 9 is 1,
// bit 10 is 0, and bit 11 is 1

};
Copyright © 2015 - 2018 Accellera. 103
All rights reserved.

January 2018 SystemRDL 2.0
Example 3

In this case, the first field is implicit and the compiler needs to see a keyword to decide bit ordering.

addrmap some_map {

 msb0;

 reg {

field {}f1[8] = 8’b10010110;

// In this example the compiler can’t tell if it’s [7:0] or [24:31]

// without the msb0 keyword above.

// The msb0 keyword implies it’s from 24 to 31.

// Here register bit 24 is reset to a 1.

field {}f2[4] = 4’b1010;

// f2 is from register bits 20 to 23

// reset value of bit 20 is 1, bit 21 is 0,

// bit 22 is 1, and bit 23 is 0

 } reg1;

};

17.3.2 Byte ordering

Byte ordering is another common source of confusion. Byte order is often called endianness (see [B2]). In
SystemRDL, two properties are defined for dealing with this: bigendian and littleendian. These properties
do nothing related to the structure of SystemRDL, but they provide information to back-end generators
which are generating bus interfaces. Therefore, these properties are only attached to addrmap blocks since
they define the boundary of a generatable RTL module. SystemRDL’s smallest endian or atomic unit is a
byte and the data unit on which the endianness is performed is controlled by the accesswidth property. The
following example uses a 64-bit register with a 32-bit accesswidth, where the words are ordered in a big
endian fashion (per convention) and the bytes are ordered as shown.

Example

If 0x0123456789ABCDEF is assigned a base address of 0x800,

a bigendian bus would address the bytes as:

800 801 802 803 804 805 806 807

01 23 45 67 89 AB CD EF

a littleendian bus would address the bytes as:

800 801 802 803 804 805 806 807

67 45 23 01 EF CD AB 89

Thus, these two properties do not affect bit ordering in a SystemRDL file; instead, they correspond to byte
ordering on output generators.
104 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Annex A

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

[B2] Endianness References, see http://en.wikipedia.org/wiki/Endianness and 
http://3bc.bertrand-blanc.com/endianness05.pdf.
Copyright © 2015 - 2018 Accellera. 105
All rights reserved.

January 2018 SystemRDL 2.0
106 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Annex B

(normative)

Grammar

The formal syntax of SystemRDL is described using Backus-Naur Form (BNF). The syntax of SystemRDL
source is derived from the starting symbol root. If there is a conflict between a grammar element shown
anywhere in this Standard and the material in this annex, the material shown in this annex shall take
precedence.

The full syntax and semantics of SystemRDL are not described solely using BNF. The normative text
description contained within the clauses and annexes of this standard provide additional details on the syntax
and semantics described in this BNF.

B.1 SystemRDL source text

root ::= { description }
description ::=
 component_def
 | enum_def
 | property_definition
 | struct_def
 | constraint_def
 | explicit_component_inst
 | property_assignment

B.2 User-defined properties

property_definition ::= property id { property_body } ;
property_body ::= property_attribute { property_attribute }
property_attribute ::=
 property_type
 | property_usage
 | property_default
 | property_constraint
property_type ::= type = property_data_type [array_type] ;
property_data_type ::=
 component_primary_type
 | ref
 | number
 | basic_data_type
property_usage ::= component = property_comp_types ;
property_comp_types ::= property_comp_type { | property_comp_type }
property_comp_type ::=
 component_type
 | constraint
 | all
property_default ::= default = constant_expression ;
property_constraint::= constraint = property_constraint_type ;
property_constraint_type::= componentwidth
Copyright © 2015 - 2018 Accellera. 107
All rights reserved.

January 2018 SystemRDL 2.0
B.3 Component definition

component_def ::=
 component_named_def component_inst_type component_insts ;
 | component_anon_def component_inst_type component_insts ;
 | component_named_def [component_insts] ;
 | component_anon_def component_insts ;
 | component_inst_type component_named_def component_insts ;
 | component_inst_type component_anon_def component_insts ;
component_named_def::= component_type id [param_def] component_body
component_anon_def::= component_type component_body
component_body ::= { { component_body_elem } }
component_body_elem ::=
 component_def
 | enum_def
 | struct_def
 | constraint_def
 | explicit_component_inst
 | property_assignment
component_type ::=
 component_primary_type
 | signal
component_primary_type ::= addrmap | regfile | reg | field | mem
explicit_component_inst ::= [component_inst_type] [component_inst_alias] 

id component_insts ;
component_insts ::= [param_inst] component_inst { , component_inst }
component_inst ::=
 id [component_inst_array_or_range]
 [= constant_expression]
 [@ constant_expression]
 [+= constant_expression]
 [%= constant_expression]
component_inst_alias ::= alias id
component_inst_type ::= external | internal
component_inst_array_or_range ::=
 array { array }
 | range

B.4 Struct definitions

struct_def ::= [abstract] struct id [: id] struct_body ;
struct_body ::= { { struct_elem } }
struct_elem ::= struct_type id [array_type] ;
struct_type ::=
 data_type
 | component_type

B.5 Constraints

constraint_def ::=
 constraint constraint_def_exp ;
 | constraint constraint_def_anon ;
constraint_def_exp ::= id constraint_body [constraint_insts]
108 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
constraint_def_anon ::= constraint_body constraint_insts
constraint_insts ::= id { , id }
constraint_body ::= { { constraint_elem ; } }
constraint_prop_assignment ::= id = constant_expression
constraint_elem ::=
 constant_expression
 | constraint_prop_assignment
 | constraint_lhs inside { constraint_values }
 | constraint_lhs inside id
constraint_values ::= constraint_value { , constraint_value }
constraint_value ::=
 constant_expression
 | [constant_expression : constant_expression]
constraint_lhs ::=
 this
 | instance_ref

B.6 Parameters

param_def ::= # (param_def_elem { , param_def_elem })
param_def_elem ::= data_type id [array_type] [= constant_expression]
param_inst ::= # (param_elem { , param_elem })
param_elem ::= . id (param_value)
param_value ::= constant_expression

B.7 Enums

enum_def ::= enum id enum_body ;
enum_body ::= { enum_entry { enum_entry } }
enum_entry ::= id [= constant_expression] [enum_property_assignment] ;
enum_property_assignment ::= { { explicit_prop_assignment ; } }

B.8 Property assignment

property_assignment ::=
 explicit_or_default_prop_assignment
 | post_prop_assignment
explicit_or_default_prop_assignment ::=
 [default] explicit_prop_modifier ;
 | [default] explicit_prop_assignment ;
explicit_prop_modifier ::= prop_mod id
explicit_encode_assignment ::= encode = id
explicit_prop_assignment ::=
 prop_assignment_lhs [= prop_assignment_rhs]
 | explicit_encode_assignment
post_encode_assignment ::= instance_ref -> encode = id
post_prop_assignment ::=
 prop_ref [= prop_assignment_rhs] ;
 | post_encode_assignment ;
prop_mod ::= posedge | negedge | bothedge | level | nonsticky
Copyright © 2015 - 2018 Accellera. 109
All rights reserved.

