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Notices

Accellera Systems Initiative Standards documents are developed within Accellera Systems Initiative
(Accellera) and its Technical Committee. Accellera develops its standards through a consensus development
process, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are not necessarily members of Accellera and
serve without compensation. While Accellera administers the process and establishes rules to promote fairness
in the consensus development process, Accellera does not independently evaluate, test, or verify the accuracy
of any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property
or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly
or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard
document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for
a specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera
Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test,
measure, purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due
to developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to determine
that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate
to specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will
initiate reasonable action to prepare appropriate responses. Since Accellera Standards represent a consensus
of concerned interests, it is important to ensure that any interpretation has also received the concurrence of
a balance of interests. For this reason, Accellera and the members of its Technical Committee and Working
Groups are not able to provide an instant response to interpretation requests except in those cases where the
matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of
membership affiliation with Accellera. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Comments on standards and requests
for interpretations should be addressed to:

Accellera Systems Initiative

8698 Elk Grove Blvd. Suite 1, #114
Elk Grove, CA 95624

USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. Accellera shall not be responsible for identifying patents
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for which a license may be required by an Accellera Standard or for conducting inquiries into the legal validity
or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks
to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee, if any, is paid to Accellera.
Permission to photocopy portions of any individual standard for educational classroom use can also be obtained
from Accellera. To arrange for authorization please contact Lynn Garibaldi, Executive Director, Accellera
Systems Initiative, 8698 Elk Grove Blvd. Suite 1, #114, Elk Grove, CA 95624, phone (916) 760-1056, e-mail
lynn@accellera.org.

Suggestions for improvements to the SystemC AMS User’s Guide are welcome. They can be sent to the
Accellera SystemC AMS forum:

https://forums.accellera.org/forum/13-systemc-ams-analogmixed-signal/

The current Accellera SystemC AMS Working Group web page is:

https://accellera.org/activities/working-groups/systemec-ams
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Preface

This user’s guide is meant as an introductory guide for electronic system-level engineers and architects who
would like to use the SystemC™! analog/mixed-signal (AMS) extensions for their system-level design and
verification tasks. The main aim is to provide a self-learning guide on how to use the SystemC AMS extensions
by explaining the modeling fundamentals and giving examples on how to start with AMS system-level design
at higher levels of abstraction. It assumes that the user has some prior knowledge on SystemC modeling and
simulation and C++ in general and is familiar with analog/mixed-signal design and modeling.

After going through this guide, the reader should be in a position to start using the SystemC AMS extensions,
and should be able to:

— Get insight into the applicable use cases and requirements of the SystemC AMS extensions.
— Understand the introduced models of computation and associated execution semantics.

— Use the language constructs to create discrete-time and continuous-time models at different levels of
abstraction.

— Combine SystemC and the AMS extensions to design a mixed-signal system.

— Perform time- and frequency-domain analysis and tracing of AMS signals.

The AMS design methodology, modeling style, and examples given in this user’s guide are based on IEEE
Std. 1666™-2011*%, IEEE Std. 1666.1™-2016 and the C++ programming language defined in ISO/IEC
14882:2003*. Any simulator implementation compatible with this standard can be used to build and execute
these examples®.

This document is an informative guide, intended to clarify the usage and intended behavior of the SystemC
AMS extensions. The precise and complete definition of the SystemC AMS extensions is standardized in IEEE
Std. 1666.1™-2016.

! SystemC™ is a registered trademark of the Accellera Systems Initiative.

2 The IEEE standards or products referred to in this user’s guide are trademarks of The Institute of Electrical and Electronics Engineers,
Inc.

3 IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331,
Piscataway, NJ 08855-1331, USA (https://standards.ieee.org/).

4 ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20,
Switzerland/Suisse (https://www.iso.org/). ISO/IEC publications are also available in the United States from Global Engineering
Documents, 15 Inverness Way East, Englewood, Colorado 80112, USA (https://global.ihs.com/). Electronic copies are available in the
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (https://
www.ansi.org/).

> More information on simulation environments can be found at https://www.accellera.org/community/systemec/about-systemc-ams/.
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1. Introduction

1.1 Motivation

There is a growing trend for tighter interaction between embedded hardware/software (HW/SW) systems and
their analog physical environment. This leads to systems, in which digital HW/SW is functionally interwoven
with analog and mixed-signal blocks such as RF interfaces, power electronics, sensors, and actuators, as shown
for example by the communication system in Figure 1.1. Such systems are called Heterogeneous AMS/HW/SW
systems. Examples are cognitive radios, sensor networks or systems for image sensing. A challenge for the
development of these heterogeneous systems is to understand the interaction between HW/SW and the analog
and mixed-signal subsystems at the architectural level. This requires new means to model and simulate the
interacting analog/mixed-signal subsystems and HW/SW subsystems at the functional and architectural levels.

Receiver .
N [~ —4 Serial Modulator/
% .6‘ " ”| Interface [ demod. |alen Host
= DSP €I processor
[ * | to 3
Antenna . .
front-end Calibration & Control M|tc,-(|)|_
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Transmitter
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ey .. to all blocks
? ? 44414 High
- Power Audio [ ) | Speed
RF Temp. Oscillator Clock Manage- DSP hid i Serial
detector | | sensor Generator ment Interface

Figure 1.1—A Communication System, example
of an heterogeneous AMS/HW/SW architecture

SystemC supports the refinement of HW/SW systems down to cycle-accurate behavior by providing a discrete-
event simulation framework. A methodology for generalized modeling of communication and synchronization
built upon this framework is also available: Transaction Level Modeling (TLM). It allows designers to perform
abstract modeling, simulation, and design of HW/SW system architectures. However, the SystemC simulation
kernel has not been designed to handle the modeling and simulation of analog/continuous-time systems and
lacks the support of a refinement methodology to describe analog behavior from a functional level down to
the implementation level.

In response to the needs from telecommunication, automotive, and semiconductor industries, AMS extensions
are introduced based on SystemC, to provide a uniform and standardized methodology for modeling
heterogeneous AMS/HW/SW systems.

1.2 SystemC AMS extensions

The SystemC AMS extensions are built on top of the SystemC language standard IEEE Std. 1666-2011 and
define additional language constructs, which introduce new execution semantics and system-level modeling
methodologies to design and verify mixed-signal systems.

The class definitions provided by the AMS language standard form the foundation for the creation of a C++
class library implementation, which can be used in combination with an IEEE Std. 1666-2011 compatible
SystemC implementation. Such an implementation can be used to create AMS system-level models to build an
executable specification, to validate and optimize the AMS system architecture, to explore various algorithms,
and to provide the software development team with an operational virtual prototype of an entire AMS system,
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including also the analog functionality. To support these use cases, the SystemC AMS extensions define the
necessary modeling formalisms to model AMS system-level behavior at different levels of abstraction.

1.2.1 Use cases and requirements

As depicted in Figure 1.2, the SystemC AMS extensions can be used for a wide variety of use cases such as:
— Executable specification;
— Virtual prototyping;
—  Architecture exploration, and

— Integration validation.

Use cases
Executable Virtual Architecture Integration
specification prototyping exploration validation
Discrete-time Continuous-time
static non-linear dynamic linear
Non-conservative behavior Conservative behavior

\ 4 L 4 \ 4

Modeling formalism

Electrical Linear

Timed Data Flow (TDF) Linear Signal Flow (LSF) Networks (ELN)

Figure 1.2—Use cases, model abstractions, and modeling formalisms
1.2.1.1 Executable specification

An executable specification is made to verify the correctness of the system requirement specification by
creating an executable description of the system by using simulation. For this use case, models at a high level of
abstraction are created, which do not necessarily need to relate to the physical architecture or implementation
of the system. The models are, therefore, called functional or algorithmic models.

SystemC and the AMS extensions define both the system-level modeling language and their execution
semantics for simulation purposes. They are entirely implemented in the form of C++ libraries, which are
linked to the compiled AMS models to create an executable description of the system. This entirely C++-based
modeling approach offers unique flexibility as it allows, e.g., the easy integration of embedded software, 3rd
party libraries, and legacy code into the system models.

1.2.1.2 Virtual prototyping

The virtual prototyping use case aims at providing software developers with a high-level untimed or
timed model, that represents the hardware architecture, and provides high simulation speed. Especially for
Heterogeneous AMS + HW/SW systems, where software or firmware is interacting directly with AMS
hardware, interoperability using SystemC Transaction-Level Modeling (TLM) extensions is important.

2
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The usage of Timed Data Flow modeling for (over)sampled continuous-time and signal processing behavior
provides high simulation speed with appropriate accuracy. In this way, the AMS subsystem can become part
of the virtual prototype for further development of the HW/SW subsystem.

1.2.1.3 Architecture exploration

The architecture exploration use case will evaluate if and how the ideal functions and algorithms defined during
the executable specification phase can be mapped onto the envisioned system architecture. The key properties
of the system architecture are defined and should match with the actual functionality required.

Architecture exploration is structured in two phases: In the first phase, the executable specification is refined
by adding the non-ideal properties of an implementation to get a better understanding of their impact on the
overall system behavior. In the second phase, the architecture’s structure and interfaces are refined to get a
more accurate model by introducing architectural elements and communication between these elements.

1.2.1.4 Integration validation

After the architecture definition and design of the analog and digital HW/SW components, these components
are integrated and their correctness is verified within the overall system. For the integration validation use
case, the interfaces of all subsystems must be modeled accurately. The interfaces and data types used in the
models should match the physical implementation where applicable. For analog circuits this relates to electrical
nodes. For digital circuits, this relates to pin accurate buses. For HW/SW systems, TLM interfaces might be
appropriate.

1.2.2 Model abstractions

The SystemC AMS extensions add new abstraction methods for system-level modeling and simulation
of AMS systems to the existing SystemC framework. The model abstractions supported by the SystemC
AMS extensions are based on well-known methods for abstracting analog and mixed-signal behavior. As
shown in Figure 1.2, the abstraction levels distinguish discrete-time from continuous-time behavior and non-
conservative from conservative descriptions. Chapter 8 will present the available abstraction methods in more
detail.

1.2.2.1 Discrete-time vs. continuous-time descriptions

Discrete-time modeling abstracts signals (e.g., audio or video streams) or physical quantities (e.g., voltages,
currents, and forces) as sequences of values only defined at discrete time points. Values may be either
real values or discrete values (e.g., integer or logic values). Values between time points are formally not
defined, although it is common to consider them as constant. Behaviors are then abstracted as procedural
assignments involving sampled signals. The description of static (algebraic) non-linear behaviors (e.g., using
polynomials) is supported. Discrete-time modeling is particularly suited for describing signal-processing-
dominated behaviors, for which signals are naturally (over)sampled. It can be also used for describing
continuous-time behaviors, provided that the discrete abstraction produces reasonable approximations.

Continuous-time modeling gets closer to the physical world, as signals and physical quantities are abstracted as
real-valued functions of time. The time is now considered as a continuous value. Behaviors are then described
using mathematical equations that can include time-domain derivatives of any order (so-called differential
algebraic equations (DAEs) or ordinary differential equations (ODEs)). Equations must be solved by using
a dedicated linear or non-linear solver, which usually requires complex numerical or symbolic algorithms.
Continuous-time modeling is particularly suited for describing physical behaviors, as it can naturally account
for dynamic effects.
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1.2.2.2 Non-conservative vs. conservative descriptions
Continuous-time models can be divided into two classes: non-conservative and conservative models.

Non-conservative models express behaviors as directed flows of continuous-time signals or quantities, on
which processing functions such as filtering or integration are applied. Non-linear dynamic effects can be
properly described, but mutual effects and interactions between AMS blocks, such as impedances or loads,
are not naturally supported.

Conservative models provide a formalism for satisfying the energy conservation laws as defined by Kirchhoff's
laws for the electrical domain.

1.2.3 Modeling formalisms

The SystemC AMS extensions define the essential modeling formalisms required to support AMS behavioral
modeling at different levels of abstraction. These modeling formalisms are implemented by using different
models of computation: Timed Data Flow (TDF), Linear Signal Flow (LSF), and Electrical Linear Networks
(ELN).