January 2018 SystemRDL 2.0
prop_assignment_lhs ::=
 prop_keyword
 | id
prop_keyword ::= sw | hw | rclr | rset | woclr | woset
prop_assignment_rhs ::=
 constant_expression
 | precedencetype_literal

B.9 Struct literal

struct_literal ::= id '{ struct_literal_body }
struct_literal_body ::= [struct_literal_elem { , struct_literal_elem }]
struct_literal_elem ::= id : constant_expression

B.10 Array literal

array_literal ::= '{ array_literal_body }
array_literal_body ::= constant_expression { , constant_expression }

B.11 Reference

instance_ref ::= instance_ref_element { . instance_ref_element }
prop_ref ::=
 instance_ref -> prop_keyword
 | instance_ref -> id
instance_or_prop_ref ::=
 instance_ref -> prop_keyword
 | instance_ref -> id
 | instance_ref
instance_ref_element ::= id { array }

B.12 Array and range

range ::= [constant_expression : constant_expression]
array ::= [constant_expression]
array_type ::= []

B.13 Concatenation

constant_concatenation ::= { constant_expression { , constant_expression } }
constant_multiple_concatenation ::= 

{ constant_expression constant_concatenation }

B.14 Data types

integer_type ::=
 integer_vector_type
 | integer_atom_type
110 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
integer_atom_type ::= longint
integer_vector_type ::= bit
simple_type ::= integer_type
signing ::= unsigned
basic_data_type ::=
 simple_type [signing]
 | string
 | boolean
 | id
data_type ::=
 basic_data_type
 | accesstype
 | addressingtype
 | onreadtype
 | onwritetype

B.15 Literals

boolean_literal ::= true | false
number ::= number as specified in 4.6
string_literal ::= string as specified in 4.5
enumerator_literal ::= id :: id
accesstype_literal ::= na | rw | wr | r | w | rw1 | w1
onreadtype_literal ::= rclr | rset | ruser
onwritetype_literal ::= woset | woclr | wot | wzs | wzc | wzt | wclr | wset | wuser
addressingtype_literal ::= compact | regalign | fullalign
precedencetype_literal ::= hw | sw

B.16 Expressions

constant_expression ::=
 constant_primary
 | unary_operator constant_primary
 | constant_expression binary_operator constant_expression
 | constant_expression ? constant_expression : constant_expression
constant_primary ::=
 primary_literal
 | constant_concatenation
 | constant_multiple_concatenation
 | (constant_expression)
 | constant_cast
 | instance_or_prop_ref
 | struct_literal
 | array_literal
primary_literal ::=
 number
 | string_literal
 | boolean_literal
 | accesstype_literal
 | onreadtype_literal
 | onwritetype_literal
 | addressingtype_literal
 | enumerator_literal
 | this
Copyright © 2015 - 2018 Accellera. 111
All rights reserved.

January 2018 SystemRDL 2.0
binary_operator ::=
 && | || | < | > | <= | >= | == | != | >> | <<
 | & | | | ^ | ~^| ^~ | * | / | % | + | - | **
unary_operator :
 ! | + | - | ~ | & | ~& | | | ~| | ^ | ~^ | ^~
constant_cast ::= casting_type ' (constant_expression)
casting_type ::= simple_type | constant_primary | boolean

B.17 Identifiers

id ::= identifier as specified in 4.3
112 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Annex C

(informative)

Backward compatibility

One of the main goals for this update to the SystemRDL specification was to maintain backward
compatibility. However, in some cases, this was just not possible to achieve what needed to be done or when
there were mistakes in the original SystemRDL 1.0 specification. Where the SystemRDL 2.0 grammar and
the SystemRDL 1.0 specification differ, it is unclear with which to maintain compatibility. Below are known
areas of incompatibility with an explanation of why and possible workarounds.

C.1 Keywords

Some of the new features require additional keywords (see Table C1). If these keywords are used in legacy
code as instance names, there will now be a conflict. Refer to Table 2 for the current keyword list and
Annex D for additional reserved words. Where instances in legacy code use one of these keywords or
reserved words, the name either needs to be changed or escaped (by using a \, see also 4.3).

Many of the previously defined keywords are now properties (see Table C2) or obsolete (see Table C3).

Table C1—New keywords added in SystemRDL 2.0

Feature Keywords added

Structs abstract, struct

Casting accesstype, addressingtype, onreadtype, onwritetype

Data types bit, boolean, longint, ruser, rw1, string, unsigned, w1, wclr, wot, wr, wset,
wuser, wzc, wzs, wzt

User-defined properties component, componentwidth, number, ref, type

Constraints constraint, inside, this

Memories mem

Table C2—Keywords in SystemRDL 1.0 now changed to properties

accesswidth activehigh activelow addressing alignment anded

async bigendian bridge counter cpuif_reset decr

decrsaturate decrthreshold decrvalue decrwidth desc dontcompare

donttest enable errextbus field_reset fieldwidth halt

haltenable haltmask hwclr hwenable hwmask hwset

incr incrsaturate incrthreshold incrvalue incrwidth intr
Copyright © 2015 - 2018 Accellera. 113
All rights reserved.

January 2018 SystemRDL 2.0
C.2 next

The SystemRDL 1.0 specification showed examples with invalid syntax for the next property, where a field
without -> implied ->next, but did not specify it. This was also allowed by the grammar, but is no longer
supportable. In section 7.8.2 of the SystemRDL 1.0 specification, within Example 3:

field counter_f { counter; };
field {} has_overflowed;
counter_f count1[5]=0; // Defines a 5 bit counter from 6 to 1
count1->incrthreshold=5'hF;
has_overflowed = count1->overflow;

the last line should instead be:

has_overflowed->next = count1->overflow;

SystemRDL 2.0 does not support implied ->next.

C.3 Use of 0 size

The SystemRDL 1.0 specification was silent on the meaning of a 0 size field or register array. This is no
longer a valid syntax. A single positive integer size (or for fields a legal range) shall be specified.

C.4 Range for register arrays

The SystemRDL 1.0 specification was silent on allowing a range for a register array. This is no longer a
valid syntax. A single positive integer size shall be specified.