1.2.3.1 Timed Data Flow (TDF)

The execution semantics based on TDF introduce discrete-time modeling and simulation without the overhead
of the dynamic scheduling imposed by the discrete-event kernel of SystemC. Simulation is accelerated by
defining a static schedule for the connected TDF modules, forming a TDF cluster. This schedule defines the
execution order of the TDF modules’ processing member function according to the stream direction of the
dataflow and the configured number of samples to be read from and written to each TDF port. The static
schedule is computed before simulation starts and may be modified at the end of the execution of the schedule.
The sampled, discrete-time signals, which propagate through the TDF modules may represent any C++ type. If,
e.g., areal-valued type such as double is used, the TDF signal can represent a voltage or current at a given point
in time. Complex values can be used to represent an equivalent baseband signal. TDF modeling is presented

in Chapter 2.

1.2.3.2 Linear Signal Flow (LSF)

The Linear Signal Flow formalism supports the modeling of continuous-time behavior by offering a consistent
set of primitive modules such as addition, multiplication, integration, or delay. The LSF formalism permits the
description of any linear DAE (Differential Algebraic Equation) system. An LSF model is made up from a
connection of such primitives through real-valued time-domain signals, representing any kind of continuous-
time quantity. An LSF model defines a system of linear equations that is solved by a linear DAE solver. LSF
modeling is presented in Chapter 3.

1.2.3.3 Electrical Linear Networks (ELN)

Modeling of electrical networks is supported by instantiating predefined linear network primitives such as
resistors or capacitors, which are used as macro models for describing the continuous-time relations between
voltages and currents. A restricted set of linear primitives and switches is available to model the electrical
energy conserving behavior. The provided ELN primitives permit also the description of any linear DAE
system. ELN modeling is presented in Chapter 4.

1.2.4 Time-domain and frequency-domain analysis

The SystemC AMS extensions support both time-domain (transient) and small-signal frequency-domain (AC)
analysis, by introducing new execution semantics and additional functions for simulation control.
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Time-domain simulation can be applied to descriptions made using the TDF, LSF, or ELN models of
computation. The analysis computes the time-domain behavior of the overall system, possibly composed by
different models of computation and could even include descriptions defined in the discrete-event domain. The
execution semantics for time-domain simulation of TDF, LSF, and ELN models are described in Chapter 2,
Chapter 3, and Chapter 4, respectively.

Frequency-domain simulation can be applied to the same descriptions, combining different models of
computation, where the analysis computes the small-signal frequency-domain behavior of the overall
system. Besides small-signal frequency-domain analysis, small-signal frequency-domain noise analysis is also
available. Chapter 5 will describe both analysis methods in more detail.

The simulation control and signal tracing techniques for time-domain and frequency-domain simulation are
presented in Chapter 6. Also the creation and basic structure of test benches is explained in this chapter.

1.2.5 Language architecture

The SystemC AMS extensions are fully compatible with the SystemC language standard as shown in Figure
1.3. The AMS language standard defines the execution semantics of the TDF, LSF, and ELN models of
computation and gives an insight on the underlying enabling technology such as the linear solver, scheduler,
and synchronization layer. Currently, the interfaces and class definitions of this enabling technology are
implementation-defined. The end user, usually a system-level design engineer or modeling expert, can take
advantage of dedicated classes and interfaces to create TDF, LSF, or ELN models, by using the predefined
modules, ports, terminals, signals, and nodes.

Mixed-Signal Virtual Prototypes
written by the end user

SystemC AMS methodology-specific elements
methodology- elements for AMS design refinement, etc.

specific

elements Timed Data Linear Signal Electrical Linear
Transaction-level Flow (TDF) Flow (LSF) Networks (ELN)
modeling (TLM), modules modules modules
Cycle/Bit-accurate ports ports terminals

modeling, etc. signals signals nodes

Time-domain and small-signal frequency-domain
simulation infrastructure (synchronization layer)

SystemC Language Standard (IEEE Std. 1666-2011)

Figure 1.3—AMS extensions for the SystemC Language Standard

SystemC together with its AMS extensions allow the creation of an executable description of a mixed
discrete- and continuous-time system. Digitally-oriented HW/SW architecture descriptions made in SystemC
—often using transaction-level modeling (TLM)—can be augmented with abstract AMS behavior by using the
SystemC AMS extensions. This approach facilitates the creation of mixed-signal virtual prototypes to support
use cases such as software development, architecture exploration, and system validation.
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2. Timed Data Flow modeling

2.1 Modeling fundamentals

The Timed Data Flow (TDF) model of computation is based on the Cyclo-static Synchronous Data Flow
(CSDF) modeling formalism. Unlike the untimed CSDF model of computation, TDF is a discrete-time
modeling style, which considers data as signals sampled in time. These signals are tagged at discrete points in
time and carry discrete or continuous values like amplitudes.

Figure 2.1 shows the basic principle of the Timed Data Flow modeling. In this figure, there are three
communicating TDF modules called A, B, and C. A TDF model is composed of a set of connected
TDF modules, which form a directed graph called TDF cluster. TDF modules are the vertices of the graph,
and TDF signals correspond to its edges. A TDF module may have several input and output 7DF ports. A
TDF module containing only output ports is also called a producer (source), while a TDF module with only
input ports is a consumer (sink). TDF signals are used to connect ports of different modules together.

Each TDF module contains a C++ method that computes an arbitrary function f (i.e., fa, fg, and fc), which
depends on its direct inputs and possible internal states. The overall behavior of the cluster is therefore defined
as the mathematical composition of the functions of the involved TDF modules in the appropriate order, fc (fg

(fa (...))), indicated with schedule {A -B -C} in Figure 2.1.

TDF module TDF signal TDF port TDF cluster
Figure 2.1—A basic TDF model with 3 TDF modules and 2 TDF signals

A given function is processed (or ‘fired’ according to the SDF formalism) if there are enough samples available
at the input ports. In this case, the input samples are read by the TDF module, where the function uses
these values to compute one or more resultants, which are written to the appropriate output ports. During the
execution of a schedule, the number of samples read from or written to the module ports is fixed, where the
number of read and written samples by a TDF module are not necessarily equal. The number of samples read
from or written to the module ports can be changed during the simulation after the execution of each schedule.
A time stamp is associated to each sample using the local TDF module time. The interval between two samples
is called the time step.

2.1.1 TDF module and port attributes

The flexibility and expressiveness of TDF modeling comes from the ability to define the attributes of each
TDF module and of each of its TDF ports. In TDF, it is possible:

— To assign a particular time step to a TDF module. The module time step defines the time interval
between each module activation. Figure 2.2a shows a TDF module A with a module time step (Tm)
of 20 us.

— To assign a particular maximum time step to a TDF module. The maximum time step enforces the
module activation if this time period is reached. Figure 2.2a shows a TDF module A with a module
time step (Tm,max) of 1 second.
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— To assign a particular time step to a given port of a TDF module belonging to the cluster. The time step
defines the time interval between two consecutive samples which are written to or read from the port.
Figure 2.2b shows a TDF module B with a TDF input port time step (Tp) of 10 pus.

— To assign a particular maximum time step to a given port of a TDF module belonging to the cluster.
The maximum time step defines the maximum allowed time interval between two consecutive samples
which are written to or read from the port. Figure 2.2b shows a TDF module B with a TDF input
maximum port time step (Tp,max) of 1 second.

— To assign a particular rate to a given port of a module belonging to the cluster. Figure 2.2b shows a
TDF module B, where at each module activation 2 samples are read (input port rate R set to 2, indicated
with R:2).

— To assign a particular delay to a given port of a module belonging to the cluster. Figure 2.2¢ shows a
TDF module C, where at each module activation, the sample corresponding to the previous time step
is written (output port delay D set to 1 sample, indicated with D:1).

— To assign a particular continuous-time delay to a given decoupling port of a module belonging to the
cluster. Figure 2.2d shows a TDF module D, where at each module activation, the sample is written to
the output port with a continuous-time delay of 0.8 ps.

A C D
Tm:20us D:1 Td:0.8us I
Tm,max:1s
a) Module time step (Tm) b) Port time step (Tp) c) Port delay in d) Port delay in
and maximum module maximum port time step samples (D) seconds (Td)
time step (Tm,max) (Tp,max) and rate (R)

Figure 2.2—TDF module and port attributes

Provided that the attribute assignment on the ports and modules of a TDF model are compatible, the order
of activation of the TDF modules in a cluster and the number of samples they read (consume) and write
(produce) can be statically determined before simulation starts and may be changed after the execution of
each schedule. Thus, and more formally, a TDF cluster can be defined as the set of connected TDF modules,
which belong to the same static schedule. The latter may change over time in terms of order and number of
activations of each TDF module, but no new TDF modules can be added to a cluster nor TDF modules can be
removed from the cluster during simulation. If the attribute assignments are not compatible, the static schedule
cannot be established and the TDF cluster is said to be not schedulable (see also Section 2.1.4). Therefore,
after the required TDF cluster consistency check, the schedule defines a sequence, in which the algorithmic
or procedural description of each TDF module is executed.

The main advantage of using a static schedule is that the execution of TDF models does not rely on the evaluate/
update mechanism of SystemC’s discrete-event kernel, resulting in more efficient and thus faster simulations.
TDF models are processed independently, using a local time annotation mechanism. Interactions between
TDF models and pure SystemC models are supported through specific converter ports, as discussed in Section
2.4.

2.1.2 Static and dynamic modes of operation

The TDF model of computation supports two modes of operation, which defines the way how changes of the
TDF attributes (time step, rate or delay) are handled while executing the schedule.

— Static: in this case, TDF module attributes are not changed during simulation. Attributes are only
defined prior to simulation and remain fixed during simulation.
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— Dynamic: in this case, the TDF model attributes are changed during simulation. Attributes can be
redefined, and will be evaluated at the end of the execution of the schedule, and-if valid—will become
effective in the next execution of the schedule.

An application may switch between the static and dynamic modes of operation during simulation. The mode of
operation will be based on the properties of each individual TDF module in a cluster. To this end, the application
can mark each TDF module to accept or reject attribute changes, and to do or not do attribute changes itself.

By default, a TDF module does not accept attribute changes and also does not make attribute changes itself,
which will enforce a static mode of operation. This means that in order to use TDF modules in a dynamic mode
of operation, each individual TDF module in a cluster shall define explicitly that changes to the TDF attributes
are supported.

Figure 2.3 shows a TDF cluster with three TDF modules for the static mode of operation. TDF module A
has no specific settings defined on how to deal with TDF attributes. It relies on the default settings, which
means it will reject attribute changes from other TDF modules in the cluster and it does not change attributes
itself. TDF module B explicitly defines that it will accept attribute changes from other TDF modules. By
default, TDF module B does not change attributes itself, similar as module A. TDF module C explicitly defines
that it does not change attributes itself. By default, TDF module C will reject attribute changes from other
TDF modules in the cluster. Even though TDF module B accepts attribute changes, none of the modules does
make changes to the attributes. As a result, the TDF cluster operates under the static mode of operation.

Q Module accepts attribute changes

G) Module does not change attributes
Figure 2.3—TDF modules and their settings resulting in a static mode of operation
Figure 2.4 shows a TDF cluster with three TDF modules for the dynamic mode of operation. The TDF modules

A, B, and C accept attribute changes from other TDF modules in the cluster. TDF module B does change the
TDF attributes, whereas module A and C by default do not change attributes.

Q Module accepts attribute changes

Q Module does change attributes
Figure 2.4—TDF modules and their settings resulting in a dynamic mode of operation
If some TDF modules in a cluster define attributes for dynamic mode of operation and other TDF modules in

the same cluster specify attributes for static mode of operation, then an inconsistent set of attributes is specified.
For example, Figure 2.5 shows TDF module B, and C which both accept attribute changes. As TDF module

8
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

B does make attribute changes, it enforces the dynamic mode of operation. However, TDF module A rejects
attribute changes (by default). This results in an inconsistency in the cluster attributes, which will cause an
error in simulation.

Figure 2.5—TDF modules attributes settings resulting in an inconsistency in the cluster.
2.1.3 TDF model topologies

Figure 2.6 shows an example of a TDF model with multirate characteristics. A port rate assignment with
rate value 2 (R:2) has been performed on the output port of TDF module A. Ports with no rate attribute are
considered to have a rate of 1 (not graphically represented). When module A is activated, 2 samples are written.
Since both modules, B and C, read one sample at each activation, a possible schedule for this TDF cluster is
{A-B-C-B-C}.

>
X
N
(@)

Figure 2.6—Multirate TDF model using port rate assignment

In order to handle TDF models containing loops, it is compulsory to introduce a delay on a module port
belonging to one of the modules of the loop. This port delay has to be defined during elaboration of the
simulation, to make the static scheduling feasible. A simple example is given in Figure 2.7, without loop, that
shows a module A with a delay of one sample associated to the output port (D:1). One possible schedule is
{A -B}. Schedule {B A} is also possible since when module B first activated its input port will read the
sample already available thanks to the assigned delay defined in the elaboration phase.

___________________________________________________

Figure 2.7—TDF model with port delay

The initial value of the sample of a port with a delay is determined by the constructor of the corresponding
data types. The user is advised to set the values of the initial samples if port delays are used, because the value
will be undefined for C++ fundamental types due to the lack of a default constructor.
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Figure 2.8 shows an example of a TDF model containing a loop, a quite common situation when dealing
with signal processing with feedback. A mandatory port delay assignment with delay value 1 (D:1) has been
performed on the output port of TDF module C. Assigning a delay to the output port of module C, allows
module B to be ‘fired’ when the first sample of module A becomes available on input in0 of module B. A
possible schedule for this TDF model is {A -B -C}.

Possible schedule: {A—B—C}

Figure 2.8—TDF model with loop, and port delay assignment

Figure 2.9 shows a more complex example mixing multirate and delay. A possible cluster schedule is
{A -B B -C -D}. Module B is executed twice because of the port rate (R:2) assignments performed on the
two connected ports (output port of module A and input port of module C). The port delay assignment on the
output port of module D (D:1) is required for the schedule to be computed properly.

Figure 2.9—Multirate TDF model with loop

Another prerequisite for a proper schedule is that the sum of samples produced at the output ports within
a loop must be equal to the sum of samples consumed by the input ports within the loop. Otherwise, any
finite schedule would accumulate surplus samples somewhere in the cluster when executing it repeatedly. For
example, in the case the rate of the input port of module C in Figure 2.9 were changed from 2 to 1, the schedule
{A-B-C-D-B-C-D} would result in one extra sample at the output of module D after executing the
schedule once (see Figure 2.10).
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write: 1 x 2 samples read/write: 2 x 1 sample read/write: 2 x 1 sample

read: read/write: 2 x 1 sample
1 x 1 sample
1 sample left

Figure 2.10—Multirate TDF model containing a loop with incompatible rates, resulting
in accumulation of samples in the cluster yielding to an infinite (broken) schedule

Figure 2.11 shows how it is possible to connect a TDF model with the discrete-event domain, by means of
TDF converter ports (indicated with H). For example, a discrete-event signal is available at the TDF converter
port of TDF module A. Module D has a TDF converter input port, reading a discrete-event control signal.
Special care should be taken with the interaction between the TDF and discrete-event domain. This is described
in Section 2.4.

A output

input ctrl

Figure 2.11—TDF model interfacing with discrete-event domain

Another special case is when a TDF model becomes part of a closed loop, which includes a path through
the discrete-event domain, as shown in Figure 2.12. The TDF cluster itself contains no loop, so there is no
port delay assignment necessary to calculate a valid schedule. Module A reads a sample from the discrete-
event domain at the first delta cycle of the time point associated to the sample using a TDF converter input
port. Module C writes a sample to the discrete-event domain in the same delta cycle, using a TDF converter
output port. Note that TDF samples read from module C and passed through the discrete-event module D to
the input of module A will be delayed by one TDF time step due to the evaluate/update mechanism of the
SystemC kernel.

More details on the interaction between the TDF and discrete-event domain is described in Section 2.1.5 and
Section 2.4.
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Possible schedule: {A—B—C}

-
L]
L]
"

LE
L]
L]
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L]

Figure 2.12—TDF model with loop via the discrete-event domain
2.1.4 Time step assignment and propagation

The definition of port rates and delays is very useful to handle different frequency domains within the same
TDF model as well as to create complex TDF module structures involving nested loops. The main point here
is that the consistency of a cluster exclusively relies on the compatibility of port rate and delay values and is
thus intrinsically independent of the chosen time step (sampling period) to run it. Once this consistency check
has been validated, it may operate at any frequency by means of a port time step assignment or a module time
step assignment.

Figure 2.13 illustrates the simplest case, in which all rates are set to 1 (not graphically represented). Starting
with a port time step of 10 ps assigned to the input port of module C (denoted as Tp:10us), this figure shows
how this time step value is used to transitively calculate the time steps of the other ports and modules (denoted
as italic values Tp and Tm). When there is no specific rate (R) nor delay (D) assigned to a port, a rate of 1 and
a delay of zero samples are assumed by default.

Tm:10us

Figure 2.13—Propagation of the time step Tp:10us set on the input port of module C

The time step propagation is performed upstream and downstream of the target element of the performed time
step assignment (port or module) in the TDF model. This process is illustrated by dotted arrows in Figure 2.13.
For instance, the port time step assignment on the input of module C propagates downstream by setting the
module C time step to 10 ps (Tm. 10us, dotted arrow @). Similarly, the time step assigned on the input port of
module C (Tp:10ps) is propagated upstream to the output port of module B (dotted arrow ®). Then, the module
B time step is assigned with the same time step (7m:10us, dotted arrow @), which is in turn forwarded to the
input port of module B (7p:10us, dotted arrow @), to the output port of module A (7p:10us, dotted arrow ©),
and finally to the module A time step (7m:10us, dotted arrow ©).

2.1.4.1 Consistency of time step assignment and propagation
The example of Figure 2.13 illustrates a propagation example with only one port time step assignment (input

port of TDF module C). If only one time step has been assigned to a TDF module or a TDF port within a
scheduable cluster, the assignment will always be consistent. Once two or more port and/or module time steps
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have been assigned in a TDF cluster, a consistency check has to be made to ensure their compatibility with
the propagated time steps, depending on the port rates.

Figure 2.14 shows a module, where the input port time step is set to 10 ps (Tp:10us) with a rate of 2 (R:2),

and the module time step is set to 20 us (Tm:20us). As the output port rate is not set, it will use the default
rate of 1, resulting in an output port time step of 20 ps.

out

Figure 2.14—Port time step, port rate, and module time step should be consistent

The module time step should be consistent with the rate and time step of any port within a module. The relation
between these time steps and rates becomes:

module time step = input port time step-input port rate = output port time step-output port rate (2.1
In the example of Figure 2.14, the following relation is checked: 20 ps =10 ps - 2 =20 ps - 1.

In the example of Figure 2.15, multiple modules form a cluster, where two time steps are set by the user: the
time step of module A is set to 20 us (Tm:20ps @) and the input port time step of module C is set to 10 us
(Tp:10us @). Furthermore, the user has set the rate of the output port of module A to 2 (R:2). Therefore, module
A is activated two times less frequently than modules B and C, as module A writes 2 samples per activation,

see Figure 2.6.

The specified port time step at the input of module C (Tp:10us @) propagates downstream to module C thus
setting its time step to 10 pus (7m:10us, dotted arrow @). Similarly, the time step assigned to the input port
of module C (Tp:10us @) is propagated upstream to the output port of module B (dotted arrow ©). Then, the
module B time step is assigned with the same time step (7m. I Ous, dotted arrow @), which in turn is forwarded
to input port of module B (7p:10us, dotted arrow @), and propagated upstream to the output port of module
A (Tp:10us, dotted arrow @). Since the output port rate of module A is 2, the propagated module time step
should become 20 us (Tm:20us, dotted arrow @), which matches with the user-specified time step of module
A (Tm:20us ©).

1] Tm:zops0

Figure 2.15—Time step propagation for a multirate TDF model
with consistent time step assignments done by the user

Figure 2.16 shows the same TDF model with an incompatible time step propagation, which leads to an
inconsistent time step assignment. The expected module A time step resulting from propagation is 20 us
(Tm:20us, dotted arrow @), which is different from the assigned module time step of module A (Tm:10us ©).
Therefore, no consistent time steps can be assigned and an error will be reported.
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Figure 2.16—Time step propagation for a multirate TDF model
with inconsistent time step assignments done by the user

2.1.4.2 Maximum time step assignment and propagation

The optional maximum time step attribute can be defined to guarantee that sufficient time points are
available for the calculation of continuous-time descriptions (e.g., Laplace transfer functions). Assignment
and propagation of the maximum time step for a TDF module or TDF port follows the same mechanism as
explained in Section 2.1.4. In the case where multiple TDF modules in the same cluster define the maximum
time step, the maximum time step will be calculated by taking the smallest propagated maximum time step of
the TDF modules in the cluster. This maximum time step should always be greater than or equal to the resolved
time step for each TDF module and TDF port. In the case where a maximum time step is set within the cluster,
the regular time step assignment as explained in Section 2.1.4 is not mandatory since the minimum value of the
propagated max time step assignments will be used. If a regular time step has been assigned somewhere in the
cluster using member function set_timestep, this time step will be used as long as it is less than or equal to the
propagated maximum time step. If the propagated regular time step is greater than the propagated maximum
time step an error will be reported.

2.1.5 Multiple schedules or clusters

It is possible to have more than one TDF cluster within the same application. In this case, each TDF cluster
has its own data flow characteristics (sampling rate, sampling period, etc.), scheduling, and execution order.
This is especially useful in applications where the time steps or (data) rates between the various connected
subsystems are different.

Specialized TDF decoupling output ports are available to decouple TDF clusters. Two types of TDF decoupling
output ports are available:

— A continuous-time decoupling port, which uses the default or user-defined interpolation mechanism.

— A discrete-time decoupling port, which follows a sample-and-hold regime.

Figure 2.17 shows an example, in which a continuous-time TDF decoupling port (indicated with B E) is used
to explicitly split a cluster. The first cluster will use a module time step of 10 pus and will deliver samples at
the output of module B each 10 ps. The second cluster will consume samples at the input of module C each
8 us. For the continuous-time TDF decoupling port, a delay of at least one sample needs to be specified, to
facilitate interpolation.

Figure 2.17—Use of a continuous-time TDF decoupling
port to explicitly split a cluster in two independent ones

14
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

Note that in between the two clusters, a TDF signal is used to connect module B with module C. As there only
exist TDF decoupling output ports, the input to the second cluster (module C) is a regular TDF input port.

Alternatively, the discrete-time TDF decoupling output port can be used, which will provide a static output
signal during the interval of two samples. As such, the decoupling port performs a sample-and-hold function.
When using such discrete-time TDF decoupling output port, there is no delay required, because there is no
interpolation necessary. Unlike the continuous-time decoupling port, the discrete-time decoupling port requires
no sample delay. However, due to the evaluation/update semantic of the discrete-event solver, a read at the
same time point like the corresponding write will deliver the previous value. Figure 2.18 shows the usage of
this discrete-time TDF decoupling port (indicated with HD).

Cluster 1

Tm:10ps

A

Figure 2.18—Use of a discrete-time TDF decoupling output
port to split a cluster using a sample-and-hold mechanism

2.1.6 Signal processing behavior of TDF models

Figure 2.19 illustrates how a cluster of TDF modules processes signals by repetitively activating the processing
functions of the contained modules in the order of the derived schedule. It generates samples for each module
as a function of time. Because the rates are all set to 1, the processing is obvious: Module A writes a sample at
time O us, which is read by module B at time 0 ps, and module B writes a sample at time 0 ps, which is read
by module C at time 0 us. From the perspective of the generated samples, it is important to notice that it is the
write operation of the sample produced by module A that actually enables module B to be fired. Respectively,
the generation of a sample by module B triggers module C.

The output of module A produces a continuous-value signal (Vi,), whose values are only available at discrete
time points. The time step between these samples is equidistant, and defined by the time step of the output
port of module A (Tp:10us). Signal Vj, is fed into module B, which in this example is assumed to be a simple
amplifier with a constant gain. The samples of the amplified output signal (V) become available at the output
of module B at the same time steps as they were written by module A.

010 20 30 40 50 01020 30 40 50

Figure 2.19—TDF module activation (processing) with read and written samples
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Besides using TDF modules to describe discrete-time behavior, a TDF module can be used to encapsulate
continuous-time behavior. Section 2.3 will explain the usage of TDF to model discrete-time and continuous-
time behavior.