C.5 decrsaturate

The SystemRDL 1.0 specification specified the default value for decrsaturate as 1. This is incorrect. The
SystemRDL 2.0 specification correctly lists the default as 0.

littleendian lsb0 mask msb0 name next

ored overflow precedence regwidth reset resetsignal

rsvdset rsvdsetX saturate shared sharedextbus signalwidth

singlepulse sticky stickybit swacc swmod swwe

swwel sync threshold underflow we wel

xored

Table C3—Keywords in SystemRDL 1.0 now obsolete

arbiter clock

Table C2—Keywords in SystemRDL 1.0 now changed to properties
114 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
C.6 enum

The SystemRDL 1.0 grammar allowed for enumeration types to have no enumerators. For SystemRDL 2.0,
enumeration types are required to specify at least one enumerator.

C.7 alias

The SystemRDL 1.0 specification was unclear regarding the alias register type. SystemRDL 2.0 clarifies
that an alias shall be of the same type (internal or external) as the primary register. Since this is done by
default, alias registers do not need to specify a register type.

C.8 hwenable and hwmask

These two properties are mentioned in SystemRDL 1.0 as sizedNumeric or boolean. In reality, these are
references, to allow another element to specify the enable or mask value. This has been corrected in
SystemRDL 2.0.

C.9 threshold, incrthreshold, and decrtheshold

The threshold properties are not clearly defined in SystemRDL 1.0. In one place, a threshold occurs when
the field value exceeds the threshold value. In another place, it says the field “exactly matches” the value.
In SystemRDL 2.0, this has been clarified: Threshold is set for threshold and incrthreshold when the field
value is greater than or equal to the property value and for decrthreshold when the field value is less than or
equal to the property value.
Copyright © 2015 - 2018 Accellera. 115
All rights reserved.

January 2018 SystemRDL 2.0
116 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Annex D

(normative)

Reserved words

Reserved words have a similar effect as keywords; reserved words are explicitly reserved for future use. The
reserved words are listed in Table D1.

See also 4.4.

Table D1—SystemRDL reserved words

alternate byte int precedencetype real

shortint shortreal signed with within
Copyright © 2015 - 2018 Accellera. 117
All rights reserved.

January 2018 SystemRDL 2.0
118 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Annex E

(normative)

Access modes

IEEE 1685-2014 IP-XACT inherited the access modes from SystemRDL, but, several more were added in
addition to those from SystemRDL. UVM also inherited a subset of the IP-XACT access modes. Supporting
all the IP-XACT access modes supports all of the UVM access modes; however, many of the SystemRDL
and IP-XACT access mode combinations still map to the UVM User-defined access mode.

Table E1 shows the access combinations between SystemRDL and the UVM and IP-XACT Standards.

Table E1—Access combinations

Access
Read
effect

Write
function

IP-XACT
IEEE 1685-2014

UVM
(1.2)

System
RDL 1.0

SystemRDL
2.0

No
Access

- - sw=na sw=na

Read-only access=read-only RO sw=r sw=r
onread=r

Read-only clear access=read-only
readAction=clear

RC sw=r
rclr

sw=r
onread =rclr

Read-only set access=read-only
readAction=set

RS sw=r
rset

sw=r
onread =rset

Read-only other access=read-only
readAction=modify

- - sw=r
onread =ruser

Write-
only

access=write-only WO sw=w sw=w
onwrite =w

Write-
only

One-clear access=write-only
modifiedWriteValue=oneToClear

- sw=w
woclr

sw=w
onwrite =woclr

Write-
only

One-set access=write-only
modifiedWriteValue=oneToSet

- sw=w
woset

sw=w
onwrite
=woset

Write-
only

One-toggle access=write-only
modifiedWriteValue=oneToTog-
gle

- - sw=w
onwrite =wot

Write-
only

Zero-clear access=write-only
modifiedWriteValue=zeroToClear

- - sw=w
onwrite =wzc

Write-
only

Zero-set access=write-only
modifiedWriteValue=zeroToSet

- - sw=w
onwrite =wzs

Write-
only

Zero-tog-
gle

access=write-only
modifiedWriteValue=zeroToTog-
gle

- - sw=w
onwrite =wzt

Write-
only

Clear access=write-only
modifiedWriteValue=clear

WOC - sw=w
onwrite =wclr
Copyright © 2015 - 2018 Accellera. 119
All rights reserved.

January 2018 SystemRDL 2.0
Write-
only

Set access=write-only
modifiedWriteValue=set

WOS - sw=w
onwrite =wset

Write-
only

Other access=write-only
modifiedWriteValue=modify

- - sw=w
onwrite
=wuser

Write-
only-once

access=writeOnce WO1 - sw=w1
onwrite =w

Write-
only-once

One-clear access=writeOnce
modifiedWriteValue=oneToClear

- - sw=w1
onwrite =woclr

Write-
only-once

One-set access= writeOnce
modifiedWriteValue=oneToSet

- - sw=w1
onwrite
=woset

Write-
only-once

One-toggle access= writeOnce
modifiedWriteValue=oneToTog-
gle

- - sw=w1
onwrite =wot

Write-
only-once

Zero-clear access= writeOnce
modifiedWriteValue=zeroToClear

- - sw=w1
onwrite =wzc

Write-
only-once

Zero-set access= writeOnce
modifiedWriteValue=zeroToSet

- - sw=w1
onwrite =wzs

Write-
only-one

Zero-tog-
gle

access= writeOnce
modifiedWriteValue=zeroToTog-
gle

- - sw=w1
onwrite =wzt

Write-
only-once

Clear access= writeOnce
modifiedWriteValue=clear

- - sw=w1
onwrite =wclr

Write-
only-once

Set access= writeOnce
modifiedWriteValue=set

- - sw=w1
onwrite =wset

Write-
only-once

Other access= writeOnce
modifiedWriteValue=modify

- - sw=w1
onwrite
=wuser

Read-
write

access=read-write RW sw=rw sw=rw
onread =r
onwrite =w

Read-
write

One-clear access= read-write
modifiedWriteValue=oneToClear

W1C sw=rw
woclr

sw=rw
onread =r
onwrite =woclr

Read-
write

One-set access= read-write
modifiedWriteValue=oneToSet

W1S sw=rw
woset

sw=rw
onread =r
onwrite
=woset

Read-
write

One-toggle access= read-write
modifiedWriteValue=oneToTog-
gle

W1T - sw=rw
onread =r
onwrite =wot

Read-
write

Zero-clear access= read-write
modifiedWriteValue=zeroToClear

W0C - sw=rw
onread =r
onwrite =wzc

Table E1—Access combinations (Continued)

Access Read
effect

Write
function

IP-XACT
IEEE 1685-2014

UVM
(1.2)

System
RDL 1.0

SystemRDL
2.0
120 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Read-
write