2.2 Language constructs
2.2.1 TDF modules

A TDF module is a user-defined primitive module to define discrete-time or to embed continuous-time
behavior. It contains elements such as ports, signals, parameters, and member functions for time-domain
(transient) and small-signal frequency-domain (AC) analyses. Together, these elements implement the behavior
of the module. Example 2.1 shows the typical structure of a TDF module. Example 2.2 shows an alternative
TDF module declaration without the use of macros.

Example 2.1: Typical structure of a TDF module using macros for class definition and constructor

SCA_TDF_MODULE(ny_tdf _nodule) @
{

/'l port declarations
sca_tdf::sca_i n<doubl e> in; (2]

sca_tdf::sca_out <doubl e> out;

SCA_CTOR(ny_tdf _module) : in("in"), out("out") {} (3]

void set_attributes() @
{
/1 initial definition of nodule and port attributes (optional)

}

voi d change_attri butes() (5]

/1 redefine nodule and port attributes (optional)

void initialize() O

/1 initialize values of ports with a delay (optional)

void reinitialize() @

/1 reinitialize values of ports with a delay (optional)

voi d processing() (8]

/1 tinme-domain signal processing behavior or algorithm (mandatory)

voi d ac_processi ng() (9]

/'l small-signal frequency-donmain behavior (optional)

Example 2.2: Typical structure of a TDF module without macros

class nmy_second_nodul e : public sca_tdf::sca_nodul e ®

public:
/1 port declarations, see Exanple 2.1
...

ny_second_nodul e( sc_core::sc_nodul e_nanme, int param_ ) ®
in("in"), out("out"), nodul e_param param) {}
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/1 definition of the TDF menber functions as done in Exanple 2.1
...

private:
int nmodul e_param // user-defined nodul e paraneter

}i

(1] Primitive module declaration facilitated by the macro SCA_TDF_MODULE to define a new class
publicly derived from class sca_tdf::sca_module.

2] A TDF module can have multiple input and output ports. Only TDF ports should be instantiated, see
Section 2.2.2.

(3] Mandatory constructor definition facilitated by the predefined macro SCA_CTOR, which requires
the specification of the TDF module name as argument. It is a good practice to assign the names to
the instantiated ports and signals in the constructors’ initializer list.

o Optional member function set_attributes, in which TDF module and port attributes can be defined.
The user is not allowed to call this member function directly. It is called by the simulation kernel
during elaboration.

(5] Optional member function change_attributes, in which TDF module and port attributes can be
redefined. The user is not allowed to call this member function directly. It is called by the simulation
kernel, at the end of the execution of each schedule.

(6] Optional member function initialize to initialize data members representing the module state and
especially the initial samples of ports with assigned delays. The user is not allowed to call this member
function directly. It is called by the simulation kernel at the end of elaboration, just before transient
simulation starts.

(7] Optional member function reinitialize to reinitialize data members. In case of an attribute change,
this member function can be used to reassign delay values. The user is not allowed to call this
member function directly. It is called by the simulation kernel after calling the member function
change_attributes and having advanced the time to the moment of the next cluster activation.

(8] Mandatory member function processing, which encapsulates the actual signal processing function.
The user is not allowed to call this member function directly. It is called by the simulation kernel as
part of time-domain (transient) simulation, where each module activation advances the local module
time by the assigned or derived module time step.

(9] Optional member function ac_processing, which encapsulates the small-signal frequency-domain
(AC) and small-signal frequency-domain noise behavior. The user is not allowed to call this member
function directly. It is called by the simulation kernel while executing small-signal frequency-domain

analyses (see Chapter 5).

1] Alternative TDF module declaration by creating a new class publicly derived from -class
sca_tdf::sca_module.
® Mandatory constructor definition for a TDF module, which requires the mandatory module name (of

type sc_core::sc_module_name) as first argument. The regular C++ constructor should be used to
pass and initialize parameters for the TDF module. It is a good practice to initialize port names, signals
names and other user-defined parameter values in the constructors’ initializer list.

2.2.1.1 Module attributes

Module and port attributes such as sampling rate, delay, and time step should be defined in the member function
set_attributes and may be changed subsequently in the member function change_attributes. The member
function may use any legal C++ statement in addition to the definition of module or port attributes. The member
function set_attributes is called at elaboration time, whereas the member function change_attributes is called
after the execution of each schedule (see Section 2.5).

The following member functions are available for TDF modules to set and get the attributes:
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— The member functions set_timestep and get timestep will set and return, respectively, the module
time step, which is defined as the time step between two consecutive module activations. The module
time step should be less than the maximum time step defined.

— The member functions set_max_timestep and get_max_timestep will set and return, respectively, the
maximum time step between two consecutive module activations. If the maximum time step is not
defined by the application, the time step is set to sca_core::sca_max_time.

— The member function request_next_activation will request a next module activation based on a time
step, event, or event-list given as argument. In the case where multiple TDF modules, which belong to
the same cluster, request a next module activation, the requests are or-concatenated. In consequence,
the request with the earliest point in time will be used and the other requests will be ignored.

— The member function get last timestep will return the last non-zero module time step of the last
module activation or before. For the first module activation, the member function will return the
propagated time step.

In addition to these member functions to change the TDF module attributes, dedicated member functions are
available to define whether changes to these TDF attributes are allowed or not. The user can define whether
the TDF model of computation uses the static or dynamic mode of operation (see Section 2.1.2):

— The member functions does_attribute_changes and does_no_attribute_changes are used to mark a
TDF module to allow or disallow making attribute changes itself, respectively. Before a module can
make changes to its attributes, it has to call does_attribute_changes first. By default, a TDF module
is not allowed to make changes to its attributes.

— The member functions accept_attribute_changes and reject_attribute_changes are used to mark
a TDF module to accept or reject attribute changes caused by other TDF modules in the same
cluster, respectively. By default, a TDF module will reject attribute changes. The member function
reject_attribute_changes is especially relevant when a DSP functionality, in which variable time steps
are not allowed, is modeled by using TDF modules.

In Example 2.3, the initial module time step is set to 10 ms in the callback set attributes. In this
member function, the module is also marked to allow making changes to its TDF attributes by calling
does_attribute_changes. Note that the member function accept_attribute_changes is not called, which
means that the module would not allow any attribute changes done by other TDF modules in the cluster and thus
this module will be guaranteed the only module in the cluster which is allowed to make changes to attributes.
The callback change_attributes is used to actually change the attributes. In this example, the time step will
change to 20 ms after 50 ms.

Example 2.3: TDF member functions set_attributes and change attributes

void set_attributes()

{
set _timestep(10.0, sc_core::SC_MS); // nodule time step assignment of a of 10 ns
does_attribute_changes(); /1 nodule is allowed to nake attribute changes

}

voi d change_attri butes()

{
if ( get_time() > sca_core::sca_tinme(50.0, sc_core::SC M) )
set _timestep(20.0, sc_core::SC_MS); // nodule time step changed to 20 ns after 50 ms

2.2.1.2 Module initialization

The member function initialize is primarily used to initialize the delay samples of TDF ports that have
been assigned a delay and to initialize module state variables, which depend in some way on the assigned
TDF attributes. To this end, all TDF attributes (rate, delay, and time steps) can be read in the context of this
callback. This member function is executed only once, just before the actual module activation starts (see next
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section). Example 2.4 shows the initialization of an internal state variable ¢ and the use of the port member
function get_timestep and initialize. The available port member functions are explained in Section 2.2.2.

Example 2.4: TDF member function initialize

void initialize()
{
t = get_tinestep(); o

std::cout << out.name() << ": Time step =" << out.get_tinmestep() << std::endl; (2]

out.initialize(1l.23); ©
}

(1] Set local state variable 7. In this example, 7 is a private data member of type sca_core::sca_time to
store the module time step.

(2] Get time step of output port out.

(3] Initialize the first sample of output port out of type double with value 1.23.

How to use port initialization inside this member function is explained in Section 2.2.2.
2.2.1.3 Module reinitialization

The member function reinitialize can be used to reinitialize ports with a delay or to readjust module state
variables based on the new TDF attributes. This member function is executed before each execution of the
cluster except the first time where initialize is executed. Example 2.5 shows the reset of all delay values of an
output port in case the time step has changed.

Example 2.5: TDF module reinitialization using member function reinitialize
void reinitialize()

int delay_buffer_size = out.get_delay();
for (int i =0; i < delay_buffer_size; i++)
out.initialize(0.0, i); // reinitialize new delay value to zero

2.2.1.4 Module activation (processing)

The member function processing is the only mandatory function that needs to be overridden in any
TDF module, since it actually defines the discrete-time or continuous-time behavior of the TDF module. This
member function is executed at each module activation (see Section 2.3). Example 2.6 shows a very simple
case, in which the value of an internal data member val is written to an output port.

Example 2.6: TDF module activation using member function processing

voi d processing()

{

out.wite(val); // wites value to output port out

}

2.2.1.5 Module local time

The member function get time can be used within the processing function to obtain the actual, local
module time. It returns the time of the first input sample of the current module activation, as a
type of class sca_core::sca_time. At elaboration, the actual module time returned by get_time is zero
(sc_core::SC_ZERO_TIME). In the context of the member function initialize and reinitialize, the actual
module time corresponds to the first activation time of the module in the next schedule execution of the
TDF cluster. Example 2.7 shows how the local module time can be obtained.
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Example 2.7: Get local time of a TDF module

voi d processing()

{
sca_core::sca_tinme |ocal _ting;
local _time = get_tine(); // get actual, local nodule tine

}

For multirate TDF models, the local time of the individual TDF modules can differ. Furthermore, there may
be time offsets between the local TDF module time and the SystemC kernel time. Therefore, the function
get_time should be used inside a TDF module as a replacement for sc_core::sc_time_stamp.

2.2.1.6 Module constructor

The macro SCA_CTOR helps to define the standard constructor of a module of class sca_tdf::sca_module. It
has only one mandatory argument, which is the module name. In the case where parameters need to be passed
via the constructor, the user may define a regular constructor with an arbitrary number of additional parameters.

Member data should be initialized in the initialization list of the constructor, so that all members are properly
initialized before the constructor of ny_t df _nodul e is called. This also concerns the instantiated TDF ports,
which should receive their respective names as constructor argument in the initialization list.

Example 2.8: TDF module constructor

ny_tdf _nodul e( sc_core::sc_nodul e_nane nm int param )
cin("in"), out("out"), nodul e_paran(param) {}

2.2.1.7 Constraints on usage

A TDF module is a primitive of the TDF model of computation. Therefore, it cannot instantiate submodules.
The structural composition of TDF modules is possible by defining classes derived from the regular SystemC
class sc¢_core::sc_module, or using the equivalent macro SC_MODULE. This is discussed in Section 2.3.3.

The member functions set_attributes, change_attributes, initialize, reinitialize, processing, and
ac_processing should not be called directly by the user. These member functions are called as part of the
execution semantics for time-domain simulation (Section 2.5) or small-signal frequency-domain analyses

(Chapter 5).

SystemC functions that describe discrete-event behavior such as creating methods and threads, specifying
sensitivity, waiting for events, and so on are not allowed to be called in a TDF module. Otherwise, the execution
semantics for SystemC discrete-event processing could interfere with the execution of the TDF modules.
This means member functions and macros like SC_HAS_PROCESS, SC_METHOD, SC_THREAD, wait,
next_trigger, sensitive should not be used in a TDF module.

As the local time of a TDF module is calculated independently from the time in the discrete-event domain
(SystemC kernel time), the function sc_core::sc_time_stamp should not be used inside a TDF module.
Instead, the member function get_time should be used.

In the case where SystemC signals are needed for processing in a TDF module, specialized converter ports
have to be used, as described in Section 2.4.

2.2.2 TDF ports

A TDF port is an object that provides a TDF module with a means to communicate with other connected
modules. Due to the nature of the TDF modeling formalism, a TDF port can be either an input port or an output
port, but not inout (which is available in SystemC). TDF ports can be declared for any data type defined by
C++, SystemC, the SystemC AMS extensions, a third-party library, or the user.
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There are currently six classes of TDF ports:

TDF ports of class sca_tdf::sca_in<T> (input port) or sca_tdf::sca_out<T> (output port).

TDF converter ports of class sca_tdf::sca_de::sca_in<T> (converter input port) and
sca_tdf::sca_de::sca_out<T> (converter output port).