Zero-set access= read-write
modifiedWriteValue=zeroToSet

W0S - sw=rw
onread =r
onwrite =wzs

Read-
write

Zero-tog-
gle

access= read-write
modifiedWriteValue=zeroToTog-
gle

W0T - sw=rw
onread =r
onwrite =wzt

Read-
write

Clear access= read-write
modifiedWriteValue=clear

WC - sw=rw
onread =r
onwrite =wclr

Read-
write

Set access= read-write
modifiedWriteValue=set

WS - sw=rw
onread =r
onwrite =wset

Read-
write

Other access= read-write
modifiedWriteValue=modify

- - sw=rw
onread =r
onwrite
=wuser

Read-
write

clear access=read-write
readAction=clear

WRC sw=rw
rclr

sw=rw
onread =rclr
onwrite =w

Read-
write

clear One-clear access= read-write
readAction=clear
modifiedWriteValue=oneToClear

- sw=rw
rclr
woclr

sw=rw
onread =rclr
onwrite =woclr

Read-
write

clear One-set access= read-write
readAction=clear
modifiedWriteValue=oneToSet

W1SR
C

sw=rw
rclr
woset

sw=rw
onread =rclr
onwrite
=woset

Read-
write

clear One-toggle access= read-write
readAction=clear
modifiedWriteValue=oneToTog-
gle

- - sw=rw
onread =rclr
onwrite =wot

Read-
write

clear Zero-clear access= read-write
readAction=clear
modifiedWriteValue=zeroToClear

- - sw=rw
onread =rclr
onwrite =wzc

Read-
write

clear Zero-set access= read-write
readAction=clear
modifiedWriteValue=zeroToSet

W0SR
C

- sw=rw
onread =rclr
onwrite =wzs

Read-
write

clear Zero-tog-
gle

access= read-write
readAction=clear
modifiedWriteValue=zeroToTog-
gle

- - sw=rw
onread =rclr
onwrite =wzt

Read-
write

clear Clear access= read-write
readAction=clear
modifiedWriteValue=clear

- - sw=rw
onread =rclr
onwrite =wclr

Read-
write

clear Set access= read-write
readAction=clear
modifiedWriteValue=set

WSR
C

- sw=rw
onread =rclr
onwrite =wset

Table E1—Access combinations (Continued)

Access Read
effect

Write
function

IP-XACT
IEEE 1685-2014

UVM
(1.2)

System
RDL 1.0

SystemRDL
2.0
Copyright © 2015 - 2018 Accellera. 121
All rights reserved.

January 2018 SystemRDL 2.0
Read-
write

clear Other access= read-write
readAction=clear
modifiedWriteValue=modify

- - sw=rw
onread =rclr
onwrite
=wuser

Read-
write

set access=read-write
readAction=set

WRS sw=rw
rset

sw=rw
onread = rset
onwrite =w

Read-
write

set One-clear access= read-write
readAction=set
modifiedWriteValue=oneToClear

W1C
RS

sw=rw
rset
woclr

sw=rw
onread = rset
onwrite =woclr

Read-
write

set One-set access= read-write
readAction=set
modifiedWriteValue=oneToSet

- sw=rw
rset
woset

sw=rw
onread = rset
onwrite
=woset

Read-
write

set One-toggle access= read-write
readAction= set
modifiedWriteValue=oneToTog-
gle

- - sw=rw
onread = rset
onwrite =wot

Read-
write

set Zero-clear access= read-write
readAction= set
modifiedWriteValue=zeroToClear

W0C
RS

- sw=rw
onread = rset
onwrite =wzc

Read-
write

set Zero-set access= read-write
readAction= set
modifiedWriteValue=zeroToSet

- - sw=rw
onread = rset
onwrite =wzs

Read-
write

set Zero-tog-
gle

access= read-write
readAction= set
modifiedWriteValue=zeroToTog-
gle

- - sw=rw
onread = rset
onwrite =wzt

Read-
write

set Clear access= read-write
readAction= set
modifiedWriteValue=clear

WCR
S

- sw=rw
onread = rset
onwrite =wclr

Read-
write

set Set access= read-write
readAction= set
modifiedWriteValue=set

- - sw=rw
onread = rset
onwrite =wset

Read-
write

set Other access= read-write
readAction= set
modifiedWriteValue=modify

- - sw=rw
onread =rset
onwrite
=wuser

Read-
write

other access=read-write
readAction= modify

- - sw=rw
onread = ruser
onwrite =w

Read-
write

other One-clear access= read-write
readAction=modify
modifiedWriteValue=oneToClear

- - sw=rw
onread = ruser
onwrite =woclr

Read-
write

other One-set access= read-write
readAction=modify
modifiedWriteValue=oneToSet

- - sw=rw
onread = ruser
onwrite
=woset

Table E1—Access combinations (Continued)

Access Read
effect

Write
function

IP-XACT
IEEE 1685-2014

UVM
(1.2)

System
RDL 1.0

SystemRDL
2.0
122 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Read-
write

other One-toggle access= read-write
readAction= modify
modifiedWriteValue=oneToTog-
gle

- - sw=rw
onread = ruser
onwrite =wot

Read-
write

other Zero-clear access= read-write
readAction= modify
modifiedWriteValue=zeroToClear

- - sw=rw
onread = ruser
onwrite =wzc

Read-
write

other Zero-set access= read-write
readAction= modify
modifiedWriteValue=zeroToSet

- - sw=rw
onread = ruser
onwrite =wzs

Read-
write

other Zero-tog-
gle

access= read-write
readAction= modify
modifiedWriteValue=zeroToTog-
gle

- - sw=rw
onread = ruser
onwrite =wzt

Read-
write

other Clear access= read-write
readAction= modify
modifiedWriteValue=clear

- - sw=rw
onread = ruser
onwrite =wclr

Read-
write

other Set access= read-write
readAction= modify
modifiedWriteValue=set

- - sw=rw
onread = ruser
onwrite =wset

Read-
write

other Other access= read-write
readAction= modify
modifiedWriteValue=modify

- - sw=rw
onread = ruser
onwrite
=wuser

Read-
write-
once

access=read-writeOnce W1 - sw=rw1
onread =r
onwrite =w

Read-
write-
once

One-clear access= read-writeOnce
modifiedWriteValue=oneToClear

- - sw=rw1
onread =r
onwrite =woclr

Read-
write-
once

One-set access= read-writeOnce
modifiedWriteValue=oneToSet

- - sw=rw1
onread =r
onwrite
=woset

Read-
write-
once

One-toggle access= read-writeOnce
modifiedWriteValue=oneToTog-
gle

- - sw=rw1
onread =r
onwrite =wot

Read-
write-
once

Zero-clear access= read-writeOnce
modifiedWriteValue=zeroToClear

- - sw=rw1
onread =r
onwrite =wzc

Read-
write-
once

Zero-set access= read-writeOnce
modifiedWriteValue=zeroToSet

- - sw=rw1
onread =r
onwrite =wzs

Read-
write-
once

Zero-tog-
gle

access= read-writeOnce
modifiedWriteValue=zeroToTog-
gle

- - sw=rw1
onread =r
onwrite =wzt

Table E1—Access combinations (Continued)

Access Read
effect

Write
function

IP-XACT
IEEE 1685-2014

UVM
(1.2)

System
RDL 1.0

SystemRDL
2.0
Copyright © 2015 - 2018 Accellera. 123
All rights reserved.

January 2018 SystemRDL 2.0
Read-
write-
once

Clear access= read-writeOnce
modifiedWriteValue=clear

- - sw=rw1
onread =r
onwrite =wclr

Read-
write-
once

Set access= read-writeOnce
modifiedWriteValue=set

- - sw=rw1
onread =r
onwrite =wset

Read-
write-
once

Other access= read-writeOnce
modifiedWriteValue=modify

- - sw=rw1
onread =r
onwrite
=wuser

Read-
write-
once

clear access=read-writeOnce
readAction=clear

- - sw=rw1
readeffect=rclr
onwrite =w

Read-
write-
once

clear One-clear access= read-writeOnce
readAction=clear
modifiedWriteValue=oneToClear

- - sw=rw1
onread =rclr
onwrite =woclr

Read-
write-
once

clear One-set access= read-writeOnce
readAction=clear
modifiedWriteValue=oneToSet

- - sw=rw1
onread =rclr
onwrite
=woset

Read-
write-
once

clear One-toggle access= read-writeOnce
readAction=clear
modifiedWriteValue=oneToTog-
gle

- - sw=rw1
onread =rclr
onwrite =wot

Read-
write-
once

clear Zero-clear access= read-writeOnce
readAction=clear
modifiedWriteValue=zeroToClear

- - sw=rw1
onread =rclr
onwrite =wzc

Read-
write-
once

clear Zero-set access= read-writeOnce
readAction=clear
modifiedWriteValue=zeroToSet

- - sw=rw1
onread =rclr
onwrite =wzs

Read-
write-
once

clear Zero-tog-
gle

access= read-writeOnce
readAction=clear
modifiedWriteValue=zeroToTog-
gle

- - sw=rw1
onread =rclr
onwrite =wzt

Read-
write-
once

clear Clear access= read-writeOnce
readAction=clear
modifiedWriteValue=clear

- - sw=rw
onread =rclr
onwrite =wclr

Read-
write-
once

clear Set access= read-writeOnce
readAction=clear
modifiedWriteValue=set

- - sw=rw1
onread =rclr
onwrite =wset

Read-
write-
once

clear Other access= read-writeOnce
readAction=clear
modifiedWriteValue=modify

- - sw=rw1
onread =rclr
onwrite
=wuser

Read-
write-
once

set access=read-writeOnce
readAction=set

- - sw=rw1
onread = rset
onwrite =w

Table E1—Access combinations (Continued)

Access Read
effect

Write
function

IP-XACT
IEEE 1685-2014

UVM
(1.2)

System
RDL 1.0

SystemRDL
2.0
124 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Read-
write-
once

set One-clear access= read-writeOnce
readAction=set
modifiedWriteValue=oneToClear

- - sw=rw1
onread = rset
onwrite =woclr

Read-
write-
once

set One-set access= read-writeOnce
readAction=set
modifiedWriteValue=oneToSet

- - sw=rw1
onread = rset
onwrite
=woset

Read-
write-
once

set One-toggle access= read-writeOnce
readAction= set
modifiedWriteValue=oneToTog-
gle

- - sw=rw1
readeffect=
rset
onwrite =wot

Read-
write-
once

set Zero-clear access= read-writeOnce
readAction= set
modifiedWriteValue=zeroToClear

- - sw=rw1
onread = rset
onwrite =wzc

Read-
write-
once

set Zero-set access= read-writeOnce
readAction= set
modifiedWriteValue=zeroToSet

- - sw=rw1
onread = rset
onwrite =wzs

Read-
write-
once

set Zero-tog-
gle

access= read-writeOnce
readAction= set
modifiedWriteValue=zeroToTog-
gle

- - sw=rw1
onread = rset
writefunc-
tion=wzt

Read-
write-
once

set Clear access= read-writeOnce
readAction= set
modifiedWriteValue=clear

- - sw=rw1
onread = rset
onwrite =wclr

Read-
write-
once

set Set access= read-writeOnce
readAction= set
modifiedWriteValue=set

- - sw=rw1
onread = rset
onwrite =wset

Read-
write-
once

set Other access= read-writeOnce
readAction= set
modifiedWriteValue=modify

- - sw=rw1
onread =rset
onwrite
=wuser

Read-
write-
once

other access=read-writeOnce
readAction= modify

- - sw=rw1
onread = ruser
onwrite =w

Read-
write-
once

other One-clear access= read-writeOnce
readAction=modify
modifiedWriteValue=oneToClear

- - sw=rw1
onread = ruser
onwrite =woclr

Read-
write-
once

other One-set access= read-writeOnce
readAction=clear
modifiedWriteValue=oneToSet

- - sw=rw1
onread = ruser
onwrite
=woset

Read-
write-
once

other One-toggle access= read-writeOnce
readAction= modify
modifiedWriteValue=oneToTog-
gle

- - sw=rw1
onread = ruser
onwrite =wot

Read-
write-
once

other Zero-clear access= read-writeOnce
readAction= modify
modifiedWriteValue=zeroToClear

- - sw=rw1
onread = ruser
onwrite =wzc

Table E1—Access combinations (Continued)

Access Read
effect

Write
function

IP-XACT
IEEE 1685-2014

UVM
(1.2)

System
RDL 1.0

SystemRDL
2.0
Copyright © 2015 - 2018 Accellera. 125
All rights reserved.

January 2018 SystemRDL 2.0
Read-
write-
once

other Zero-set access= read-writeOnce
readAction= modify
modifiedWriteValue=zeroToSet

- - sw=rw1
onread = ruser
onwrite =wzs

Read-
write-
once

other Zero-tog-
gle

access= read-writeOnce
readAction= modify
modifiedWriteValue=zeroToTog-
gle

- - sw=rw1
onread = ruser
onwrite =wzt

Read-
write-
once

other Clear access= read-writeOnce
readAction= modify
modifiedWriteValue=clear

- - sw=rw1
onread = ruser
onwrite =wclr

Read-
write-
once

other Set access= read-writeOnce
readAction= modify
modifiedWriteValue=set

- - sw=rw1
onread = ruser
onwrite =wset

Read-
write-
once

other Other access= read-writeOnce
readAction= modify
modifiedWriteValue=modify

- - sw=rw1
onread = ruser
onwrite=
wuser

Table E1—Access combinations (Continued)

Access Read
effect

Write
function

IP-XACT
IEEE 1685-2014

UVM
(1.2)

System
RDL 1.0

SystemRDL
2.0
126 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
Annex F

(informative)

Formatting text strings

SystemRDL has a set of tags which can be used to format text strings. These tags are based on the phpBB
code formatting tags, which are extended for use with SystemRDL and referred to as RDLFormatCode. The
RDLFormatCode tags shall be interpreted by the SystemRDL compiler and rendered in the generated
output. The set of tags specified below is the complete set and is not extensible like phpBB code. These tags
are only interpreted within the name and desc properties in SystemRDL (see Table 5). If a SystemRDL
compiler encounters an unknown tag, this tag shall be ignored by the compiler and passed through as is.