TDF decoupling ports of class sca_tdf::sca_out<T, sca tdf::SCA _CT _CUT> (continuous-
time decoupling output port) and sca_tdf::sca_out<T, sca_tdf::SCA DT CUT> (discrete-time
decoupling output port).

TDF ports are used to connect TDF modules using signals of class sca_tdf::sca_signal<T>. TDF converter
ports allow TDF modules to interact with discrete-event signals of class sc_core::sc_signal<T> or
sc_core::sc_buffer. This is explained in Section 2.4. The TDF decoupling output ports can be used to decouple
TDF clusters if a system partitioning requires clusters of different time step or sample rates (see Section 2.1.5).

The port template classes allow the use of different data types, e.g., double, int or bool. The data type double
is often used to represent the amplitude of a continuous-value signal. Example 2.9 shows the instantiation of
the six available TDF port classes.

Example 2.9: TDF port instantiations

SCA_TDF_MODULE( ny_t df _nodul e)

{

sca_tdf::sca_i n<doubl e> in; (1]

sca_t df::sca_out <doubl e> out; (2]

sca_tdf::sca_de::sca_in<bool > inp; ©

sca_tdf::sca_de::sca_out< sc_dt::sc_logic > outp; (4]

sca_tdf::sca_out<doubl e, sca_tdf::SCA CT_CUT> out_ct; (5]
sca_tdf::sca_out <doubl e, sca_tdf::SCA DT_CUT> out_dt; (6]

/1 rest of nodule not shown

=

© 00000

TDF input port that carries a continuous-value (real) signal.

TDF output port that carries a continuous-value (real) signal.

TDF input converter port from the discrete-event domain, using a Boolean signal.

TDF output converter port to the discrete-event domain, using a SystemC logic signal.

TDF output decoupling port which treats the signal as continuous in time and uses an interpolation
mechanism in case intermediate values are requested.

TDF output decoupling port which treats the signal as discrete in time and uses a sample-and-hold
mechanism in case intermediate values are requested.

2.2.2.1 Port attributes

A number of attributes can be assigned to TDF ports. They are used to control the evaluation and execution of
the TDF cluster, to which the TDF module belongs. TDF port attributes have to be set in the member functions
set_attributes or change_attributes of the TDF module, in which the port is declared (see Section 2.2.1). The
following member functions are available for TDF ports to set or get the attributes:

The member functions set_timestep and get timestep will set and return, respectively, the time step
(sampling period) between two consecutive samples.

The member functions set_max_timestep and get max_timestep will set and return, respectively, the
maximum time step (sampling period) between two consecutive samples.

The member function get last timestep will return the last non-zero time step (sampling period)
between two consecutive samples preceding the sample which index is given as argument.

21
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

— The member functions set_rate and get_rate will set and return, respectively, the number of samples
that have to be read or written to the port per module execution. The default rate is 1 (single-rate port).

— The member functions set_delay and get_delay will set and return, respectively, the number of samples,
which are inserted before reading or writing the first time to the port. The default value depends on the
default constructor of the data type. For C++ fundamental types like bool, int, long, float, and double,
the initial value could be undefined. Therefore, it is recommended to initialize the port with an initial
value, if a delay has been specified for a port (see Section 2.2.2.2).

— The member functions set_ct_delay and get_ct_delay will be only available for ports of class
sca_tdf::sca_out<T,sca_tdf::SCA_CT_CUT>andsca_tdf::sca_out<T,sca_tdf::SCA_DT_CUT>.
These member functions will set and return, respectively a continuous time delay which will be added
to the sample based delay (defined with set_delay). Thus the member function set_ct_delay permits
setting a delay, which is independent from the current time step and thus constant also for the case
where variable time steps are used. The default continuous time delay is sc_core::SC_ZERO_TIME.

Example 2.10 shows the use of these member functions.

Example 2.10: TDF port attribute member functions

void set_attributes()

{

out.set_timestep(0.01, sc_core::SC_US); /1 set tine step of port out
out.set_max_timestep(0.02, sc_core::SC_US); /1 set maximumtine step of port out
out.set_rate(1); /! set rate of port out to 1

out.set_del ay(2); /1 set delay of port out to 2 sanples

out _ct.set_ct_delay(0.1, sc_core::SC _M); /1 set continuous tine delay of port out to 0.1ns

}

void initialize()

{

out.get_rate(); /1 return the rate of port out
out. get _del ay(); /1 return the delay of port out
out.get _tinestep(); /1 return actual time step of port out

out.get_max_timestep(); // return the maximumtinme step of port out
out.get_last_timestep(); // return the previous tinme step of port out

out _ct.get_ct_delay(); /1l return the continuous tinme delay of port out_ct

2.2.2.2 Port initialization

The initial values of TDF ports with a specified delay have to be specified in the member function initialize
of the corresponding TDF module. Example 2.11 shows the initialization of port out, which delay has been
set to 2 samples.

Example 2.11: TDF port initialization

void initialize() // use initialize method of TDM nodule to initialize ports

{
/1 initialize port out (which has a delay attribute of 2)
out.initialize(l1.23); /1 initialize first sanple with value 1.23 or
out.initialize(1.23,0); // initialize first sanple with value 1.23
out.initialize(4.56,1); // initialize second sanple with value 4.56

2.2.2.3 Port read and write access
Samples can be read from a TDF input port by calling its member function read from within the member
function processing of the corresponding TDF module. For a multirate port, the sample index can be passed

as an argument to read.

In the case of a single rate TDF input port, reading from this port is done as follows:
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Example 2.12: Reading a value from a single-rate TDF port

SCA_TDF_MODULE( ny_t df _si nk)
{ sca_tdf::sca_i n<doubl e> in;
SCA CTOR(ny_tdf _sink) : in("in") {}
voi d processing()
{ /1 local variable
doubl e val; // variable to store value read fromport in

val = in.read(); // reading first sanple fromthe input port

}
¥

Consecutive read accesses during the same module activation returns the same value, i.e., the input sample is
not consumed by the read access.

In the case of a multirate TDF input port, reading from this port is done as follows:

Example 2.13: Reading values from a multi-rate TDF port
SCA_TDF_MODULE(my_nmul ti _rate_sink)
{

sca_tdf::sca_i n<doubl e> in;

SCA_CTOR(my_mul ti_rate_sink) : in("in") {}

void set_attributes()

{
}

voi d processing()

{

in.set_rate(2); // two sanples read per nodul e activation

/1 local variable
doubl e val; // variable to store values read fromport in

val = in.read(); // read first sanple
val = in.read(0); // sane nmethod with index for first sanple
val = in.read(1); // sane nmethod with index for second sanple

The rate attribute of the input port defines the number of samples available per module activation. In Example
2.13, the port rate of 2 gives access to 2 samples with respective index 0 and 1. As for single rate ports,
consecutive read accesses during the same module activation return the same value.

Samples can be written to a TDF output port by passing the sample value as argument to the member function
write from within the member function processing of the corresponding TDF module. For a multirate port,
the sample index can be passed along with the sample value as an argument to write.

In the case of a single rate TDF output port, writing to this port is done as shown in Example 2.14.

Example 2.14: Writing a value to a single-rate TDF port
SCA_TDF_MODULE( my_const _sour ce)
sca_t df::sca_out <doubl e> out;

nmy_const _source( sc_core::sc_nodul e_nane, double val_ = 1.0 )
out("out"), val( val_ ) {}

voi d processing()

{
}

out.wite( val ); // wites val as a new sanple to the port out
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private:
doubl e val; // value to be witten to the port out

}i

Consecutive write accesses during the same module evaluation overwrite the sample value, i.e., only the last
written output sample is emitted.

In the case of a multirate TDF output port, writing to this port is done as shown in Example 2.15.

Example 2.15: Writing values to a multi-rate TDF port
SCA_TDF_MODULE(ny_mul ti _rate_const_source)
sca_t df::sca_out <doubl e> out;

my_multi_rate_const_source(sc_core::sc_nodul e_nane, double val _ = 1.0 )
;oout("out"), val( val_) {}

voi d set_attributes()

{

out.set_rate(2); // 2 sanples witten per nodul e activation

}

voi d processing()

{
out.wite(val); /!l wites val as the first sanple to the port out
out.wite(val,0); // wites val as the first sanple to the port out by specifying the index 0
out.wite(val,1); // wites val as the second sanple to the port out by specifying the index 1

}

private:
doubl e val; // value to be witten to the port out

b

The rate attribute of the output port defines the number of samples, which can be written to the port per module
activation. In Example 2.15, the port rate of 2 gives write access to two samples with respective index 0 and 1.
As for single rate ports, consecutive write accesses during the same module activation overwrite the previous
sample value.

Read and write access to SystemC discrete-event signals is done using so called converter ports of
class sca_tdf::sca_de::sca_in<T> or sca_tdf::sca_de::sca_out<T>. The usage of these converter ports is
discussed in Section 2.4.

It is mandatory to write all samples at each module activation, otherwise the values read by the connected
modules are undefined.

2.2.2.4 Port event detection

The TDF converter input port sca_tdf::sca_de::sca_in offers additional member functions for discrete-
event detection and time step changes in the context of a TDF module, by means of the member functions
default_event and value_changed_event. In addition, the member function event is available to check
whether an event has occurred or not.

The specialized ports sca_tdf::sca_de::sca_in<bool> and sca_tdf::sca_de::sca_in<sc_dt::sc_logic> also
support event detection of a positive or negative edge by means of the member functions posedge_event and
negedge_event, respectively. To detect whether the signal made a transition at the positive or negative edge,
the member functions posedge and negedge can be used.

Example 2.16 shows the use of a TDF converter input port to define the next module activation based on a
value change at the connected discrete-event signal of type sc¢_core::sc_signal to this port. It uses the member
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function request_next_activation with the input port inp as argument. In this case, the member function
default_event of the converter port will generate an event as soon as the value changes. Note that the member
function does_attribute _changes should be called in the set_attributes callback, to mark the TDF module
to allow it to make attribute changes.

Example 2.16: TDF module activation and time step follows value change at discrete-event input port

SCA_TDF_MODULE( nmy_event _det ecti on)
{

sca_tdf::sca_de::sca_i n<doubl e> i np;
SCA CTOR(ny_event _detection) {}

void set_attributes()

{

does_attribute_changes();

set _timestep(1.0, sc_core::SC_M);
}

voi d processing()

{

/1 tinme-donain signal processing behavior or algorithm

}

voi d change_attri butes()

{

}
s

request _next _activation(inp);

2.2.2.5 Port and sample time

The member function get_time can only be used after elaboration is finished, i.e., in the TDF module’s member
functions initialize and processing, to obtain the actual time of the requested sample at an input or output
port. In the case where no argument is specified, it returns the time of the first sample, which has been read
from or written to a port. An argument can be passed to this function to specify the sample index, where 0
indicates the first sample.

Example 2.17: Get time of a TDF port

voi d processing()

{

sca_core::sca_tine t;

t
t

out.get _tine(); // return tinme of the first sanple of port out
out.get_time(0); // same nmethod, the first sanple has index O

t =in.get_time(l); // return time of second sanple of port in, with index 1

}

2.2.2.6 Constraints on usage

The TDF port member functions set_timestep, set_delay, and set_rate for TDF converter ports can only be
called in the TDF module member function set_attributes, as this information is required for the elaboration
phase.

The TDF port member functions get_timestep, get delay, get rate and get_time and for TDF converter
ports can only be called after elaboration is finished, i.e., in the TDF module member function initialize or
processing.
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2.2.3 TDF signals

TDF signals are used to connect TDF ports of different primitive TDF modules together. TDF signals carry
the samples of a signal, while TDF ports determine the direction of the signals from one TDF module to
another. TDF signals are declared using the template class sca_tdf::sca_signal<T>. The data type of the signal
is passed as a template argument to this class. For example, a continuous-value signal can be represented by
using the data type double:

Example 2.18: TDF signal
/'l signal declaration within a nodule (e.g sca_tdf::sca_nodule or sc_core::sc_nodul e)

sca_tdf::sca_signal <doubl e> sig; // continuous-val ue signal

Unlike SystemC signals, the TDF signals of the AMS extensions do not provide member functions to directly
read to or write from the channel. Instead, the member functions read and write are defined for TDF input and
TDF output ports, respectively, as already described in Section 2.2.2.