The concept of phpBB code takes its origin from the HTML 4.01 standard; for additional information on
using phpBB tags, see https://www.phpbb.com/community/faq.php?mode=bbcode (which suggests a
formatted section illustrating the results of such usage).

F.1 Well-formed RDLFormatCode constructs

A well-formed tag also has an end-tag. For nesting well-formed tags, the innermost shall be closed before
the outermost one is.

[b]Text[/b] -- Bold

[i]Text[/i] -- Italic

[u]Text[/u] -- Underline

[color=colorValue]Text[/color]-- Color See F.3 for colorValues

[size=size]Text[/size] -- Font size where size is a valid HTML size

[url]Text[/url] -- URL reference

URL references can specified in two forms.

1. [url]http://www.accellera.org[/url] -- which places the target link the
generated code.

2. [url=http://www.accellera.org]Accellera[/url] -- Which displays the text
Accellera but links the URL provided.

[email]Text[/email] -- Email address in the form of user@domain

[img]image reference[/img] -- Insert image reference here. Image reference
can be relative pathname or absolute path name. Its up to the user to follow
valid path rules for the target system that they are generating code for.

[code]Text[/code] -- Anything that requires a fixed width
with a Courier-type font

[list] , [list=1]
 or [list=a] -- Listing directives, un-ordered or

[*] list element ordered (numbered: list=1,
[*] list element alpha: list=a)
[*] list element
Copyright © 2015 - 2018 Accellera. 127
All rights reserved.

January 2018 SystemRDL 2.0
[/list]

[quote]text[/quote] -- Replaces with ". useful for putting

"'s inside a name or desc field.

F.2 Single-tag RDLFormatCode constructs

[br] -- Line break

[lb] -- Left bracket ([)

[rb] -- Right bracket (])

[p] -- Paragraph begin

[sp] -- White Space (equivalent to an HTML)

[index] -- Replaced by the index # of the individual component

instance when instantiated as an array. When representing

an individual array element this substitutes the index and

for an entire array it substitutes the range.

[index_parent] -- Replaced by the index # of the individual component

parent instance when the parent is instantiated as an

array (extends phpBB).When representing an individual

array element this substitutes the index and for an entire

array it substitutes the range.

[name] -- Replaced by the descriptive name of the component

(extends phpBB). This tag is undefined when used inside

the value of the name property.

[desc] -- Replaced by the component’s description (extends phpBB).

[instname] -- Replaced by the instance name (extends phpBB).

F.3 colorValues for the color tag

The RDLFormatCode color can accept two forms of arguments for color: enumerated values specified by
the HTML 4.01 or CSS specifications and RGB #’s.

Example

Who is afraid of [color=red]red[/color], [color=#eeaa00]yellow[/color] 
and [color=#30f]blue[/color]?
128 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018
F.4 Example

The following code sample demonstrates some simple uses of RDLFormatCode.

addrmap top {
 name = "RDLCode Example";
 // desc = "Please refer to [quote]the[/quote] specification [url=http://

www.yahoo.com]here[/url] for details.";
 reg {
 name = "Register my index = [index] my [b]parents index = [index_parent]

my instname = [instname] [index][/b]";
 desc = "Please [b][u]refer[index] to the [index] specification[/u][/b]

[url=http://www.yahoo.com]here[/url] for details.";
 field {

Color
Name

Hex 6 RGB RGB% Sample

black #000000 0,0,0
0%,0%,0
%

silver #C0C0C0 ########
75%,75%,
75%

gray #808080 ########
50%,50%,
50%

white #FFFFFF ########
100%,100
%,100%

maroon #800000 128,0,0
50%,0%,0
%

red #FF0000 255,0,0
100%,0%,
0%

purple #800080 128,0,128
50%,0%,5
0%

fuchsia #FF00FF 255,0,255
100%,0%,
100%

green #008000 0,128,0
0%,50%,0
%

lime #00FF00 0,255,0
0%,100%,
0%

olive #808000 128,128,0
50%,50%,
0%

yellow #FFFF00 255,255,0
100%,100
%,0%

navy #000080 0,0,128
0%,0%,50
%

blue #0000FF 0,0,255
0%,0%,10
0%

teal #008080 0,128,128
0%,50%,5
0%

aqua #00FFFF 0,255,255
0%,100%,
100%

HTML 4.01 & CSS2 Colors
Copyright © 2015 - 2018 Accellera. 129
All rights reserved.

January 2018 SystemRDL 2.0
 name = "START [test] [br] [b]Some bold text for
[instname][lb][index][rb][/b],

 [i]italic[/i], [u]underline[/u], [email]tcook@denali.com[/email],
 [img]some_image.gif[/img]
 [p][color=#ff3366]Some Color[/color][/p]
 [code]echo This is some code;[/code]
 [size=18][color=red][b]LOOK AT ME![/b][/color][/size]
 [list]
 [*][color=red]Red[/color]
 [*][color=blue]Blue[/color]
 [*][color=green]Green[/color]
 [/list]
 [list=1]
 [*]Red
 [*]Blue
 [*]Yellow
 [/list]
 [list=a]
 [*]Red
 [*]Blue
 [*]Yellow
 [/list]
 ";

 desc = "Please [some unknown tag] refer to [list=1] [*]Red [*]Green [/
list] the specification [url=http://www.google.com]here[/url] for
details.";

 } f1;
 } r1 [10];
};

NOTE—Some details of the sample output are the result of factors outside the control of RDLCode and are functions of
the compiler, its arguments, or supporting style sheets.
130 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018

ac

ac

ac

ad r

ali

an

an

as

big

br

co

co

cp

de

de r

de r

de r
Annex G

(informative)

Component-property relationships

Table G1 lists all properties defined in SystemRDL. For each property, Table G1 specifies which component
types allow the property and gives references to the tables (or section) where the property is defined (e.g.,
Table 23 for the property accesswidth (within the reg component description)). The Mutual exclude
column designates groups of properties which are mutually exclusive (e.g, group A shows activehigh and
activelow are mutually exclusive). Each mutual exclusion group is given a letter (e.g., A), which is shown
next to all members of that group. Table G1 also shows the type for each property and if it can be
dynamically assigned (Dyn assign). The Ref target column indicates if a property may be a reference target
if the column value is ‘x’ or ‘y’. When the Ref target column contains a ‘y’, the implementation of the
target needs to have the referenced net available due to an inherited or an assigned property value.