As in SystemC, the constructor initialization of the parent module can be used to assign a user-defined name
to a signal:

Example 2.19: Assigning a name to a TDF signal in the constructor of a module
/1 assign the nane "sig" to a TDF signal instance called sig in the constructor initialization list

SC CTOR(ny_nodul e) : sig("sig") {}

Inside the main program (sc_main) the user-defined name to a signal can be declared in its instantiation:

Example 2.20: Assigning a name to a TDF signal in s¢_main

/1 signal declaration with its nane within the sc_main function
sca_tdf::sca_signal <doubl e> sig("sig"); // continuous-val ue signa

Section 2.3.3 will describe the structural composition of TDF modules in more detail and will show examples
of assigning user-defined names to ports and signals.

2.3 Modeling discrete-time and continuous-time behavior

A TDF module is the basic structural building block for describing discrete-time and continuous-time behavior.
Itis a class that implements a TDF behavioral description, and may not instantiate other modules. TDF modules
act as primitive modules.

2.3.1 Discrete-time modeling

Discrete-time behavior can be defined in the member function processing. In this member function, a pure
algorithmic or procedural description in C++ can be given, which is executed at each module activation. The
module activation time is defined by the module time step, which can be either user-specified with the member
function set_timestep or derived by time step propagation (see Section 2.1.4).

In Figure 2.20, an example is given for a 1 kHz sinusoidal source. By defining a module time step of 0.125ms,
the actual output signal will be oversampled with a factor of §.
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sca_tdf::sca_module sca_tdf:isca_out<T>

Figure 2.20—TDF primitive module implementing a sinusoidal source

The corresponding C++ source code is given in Example 2.21. The constructor has parameters with default
values, which define the amplitude, frequency and sampling period (in this case equal to the module time step)
of the sine wave to be generated by the source. The module time step is usually set in the member function
set_attributes. The sine function sin, which is part of the C++ math library, is used in the member function
processing. To write the samples to the output port, the port member function write is used.

Example 2.21: TDF module of a sinusoidal source
#i nclude <cmath> // for std::sin and MPI
SCA_TDF_MODULE( si n_src)

sca_tdf::sca_out <doubl e> out; // output port

sin_src( sc_core::sc_nmodul e_name nm double anpl_= 1.0, double freq_ = 1.0e3,
sca_core::sca_time Tm = sca_core::sca_tinme(0.125, sc_core::SC M) )

: out("out"), anpl(anpl_), freq(freq ), Tnm(Tm)

{}

void set_attributes()

{
set _timestep(Tm;

}

voi d processing()

{
double t = get_time().to_seconds(); // actual time
out.wite( anpl * std::sin( 2.0 * MPI * freq *t ) );
}

private:
doubl e anpl; // anplitude
double freq; // frequency
sca_core::sca_tine Tm // nodule time step

b

2.3.2 Continuous-time modeling

A TDF module can be used to embed linear dynamic equations in the form of linear transfer functions in
the Laplace domain or state-space equations. Although the TDF model of computation processes the samples
at discrete time steps, the equations of these embedded functions will be solved by considering the input
samples as continuous-time signals. The result of the embedded linear dynamic equations system, which is
also continuous in time and value, is sampled into a signal using a time step which corresponds to the time
step of the port, in which the samples are written.

Figure 2.21 shows the corresponding signal flow when embedding a Laplace transfer function (LTF) in a
TDF module. The input signal represents a sampled step function. This discrete-time signal is interpreted by
the LTF function as a continuous-time signal. The filtered, continuous-time signal is written to the output port.
During this write operation, the continuous-time signal is being sampled into a discrete-time signal using the
output port attributes.

27
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

in Itf input out Itf output

1 ‘ ’ ’ ‘ ‘ " - ™

— >t/ ms t/ms
02 46 810121416 02 46 810121416

Itf input Itf output

Figure 2.21—TDF primitive module embedding a
continuous-time Laplace transfer function (LTF)

2.3.2.1 Laplace transfer functions
A Laplace transfer function (LTF) can be used in the numerator-denominator or zero-pole form.

The class sca_tdf::sca_ltf nd implements a scaled continuous-time linear transfer function of the Laplace-
domain variable s in the numerator-denominator form:

' —
H(s)= k]_V—l—l -e(=s - delay) (2.2)

where £ is the constant gain of the transfer function, M and N are the number of numerator and denominator
coefficients, respectively, and num; and den; are real-valued coefficients of the numerator and denominator,
respectively. The coefficients must be declared as objects of class sca_util::sca_vector with data type double.
The parameter delay is the time continuous delay applied to the values available at the input.

Example 2.22 implements a first-order low-pass filter using the following Laplace transfer function:

H
H(s)=—7""7— (2.3)

where Hj is the DC gain and £, is the filter cut-off frequency in Hz. The filter implementation is using the class
sca_tdf::sca_Itf nd, which instantiates the corresponding equation system. The numerator and denominator
coefficients are calculated from the user-specified gain and cut-off frequency.

Example 2.22: TDF module of a filter using a Laplace transfer function in numerator-denominator form

SCA TDF_MODULE(Itf_nd_filter)

{
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

Itf_nd_filter( sc_core::sc_nodul e_name nm double fc_, double hO_ = 1.0 )
cin("in"), out("out"), fc(fc_), ho(ho_) {}

void initialize()
{
numn( 0)
den(0)
den(1)
}

1.0;
1.0;
1.0/( 2.0 * MPI * fc );

voi d processing()

{
out.wite( Itf_nd( num den, in.read(), hO ) );

}

private:
sca_tdf::sca_ltf_nd I tf_nd; /'l Laplace transfer function
sca_util::sca_vector<doubl e> num den; // numerator and denom nator coefficients
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double fc; // 3dB cut-off frequency in Hz
doubl e hO; // DC gain
L

Example 2.23 shows the same filter, but now implemented as zero-pole description, using the class
sca_tdf::sca_Itf zp.

The class sca_tdf::sca_ltf zp implements a scaled continuous-time linear transfer function of the Laplace-
domain variable s in the zero-pole form:

M-1
i=0

HN*I ol
0 (s — po esl.)

(s — zeros;)

H(s)=k- -e(—s- delay) (2.4)

where £ is the constant gain of the transfer function, M and N are the number of zeros and poles, respectively,
and zeros; and poles; are complex-valued zeros and poles, respectively. If M or N is zero, the corresponding
numerator or denominator term shall be the constant 1. The parameter delay is the time continuous delay
applied to the values available at the input. The resulting numerator and denominator must be real.

The zeros and poles must be declared as objects of class sca_util::sca_vector with a complex data type of
class sca_util::sca_complex.

For a first-order low-pass filter, the zero-pole respresentation becomes:

HO H0277,"fc
H(s)= = 2.
T @3)

This filter does not require any zeros to be defined. The poles and 4-value of the filter are calculated from the
user-defined DC gain Hy and cut-off frequency f..

Example 2.23: TDF module of a filter using a Laplace transfer function in zero-pole form
SCA_TDF_MODULE(I tf_zp_filter)

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

Itf_zp_filter( sc_core::sc_nodul e_name nm double fc_, double hO_ = 1.0 )
in("in"), out("out"), fc(fc_), ho(ho_) {}

void initialize()

{
/1 filter requires no zeros to be defined
pol es(0) = sca_util::sca_conplex( -2.0 * MPI * fc, 0.0 );
k =h0 * 2.0 * MPI * fc;

}

voi d processing()
{
out.wite( Itf_zp( zeros, poles, in.read(), k) );

}

private:

double k; // filter gain

sca_tdf::sca_ltf_zp Itf_zp; // Laplace transfer function
sca_util::sca_vector<sca_util::sca_conplex > poles, zeros; // poles and zeros as conpl ex val ues
double fc; // 3dB cut-off frequency in Hz

doubl e hO; // DC gain
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The numerator and denominator coefficients or zero-pole values do not need to be static. Their values may
change during simulation.

2.3.2.2 State-space equations

The class sca_tdf::sca_ss implements a continuous-time system, which behavior is defined by the following
state-space equations:

d
Z(tt) =A-s(t)+B-x(t — delay)

() =C-s(t)+D-x(t — delay)

(2.6)

where s(¢) is the state vector, x(¢) is the input vector, and y(¢) is the output vector. The parameter delay is the
time continuous delay applied to the values available at the input. A, B, C, and D are matrices having the
following characteristics:

— A is a n-by-n matrix, where n is the number of states.
— B is a n-by-m matrix, where m is the number of inputs.
— Cis a r-by-n matrix, where r is the number of outputs.

— D is a r-by-m matrix.
The matrices A, B, C, and D must be declared as objects of class sca_util::sca_matrix with data type double.

Example 2.24 shows the same low-pass filter, but now implemented as state-space equation, using the class
sca_tdf::sca_ss.

Example 2.24: TDF module of a low-pass filter using a state-space equation
SCA_TDF_MODULE( st at espace_eqn)

sca_tdf::sca_i n<doubl e> in;
sca_t df::sca_out <doubl e> out;

st at espace_eqn( sc_core::sc_nodul e_name nm double fc_, double hO_ =1.0)
in("in"), out("out"), fc(fc_), hO(h0o_) {}

void initialize()
{
doubl e r_val = 1e3;
=1.0

doubl e c_val / (2.0* MPI * fc * r_val);

a(0,0) = -1.0/ ( c_val * r_val );
b(0,0) = 1.0/ r_val;

c(0,0) = h0/ c_val;

d(0,0) = 0.0;

}

voi d processing()

{
sca_util::sca_vector<doubl e> x;
x(0) =in.read();

sca_util::sca_vector<double>y = state_spacel( a, b, ¢, d, s, x );
out.wite(y(0));
}

private:
sca_tdf::sca_ss state_spacel; /] state-space equation
sca_util::sca_matri x<double> a, b, c, d; // state-space matrices
sca_util::sca_vector<doubl e> s; /] state vector

double fc; // 3dB cut-off frequency in Hz
doubl e hO; // DC gain

30
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

2.3.2.3 Using the state vector

If a coefficient (thus a parameter) in a Laplace transfer function or state-space equation has
changed, the corresponding equation system will be reinitialized. A user-defined vector of class
sca_util::sca_vector<double> can be used to store the state of the equation system. If not specified, an internal
state vector is used, which is not accessible to the user. The user-defined state vector is not changed during
reinitialization, but only the default internal state is reset to zero. A user defined state vector will keep the state
values during re-initialization. Additionally, this allows the creation of filters with different parameters, e.g.,
to realize a switch with different cut-off frequencies, by defining multiple LTF instances using the same state
vector, which prevents time consuming repeatedly re-initializations of the equation system. The behavior after
a coefficient change and thus the state vector interpretation is for the Laplace transfer functions implementation
defined and for the state-space system given by the equations. Example 2.25 shows how to model such a switch.

Example 2.25: TDF module showing the use of the state vector

SCA_TDF_MODULE( ! tf_switch)
{
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;
sca_tdf::sca_de::sca_in<bool> fc_high; // control signal fromthe discrete-event domain

Itf_switch( sc_core::sc_npdul e_name nm double fcO_, double fcl_, double hO_ = 1.0 )
in("in"), out("out"), fc_high("fc_high"), fcO(fcO_), fcil(fcl_), hOo(hO_) {}

void initialize()

{

num(0) = 1.0;

den0(0) = den1(0) = 1.0;

den0(1) = 1.0/( 2.0 * MPI * fc0 );
denl(1) = 1.0/( 2.0 * MPI * fcl);

}

voi d processing() o

if ( fc_high.read() )
out.wite( Itf1( num denl, state, in.read(), hO ) );
el se
out.wite( ItfO( num denO, state, in.read(), hO ) );
}

private:
sca_tdf::sca_ltf_nd ItfO, I1tf1;
sca_util::sca_vector<doubl e> num den0O, denil;
sca_util::sca_vector<doubl e> state; (2]
doubl e fcO, fcil;
doubl e hO;

H

(1] The user-defined state vector is kept constant during reinitalization of the LTF function.

(2] Declaration of user-defined state vector to store the state of the system during reinitalization of the

LTF function.
2.3.2.4 Using Laplace transfer functions or state-space equations in multirate applications

The Laplace transfer functions or state-space equation examples shown so far use the read method of an input
port to retrieve a single value, and use the write method to write a single value to an output port.

Laplace transfer function or state-space equations can also be embedded in multirate applications, where, for
example, the input signal has a higher rate than the output signal, as shown in Figure 2.22. In this example,
the TDF module needs to read two input values at each module activation, which then need to be passed to
the embedded function.
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Figure 2.22—Laplace transfer function used for combined filtering and decimation

In order to pass all available samples at the input port directly to the LTF function, not the values, but the
reference to the port itself is passed as argument to the LTF function, as shown in Example 2.26.

Example 2.26: TDF module implementing a low-pass filter with multi-rate input port

SCA_TDF_MODULE(Itf_nultirate_filter)
{
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

tf_multirate_filter( sc_core::sc_nmodul e_name nm double fc_, double hO_ = 1.0 )
cin("in"), out("out"), fc(fc_), ho(ho ) {}

set_attributes()

{
set _timestep(2.0, sc_core::SC M);
in.set_rate(2);

}

void initialize()
{
nun( 0)
den(0)
den(1)
}

1.0;
1.0;
1.0/( 2.0 * MPI * fc);

voi d processing()
{

out.wite( filter( num den, in, ho) );: @
}

private:

sca_tdf::sca_ltf_nd filter;
sca_util::sca_vector<doubl e> num den;
doubl e fc;

doubl e hO;

o The argument in directly passes the reference to the input port to the LTF function. Note that in the
previous cases, the input port member read is used, which returns a value of type double, which is
passed to the LTF function.

In a similar way, TDF modules with embedded Laplace transfer functions or state-space equations can be
designed using output ports with a rate higher than 1. Writing multiple samples to an output port is facilitated
by the port write method, which can access the continuous-time values from a Laplace transfer or state-space
function, and write the complete set of output samples to an output port. There is no different language construct
needed to make use of this feature.

Special care has to be taken in the case where the number of output samples is higher than the number of input
samples. For example, in a TDF module with an output port rate of 3 and an input port rate of 2, there is 1
sample missing at the first module activation to write the required samples (3) to the output. To resolve this,
a time continuous delay to the input signal should be specified as additional parameter delay, which is one
of the function parameters.
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2.3.3 Structural composition of TDF modules

The way that TDF modules are instantiated and interconnected to form a TDF cluster does not differ from
regular SystemC modules. They can be instantiated as child modules inside a regular SystemC parent module
created with the help of the macro SC_MODULE or by deriving publicly from sc_core::sc_module. This
parent module also instantiates all necessary ports to communicate with the outside world and internal signals
for the interconnection of the child modules. The parameterization of the instantiated modules as well as the
interconnection of the modules should be done in the constructor (e.g., created with the help of the macro
SC_CTOR) of the parent SystemC module. The instantiation and interconnection of TDF modules on the top-
level inside sc_main is done in the same way.

2.3.3.1 Port binding

In order to connect TDF modules in a proper way to other TDF modules and signals, or even with regular
SystemC modules and signals, the following specific bindings are possible, as illustrated in Figure 2.23 and
Figure 2.24. The port binding rules are compatible and complementary to the SystemC rules.

Port-to-port Port-to-port
binding binding

out

TDF input port TDF output port

Instance of class Instance of class
sca_tdf:isca_in<T> / / sca_tdf:isca_out<T>
SystemC parent module TDF signal Port-to-port binding
Object of class Instance of class
sc_core::sc_module sca_tdf::sca_signal<T>

Figure 2.23—Port binding rules for TDF input and output ports

sc_sig1 sc_sig2
seunsP[]lin E out[Jussuss | _ Discrete-event signal

. . Instance of class
Port-to-port - . sc_core::sc_signal<T>
binding . :

oOr (6
- - Port-to-port
i | — binding

in

Discrete-event
input port
Instance of class
sc_core::sc_in<T>

Discrete-event
output port
Instance of class
sc_core::sc_out<T>

/ / /

TDF input converter port Port-to-port TDF output converter port
Instance of class binding Instance of class
sca_tdf::sca_de::sca_in<T> sca_tdf::sca_de::sca_out<T>

Figure 2.24—Port binding for TDF input and output converter ports

(1] Binding a TDF input port to a TDF signal.
(2] Binding a TDF input port to a TDF input port of the parent module (port-to-port binding).
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Binding a TDF input port to a TDF output port of the parent module (port-to-port binding).

Binding a TDF output port to a TDF signal.

Binding a TDF output port to a TDF output port of the parent module (port-to-port binding).
Binding a TDF input converter port to a discrete-event input signal.

Binding a TDF input converter port to a discrete-event input port of the parent module (port-to-port
binding).

Binding a TDF input converter port to a discrete-event output port of the parent module (port-to-port
binding).

Binding a TDF output converter port to a discrete-event output signal.

Binding a TDF output converter port to a discrete-event output port of the parent module (port-to-
port binding).

Furthermore, a TDF input port or TDF output port should be bound to exactly one TDF signal throughout the
whole hierarchy. A TDF signal should be bound to exactly one TDF output port of a primitive TDF module,
and may be bound to TDF input ports of primitive modules throughout the whole hierarchy. This is shown

in Figure 2.25.

Module D
Module B
in out| out
in  B1 out in B2 out
Module A
in out
in A1 out in A2 out
Module C
in out| out
in C1 out in C2 out

Figure 2.25—Port binding in a module hierarchy

Example 2.27 shows the implementation of the structural composition of Figure 2.23.

Example 2.27: Structural composition of TDF modules in a SystemC hierarchical module

SC_MODULE( my_structural _nodul e)
{

sca_tdf::sca_i n<doubl e> in; (1)
sca_t df::sca_out <doubl e> out;

nod_a a; (2]
nod_b b;

SC_CTOR(ny_structural _nodul e)
cin("in"), out("out"), a("a"), b("b"), sig("sig") (3]

{

a

Q

a

b
b

}

.inl(in); @
.in2(out);
.out(sig);

.in(sig);
.out (out);

private:

sca_tdf::sca_signal <doubl e> sig; (5]

}
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The TDF input and output ports declared inside this module of class sc_core::sc_module become
part of the structural composition.

The child TDF modules are declared within the parent module. The declaration of these child modules
should be known prior to the declaration in this context, e.g., by including them via their header files.
The initialization-list in the parent module’s constructor propagates the necessary configuration
parameters to the TDF ports, TDF signals, and child modules.

Port binding is done inside the constructor.

Internal TDF signals are used to connect the TDF ports and child modules. These signal are declared
to be private, as they should not be accessible from outside the module.

6 o o o

Example 2.28 shows the implementation of the structural composition of Figure 2.24.

Example 2.28: Structural composition of mixed TDF and SystemC modules
SC_MODULE( my_mi xed_nodul e)

sc_core::sc_in<doubl e> in;
sc_core::sc_out<doubl e> out;

nod_c c¢; // TDF primitive nodul e
nod_d d; // TDF primitive nodul e
nod_e e; // SystenC nodul e

SC_CTOR(ny_ni xed_nodul e)

cin("in"), out("out"), c("c"), d("d"), e("e"),
sig("sig"), sc_sigl("sc_sigl"), sc_sig2("sc_sig2")

{
c.inl(in);
c.in2(out);
c.out1(sc_sigl);
c.out2(sig);

.inl(sig);

.in2(sc_sig2);

.out (out);

o QO o

o

.in(sc_sigl);
.out(sc_sig2);

o

}

private:
sca_tdf::sca_signal <doubl e> sig;
sc_core::sc_signal <bool > sc_sigl;
sc_core::sc_signal <bool > sc_sig2;

¥
2.3.4 Multirate behavior

To implement multirate behavior in a TDF module, the TDF port member function set_rate can be used. As
shown in Figure 2.26 and Example 2.29, the rate of the output port is set to 2. For each module activation,
one sample is read from the input port, and two samples are written to the output port. This results in an
oversampled signal at the output, with a rate equal to the rate of the output port.

out

t/us
0 1020 3040 50 60 70 80 90

Figure 2.26—Multirate example: 2 times oversampling by inserting zeros

As already discussed in Section 2.1.4, the time step of the TDF input port, output port and module should
be consistent. As the module time step is set to 20 ps (Tm:20us), with an input port rate of 1, the samples at
the input port are read each 20 ps. The samples at the output port are written with a time step of 10 ps. This
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example inserts zeros for the additional samples, but other methods like linear interpolation or sample-and-
hold could be implemented as well.

Example 2.29: TDF module performing interpolation
SCA_TDF_MODULE(ny_tdf _interp) {

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

SCA _CTOR(ny_tdf _interp) : in("in"), out("out") {}

void set_attributes()

{
set _tinmestep(20.0, sc_core::SC_US);
out.set_rate(2);

}

voi d processing()

{

out.wite( in.read() ); // input sanple directly fed to the output
out.wite( 0.0, 1); /'l insert zero as 2nd sanple

}
¥

Figure 2.27 and Example 2.30 show the example, which performs decimation of the input signal, as the rate
of the input port is higher than the rate of the output port.

in

tlettetly

0 1020 30 40 50 60 70 80 90

> t/us

Figure 2.27—Multirate example: Downsampling by a factor of 2

Example 2.30: TDF module performing decimation

SCA_TDF_MODULE(ny_t df _deci m)
{

sca_tdf::sca_i n<doubl e> in;
sca_t df::sca_out <doubl e> out;

SCA _CTOR(ny_tdf _decim) : in("in"), out("out") {}

voi d set_attributes()

{
set _tinmestep(20.0, sc_core::SC_US);
in.set_rate(2);

}

voi d processing()

{

out.wite( in.read() ); // only wite the first sanple and neglect the second one

}
}

2.3.5 Introducing delays

Section 2.1.3 explained the cases when delays are essential in a TDF model. The introduction of delays in a
TDF cluster will result in inserted samples at the beginning of the sampled TDF signals. The inserted samples
are of the same value type as used by the TDF port and signal. As the initial value for a regular C++ data
type is undefined, and thus the value of the inserted sample is undefined, it is recommended to initialize these
delay samples.
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Figure 2.28 shows a basic TDF module, in which a delay of one sample is introduced at the output port.

out

my_tdf_delay {»
1l out
I/ \\ ° ] I T ]

T
Delay.”~0-" 20 40 60 80 100
sample

>t/ s

Figure 2.28—TDF module introducing a delay of one sample

The implementation of this delay is given in Example 2.31. It can be seen in the code, that the delay value is
also initialized with a default value of 1.1.

Example 2.31: TDF module with one sample delay at it output port
SCA_TDF_MODULE( ny_t df _del ay) {

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

SCA CTOR(ny_tdf _delay) : in("in"), out("out") {}

void set_attributes()

{
set _timestep(20.0, sc_core::SC_US);
out.set_del ay(1);

}

void initialize()

{

out.initialize(l.1);

}

voi d processing()

{

out.wite( in.read() ); // directly wite the input sanple to the output (incl the del ay)
}
b

2.4 Interaction between TDF and discrete-event domain

As explained in Section 2.1, the TDF model of computation has its own mechanisms for time annotation, which
could result in time differences between the local time of each TDF module and the time in the discrete-event
domain (SystemC kernel time). Therefore, special care should be taken in synchronizing TDF signals with the
discrete-event domain of SystemC in both directions (i.e., reading from and writing to discrete-event signals).

To maintain a high simulation efficiency despite the presence of TDF and discrete-event domain interactions,
a loosely-coupled synchronization mechanism can be used, which is called data synchronization. In the case
of data synchronization, the time at which the discrete events occur will not be used for the activation and
execution of TDF modules. Alternatively, the dynamic TDF features now also allow time synchronization,
where the activation of TDF modules is driven by the discrete events. Both scenarios are explained in this
section.

2.4.1 Reading from the discrete-event domain

To read from a channel coming from the discrete-event domain, a TDF input converter port of
class sca_tdf::sca_de::sca_in<T> has to be used, see Figure 2.29. For convenience, the shorter name
sca_tdf::sc_in<T> can be used, which class name sc¢_in indicates the interface to the SystemC discrete-event
domain. When applying data synchronization, the availability of a discrete-event signal at the TDF input
converter ports will not activate (‘fire’) module execution. Instead, the TDF module activation order (schedule)
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is determined independently at its individual port time step in accordance with the converter port rate and the
TDF module time step.