Table G1—Property cross-reference

Property Mutual
exclude

Components See also Type Ref
target

Dyn
assign

Notes

cesswidth reg Table 23 longint unsigned x

tivehigh A signal Table 10 boolean x

tivelow A signal Table 10 boolean x

dressing addrmap Table 26 addressingtype compact, regalign, o
fullalign

gnment addrmap,
regfile

Table 26
Table 25

longint unsigned

ded field Table 18 boolean x

ded field Table 18 N/A x Reduction AND of
field value

ync N signal Table 10 boolean x

endian L addrmap Table 26 boolean x

idge addrmap Table 27 boolean

nstraint_disable constraint Table 29 boolean x

unter E field Table 19 boolean x

uif_reset signal Table 10 boolean x

cr field Table 19 instance reference y x

crsaturate field Table 19 boolean, bit,
instance reference

x Decrementing counte
saturate value

crsaturate field Table 19 N/A y Decrementing counte
saturate reached

crthreshold field Table 19 boolean, bit,
instance reference

x Decrementing counte
threshold value
Copyright © 2015 - 2018 Accellera. 131
All rights reserved.

January 2018 SystemRDL 2.0

de r

de

de

de r-

do

do

do

do

en

en

er

fie

fie

ha lt

s

ha

ha

hd

hd

hd

hd

hw ,

hw

hw
crthreshold field Table 19 N/A y Decrementing counte
threshold reached

crvalue G field Table 19 bit, 
instance reference

y x

crwidth G field Table 19 longint unsigned x

sc addrmap,
constraint,
field, mem,
reg, regfile,
signal

Table 5 string x Also used in enume
ation (Table 5)

ntcompare O field Table 6 boolean, bit x

ntcompare O addrmap,
reg, regfile

Table 6 boolean x

nttest O field Table 6 boolean, bit x

nttest O addrmap,
reg, regfile

Table 6 boolean x

able J field Table 21 instance reference y x

code field Table 22 enum type 
reference

x enumeration object
reference

rextbus addrmap,
reg,
regfile

Table 26
Table 23
Table 25

boolean

ld_reset signal Table 10 boolean x

ldwidth field Table 18 longint unsigned

lt reg Table 23 N/A y Reduction OR of ha
Reference target
needs to contain field
with halt

ltenable K field Table 21 instance reference y x

ltmask K field Table 21 instance reference y x

l_path addrmap,
reg, regfile

Table 28 string x

l_path_gate addrmap,
reg, regfile

Table 28 string x

l_path_gate_slice field, mem Table 28 string[] x

l_path_slice field, mem Table 28 string[] x

field Table 11 accesstype r, w, rw, wr, w1, rw1
or na

clr field Table 18 boolean, 
instance reference

y x

enable D field Table 18 instance reference y x

Table G1—Property cross-reference (Continued)

Property Mutual
exclude Components See also Type Ref

target
Dyn

assign Notes
132 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018

hw

hw

inc

inc r

inc r

inc r

inc r

inc

inc

int

int
r-

isp

lit

lsb

ma

me

me

ms

na r-

ne

on

on

or
mask D field Table 18 instance reference y x

set field Table 18 boolean, 
instance reference

y x

r field Table 19 instance reference y x

rsaturate field Table 19 boolean, bit,
instance reference

x Incrementing counte
saturate value

rsaturate field Table 19 N/A y Incrementing counte
saturate reached

rthreshold field Table 19 boolean, bit,
instance reference

x Incrementing counte
threshold value

rthreshold field Table 19 N/A y Incrementing counte
threshold reached

rvalue F field Table 19 bit, 
instance reference

y x

rwidth F field Table 19 longint unsigned x

r E field Table 21 boolean x

r reg Table 23 N/A y Reference target
needs to contain inte
rupt fields

resent addrmap,
constraint,
field, mem,
reg, regfile,
signal

See 5.3 boolean x

tleendian L addrmap Table 26 boolean x

0 M addrmap Table 26 boolean

sk J field Table 21 instance reference y x

mentries mem Table 24 longint unsigned

mwidth mem Table 24 longint unsigned

b0 M addrmap Table 26 boolean

me addrmap,
constraint,
field, mem,
reg, regfile,
signal

Table 5 string x Also used in enume
ation (Table 5)

xt field Table 13 instance reference y x

read P field Table 14 onreadtype x

write B field Table 14 onwritetype x

ed field Table 18 boolean x

Table G1—Property cross-reference (Continued)

Property Mutual
exclude Components See also Type Ref

target
Dyn

assign Notes
Copyright © 2015 - 2018 Accellera. 133
All rights reserved.

January 2018 SystemRDL 2.0

or d

ov

ov

pa

pr

rc

re

re

re

rse

rsv

rsv

sa r

sa r

sh

sh

sig

sin

sti

sti

sw ,

sw

sw e

sw

sw e

sw

sw

sy
ed field Table 18 N/A x Reduction OR of fiel
value

erflow field Table 19 boolean x

erflow field Table 19 N/A y Counter overflow

ritycheck field Table 22 boolean

ecedence field Table 22 precedencetype x hw or sw

lr P field Table 14 boolean x

gwidth reg Table 23 longint unsigned

set field Table 13 bit, 
instance reference

y x

setsignal field Table 13 instance reference y x

t P field Table 14 boolean x

dset Q addrmap Table 26 boolean

dsetX Q addrmap Table 26 boolean

turate field Table 19 boolean, bit,
instance reference

x Incrementing counte
saturate value

turate field Table 19 N/A y Incrementing counte
saturate reached

ared reg Table 23 boolean

aredextbus addrmap,
regfile

Table 26
Table 25

boolean

nalwidth signal Table 10 longint unsigned

glepulse field Table 14 boolean x

cky I field Table 21 boolean x

ckybit I field Table 21 boolean x

field,
mem

Table 11
Table 24

accesstype x r, w, rw, wr, w1, rw1
or na

acc field Table 14 boolean x

acc field Table 14 N/A x Accessed by softwar

mod field Table 14 boolean x

mod field Table 14 N/A x Modified by softwar

we R field Table 14 boolean, 
instance reference

y x

wel R field Table 14 boolean, 
instance reference

y x

nc N signal Table 10 boolean x

Table G1—Property cross-reference (Continued)

Property Mutual
exclude Components See also Type Ref

target
Dyn

assign Notes
134 Copyright © 2015 - 2018 Accellera.
All rights reserved.

Specification January 2018

th r

th r

un

un

we

we

wo

wo

xo

xo
reshold field Table 19 boolean, bit,
instance reference

x Incrementing counte
threshold value

reshold field Table 19 N/A y Incrementing counte
threshold reached

derflow field Table 19 boolean x

derflow field Table 19 N/A y

C field Table 18 boolean, 
instance reference

y x

l C field Table 18 boolean, 
instance reference

y x

clr B field Table 14 boolean x

set B field Table 14 boolean x

red field Table 18 boolean x

red field Table 18 N/A x Reduction XOR of
field value

Table G1—Property cross-reference (Continued)

Property Mutual
exclude Components See also Type Ref

target
Dyn

assign Notes
Copyright © 2015 - 2018 Accellera. 135
All rights reserved.

January 2018 SystemRDL 2.0
136 Copyright © 2015 - 2018 Accellera.
All rights reserved.

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Motivation
	1.4 Backward compatibility
	1.5 Conventions used
	1.5.1 Visual cues (meta-syntax)
	1.5.2 Notational conventions
	1.5.3 Examples

	1.6 Use of color in this standard
	1.7 Contents of this standard

	2. References
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Lexical conventions
	4.1 White space
	4.2 Comments
	4.3 Identifiers
	4.4 Keywords
	4.5 Strings
	4.6 Numbers

	5. General concepts, rules, and properties
	5.1 Key concepts and general rules
	5.1.1 Defining components
	5.1.2 Instantiating components
	5.1.3 Specifying component properties
	5.1.4 Scoping and namespaces

	5.2 General component properties
	5.2.1 Universal properties
	5.2.2 Structural properties

	5.3 Content deprecation
	5.3.1 Semantics
	5.3.2 Examples

	6. Data types
	6.1 Overview
	6.2 Primary data types
	6.2.1 Signed and unsigned data types
	6.2.2 String data type
	6.2.3 Boolean data type
	6.2.4 Reserved enumeration types
	6.2.5 Enumerations
	6.2.6 Identifier references

	6.3 Aggregate data types
	6.3.1 Arrays
	6.3.2 Structures

	6.4 Type compatibility
	6.5 Casting

	7. Expressions
	7.1 Overview
	7.2 Operators
	7.2.1 Assignment operators
	7.2.2 Logical operators

	7.3 Expression evaluation rules
	7.3.1 Rules for determining expression types
	7.3.2 Rules for evaluating expressions

	8. Signals
	8.1 Introduction
	8.2 Signal properties
	8.2.1 Semantics
	8.2.2 Example

	8.3 Signal definition and instantiation
	8.3.1 Semantics
	8.3.2 Example

	9. Field component
	9.1 Introduction
	9.2 Defining and instantiating fields
	9.3 Using field instances
	9.4 Field access properties
	9.4.1 Semantics
	9.4.2 Example

	9.5 Hardware signal properties
	9.5.1 Semantics
	9.5.2 Example

	9.6 Software access properties
	9.6.1 Semantics
	9.6.2 Examples

	9.7 Hardware access properties
	9.7.1 Semantics
	9.7.2 Example

	9.8 Counter properties
	9.8.1 Counter incrementing and decrementing
	9.8.2 Counter saturation and threshold

	9.9 Interrupt properties
	9.9.1 Semantics
	9.9.2 Example

	9.10 Miscellaneous field properties
	9.10.1 Semantics
	9.10.2 Example

	10. Register component
	10.1 Defining and instantiating registers
	10.2 Instantiating registers
	10.3 Instantiating internal registers
	10.4 Instantiating external registers
	10.5 Instantiating alias registers
	10.5.1 Semantics
	10.5.2 Example

	10.6 Register properties
	10.6.1 Semantics
	10.6.2 Example

	10.7 Understanding field ordering in registers
	10.7.1 Semantics
	10.7.2 Examples

	10.8 Understanding interrupt registers
	10.8.1 Semantics
	10.8.2 Example

	11. Memory component
	11.1 Defining and instantiating memories
	11.2 Semantics
	11.3 Memory properties
	11.3.1 Semantics
	11.3.2 Example

	12. Register file component
	12.1 Defining and instantiating register files
	12.2 Semantics
	12.3 Register file properties
	12.3.1 Semantics
	12.3.2 Example

	13. Address map component
	13.1 Introduction
	13.2 Defining and instantiating address maps
	13.3 Semantics
	13.4 Address map properties
	13.4.1 Semantics
	13.4.2 Example

	13.5 Defining bridges or multiple view address maps
	13.5.1 Semantics
	13.5.2 Example

	14. Verification constructs
	14.1 HDL path
	14.1.1 Assigning HDL path
	14.1.2 Examples

	14.2 Constraints
	14.2.1 Describing constraints
	14.2.2 Constraint component
	14.2.3 Example

	15. User-defined properties
	15.1 Defining user-defined properties
	15.1.1 Semantics
	15.1.2 Example

	15.2 Assigning (and binding) user-defined properties
	15.2.1 Semantics
	15.2.2 Examples

	16. Preprocessor directives
	16.1 Embedded Perl preprocessing
	16.1.1 Semantics
	16.1.2 Example

	16.2 Verilog-style preprocessor
	16.2.1 Verilog-style preprocessor directives
	16.2.2 Limitations on nested file inclusion

	17. Advanced topics in SystemRDL
	17.1 Application of signals for reset
	17.2 Understanding hierarchical interrupts in SystemRDL
	17.2.1 Example structure and perspective
	17.2.2 Code snippet 1
	17.2.3 Code snippet 2
	17.2.4 Code snippet 3
	17.2.5 Code snippet 4
	17.2.6 Code snippet 5
	17.2.7 Code snippet 6
	17.2.8 Code snippet 7
	17.2.9 Code snippet 8
	17.2.10 Code snippet 9
	17.2.11 Code snippet 10
	17.2.12 Code snippet 11

	17.3 Understanding bit ordering and byte ordering in SystemRDL
	17.3.1 Bit ordering
	17.3.2 Byte ordering

	Annex A - Bibliography
	Annex B - Grammar
	B.1 SystemRDL source text
	B.2 User-defined properties
	B.3 Component definition
	B.4 Struct definitions
	B.5 Constraints
	B.6 Parameters
	B.7 Enums
	B.8 Property assignment
	B.9 Struct literal
	B.10 Array literal
	B.11 Reference
	B.12 Array and range
	B.13 Concatenation
	B.14 Data types
	B.15 Literals
	B.16 Expressions
	B.17 Identifiers

	Annex C - Backward compatibility
	C.1 Keywords
	C.2 next
	C.3 Use of 0 size
	C.4 Range for register arrays
	C.5 decrsaturate
	C.6 enum
	C.7 alias
	C.8 hwenable and hwmask
	C.9 threshold, incrthreshold, and decrtheshold

	Annex D - Reserved words
	Annex E - Access modes
	Annex F - Formatting text strings
	F.1 Well-formed RDLFormatCode constructs
	F.2 Single-tag RDLFormatCode constructs
	F.3 colorValues for the color tag
	F.4 Example

	Annex G - Component-property relationships