A converter input port will read the value from the bound interface of type sc_core::sc_signal_in_if<T> using
the member function read during the first delta cycle of the corresponding time. A converter output port will
write the value to the bound interface of type sc_core::sc_signal inout if<T> using the member function
write in the first delta cycle of the corresponding time. In the case a channel of type sc_core::sc_signal<T>
(which implements the sc_core::sc_signal_in_if<T>and sc_core::sc_signal_inout_if<T> interfaces) is used,
the new value written by a converter output port will be read in the second delta cycle of the corresponding
time step following the evaluate-update paradigm of SystemC. Thus, if a converter output port is connected to
a converter input port by using a channel of type sc_core::sc_signal<T>, a delay of one time step will occur,
as the converter input port will read the value in the first delta cycle of the corresponding time and the new
value will be available in the second delta cycle.

Example 2.32 shows the data synchronization concept by using one TDF module, which reads the values from
the discrete-event for further TDF signal processing and writes them to a TDF output port each millisecond.

. Discrete-event signal TDF signal
NP Instance of class sc_core::sc_signal<T> out  |nstance of class sca_tdf::sca_signal<T>
my_de2tdf
ﬂ out
r | | [Tl fee I T
e, ee, e e e  event Im:1ms 0 345678091011 oM

0.0 3238 60 82 106 ty/ms

TDF input converter port  TDF output port
Instance of class Instance of class
sca_tdf::sca_de::sca_in<T> sca_tdf::sca_out<T>

Figure 2.29—TDF module converting discrete-
event signal to TDF signal using data synchronization

Example 2.32: TDF module reading values from the SystemC (discrete-event) domain
SCA_TDF_MODULE( my_de2t df )
{

sca_tdf::sca_de::sca_in<double> inp; // TDF input converter port

sca_tdf::sca_out <doubl e> out; /1 TDF output port

SCA_CTOR(ny_de2tdf) : inp("inp"), out("out") {}

void set_attributes()

{
}

voi d processing()

{

}
¥

set _tinmestep(1.0, sc_core::SC_MS);

out.wite( inp.read() );

A conversion from the discrete-event and TDF domain using time synchronization is shown in
Example 2.33 . The member function change_attributes is used, which embeds the member function
request_next_activation to act upon a signal change. The argument of this member function uses the
default_event mechanism of the converter port to detect the signal change, which is used to set the next module
activation. In the case where the elapsed time becomes equal to the maximum time step, because the signal
from the SystemC discrete-event domain has not changed, the next module activation is equal to the maximum
time step. The maximum time step is defined in the set_attributes callback. As this module makes changes to
the TDF attributes during simulation, it should explicitly call the member function does_attribute_changes.
Calling request_next_activation overrules the time step setting defined by member function set_timestep
until the next activation, however, not the maximum time step defined by member function set_max_timestep.
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. Discrete-event signal TDF signal
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TDF input converter port  TDF output port
Instance of class Instance of class
sca_tdf::sca_de::sca_in<T> sca_tdf::sca_out<T>
Figure 2.30—TDF module converting discrete-
event signal to TDF signal using time synchronization

Example 2.33: TDF module reading values and synchronizing the time step with the incoming event
SCA_TDF_MODULE( my_de2t df _dynani c)

sca_tdf::sca_de::sca_in<double> inp; // TDF input converter port
sca_tdf::sca_out <doubl e> out; /| TDF output port

SCA_CTOR(ny_de2tdf _dynanic) : inp("inp"), out("out") {}

void set_attributes()

{
does_attri bute_changes();
set _tinmestep(1.0, sc_core::SC_MS);
set _max_tinmestep(1l.0, sc_core::SC MS);

}

voi d processing()

{

out.wite( inp.read() );

}

voi d change_attributes()

{

request _next_activation(inp.default_event()); // next activation when control signal changes
}
E;

2.4.2 Writing to the discrete-event domain

To write to a channel in the discrete-event domain, a TDF output converter port of class
sca_tdf::sca_de::sca_out<T> should be used, see Figure 2.31. For convenience, the shorter name
sca_tdf::sc_out<T> can be used, which class name sc_out directly indicates the interface to the SystemC
discrete-event domain. The time step assigned to the output converter port defines at which time point and
time interval a value is written to the discrete-event domain.

A converter output port will write a value to the bound interface of type sc_core::sc_signal_inout_if<T>
using the member function write in the first delta cycle of the corresponding time. If the converter output port
is bound to a channel of class sc_core::sc_signal<T>, there is only an event generated in case of a signal
change, as indicated with the events e, e, and e;. If the converter output port is bound to a channel of class
sc_core::sc_buffer<T>, all samples written to the port will generate an event, as indicated with the additional
samples e;;, e;2, e;3, etc.
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Figure 2.31—TDF module with a converter port as output

Example 2.34 shows the implementation of a TDF module, which writes samples to the discrete-event domain.

Example 2.34: TDF module writing values to the SystemC (discrete-event) domain

SCA_TDF_MODULE( ny_t df 2de)
{

sca_tdf::sca_i n<doubl e> in; /1 TDF input port
sca_tdf::sca_de::sca_out<doubl e> outp; // TDF output converter port

SCA CTOR(ny_tdf2de) : in("in"), outp("outp") {}

void set_attributes()

{
set _timestep(1.0, sc_core::SC M);
}

voi d processing()

{

outp.wite( in.read() );
}
b

2.4.3 Using discrete-event control signals

Example 2.35 shows a simple digitally controlled gain amplifier, in which the gain is defined by an external
control signal from the discrete-event domain. The execution frequency of the member function processing is
defined by the module time step, which is set to 1 ms. Each time the processing function is called, the control
signal from the discrete-event domain is read.

TDF input signal
Instance of class sca_tdf::sca_signal<T>

high_gain_state

101214 16
t/ ms

high_gain_state

out

true (1) I
I 1#5

false (0) 7 1
0 7

> t/ms

TDF output signal
Instance of class sca_tdf::sca_signal<T>

out

101214 16
t/ms

Discrete-event signal
Instance of class sc_core::sc_signal<bool>

Figure 2.32—TDF module with a converter port used as control input
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Example 2.35: Digitally controlled gain amplifier with discrete-event control input

SCA_TDF_MODULE( ny_dga)

{
sca_tdf::sca_i n<doubl e> in, // input port
sca_tdf::sca_out <doubl e> out; // output port

/1 control signal fromthe discrete-event donain
sca_tdf::sca_de::sca_i n<bool > high_gain_state; // input converter port

SCA_CTOR(ny_dga)
in("in"), out("out"), high_gain_state("high_gain_state"),
hi gh_gai n(100.0), low gain(1.0) {}

void set_attributes()

{
set _timestep(1.0, sc_core::SC_M);

}
voi d processing()

doubl e gain = high_gain_state.read() ? high_gain : |ow_gain;
out.wite( gain * in.read() );

}

private:
doubl e hi gh_gain, |ow_ gain;

b

In Example 2.35, the value of the control signal was read during the processing callback each millisecond,
which means that the exact time of a control signal change gets lost. When using the dynamic TDF features, the
time at which the digital control signal changes can be used to activate the member function processing in the
TDF module. For this, the member function change_attributes is introduced, in which the member function
request next_activation is used to act upon a signal change (caused by an event) at the converter input port
and use the time at which the event occurred for the next module activation. Furthermore, the TDF module
should explicitly define that it will change attributes, by calling the member function does_attribute changes
in the set_attributes callback.

In order to allow changing attributes caused by other TDF modules in the same cluster, the member function
accept_attribute_changes is called in the same callback. The member function set_max_timestep is essential
to guarantee that the module time step does not become greater than 1 ms. Example 2.36 shows the digitally
controlled gain amplifier using the dynamic TDF execution semantics.

Example 2.36: Digitally controlled gain amplifier with time step synchronization

SCA_TDF_MODULE( ny_dga_dynani c)

{
sca_tdf::sca_in<double> in; // input port
sca_tdf::sca_out <doubl e> out; // output port

I/ control signal fromthe discrete-event domain
sca_tdf::sca_de::sca_i n<bool > high_gain_state; // input converter port

SCA_CTOR(nmy_dga_dynami c)
in("in"), out("out"), high_gain_state("high_gain_state"),
hi gh_gai n(100.0), low gain(1.0) {}

void set_attributes()

{

accept _attribute_changes(); /1 nodul e accepts changing attribute
I caused by other TDF nodul es

does_at tri bute_changes(); /1 nodul e actively changes attributes

set _tinmestep(1.0, sc_core::SC_MS);

set _max_tinmestep(1l.0, sc_core::SC MS); // bound maxi mumtinme step to 1ns

}

voi d processing()

{
doubl e gain = high_gain_state.read() ? high_gain : |ow_gain;
out.wite( gain * in.read() );
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voi d change_attributes()

{

request _next_activation(high_gain_state); // next nodul e activation when control signal changes

}

private:

}i

doubl e high_gain, |ow gain;

2.5 TDF execution semantics

In addition to the elaboration and simulation phases as defined in SystemC language standard IEEE Std.
1666-2011, specific functionality is implemented for the elaboration and execution of TDF models. The
essential TDF module member functions for time-domain simulation are set_attributes, initialize, processing,
change_attributes, and reinitialize. A user should override these member functions to implement the actual
behavior of the TDF modules. It is not allowed to call these member functions directly.

As depicted in Figure 2.33, the elaboration phase includes the following steps:

TDF module attribute settings: Execute the (optional) member function set_attributes of all
TDF modules.

TDF time step calculation and propagation: Propagate and calculate unassigned port and module time
steps based on the assigned time steps and port rates. (see Section 2.1.4).

TDF cluster computability check: Define and check the cluster schedule.

The steps for the simulation phase are:

TDF module initialization: Execute the (optional) member function initialize of all TDF modules. Prior
to the execution of this member function, the simulation time advances using the calculated time step.

TDF module activation and processing: Execute the member function processing of all TDF modules
which belong to the same cluster.

Change TDF module attribute settings.: Execute the (optional) member functions change_attributes
of all TDF modules. These member functions are called at the end of the cluster execution period.

TDF time step calculation and propagation: Again propagate and calculate unassigned port and module
time steps based on the assigned time steps and port rates, because they could have changed in the
change_attributes callback.

TDF cluster computability check: Again check the cluster schedule after potential attribute changes
made in the change_attributes callback.

TDF module reinitialization: Execute the (optional) member function reinitialize of all TDF modules.
Prior to the execution of this member function, the simulation time advances using the calculated time
step.
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TDF module attribute settings:
Execute all set_attributes member functions

!

TDF time step calculation and propagation:
Define time step and check their consistency

!

TDF cluster computability check:
Define and check the cluster schedule

v

TDF module initialization:
Execute all initialize member functions once

!

N TDF module activation and processing:
Execute all processing member functions

!

Change TDF module attribute settings:
Execute all change_attributes member functions

i > TDF simulation phase

TDF time step calculation and propagation:
Define time step and check their consistency

!

TDF cluster computability check:
Define and check the cluster schedule

'

TDF module reinitialization:
Execute all reinitialize member functions once )

> TDF elaboration phase

Figure 2.33—TDF elaboration and simulation phases

The elaboration and simulation phases are executed by starting a time-domain simulation using the function
sc_core::sc_start. This is explained in Section 6.1.1. As soon as the simulation time is equal to the specified
time, which is defined as argument in the function sc_core::sc_start, the function will return. A call to
the function se_core::sc_stop will finish the simulation. When the function sc_core::sc_stop is called, the
callback end_of simulation of all TDF modules is executed. Note that these functions and callback are not
part of the SystemC AMS extensions, but are inherited from the SystemC module base class.
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3. Linear Signal Flow modeling

3.1 Modeling fundamentals

The Linear Signal Flow model of computation allows the modeling of AMS behavior defined as relations
between variables of a set of linear differential algebraic equations. LSF is a continuous-time modeling style
using directed real-valued signals, resulting in a non-conservative system description representing the equation
system. There is no dependency between flow and potential quantities; instead only one real-value quantity
is used to represent each signal.

Signal flow models can be described in a block diagram notation. The elementary parts or functions are
represented by blocks. Signals are used to interconnect these blocks. The resulting relations between the blocks
define equivalent mathematical equations. Figure 3.1 shows an example of such a signal flow block diagram,
composed of four LSF modules, which are interconnected using LSF signals. Note that the addition ‘operator’,
although having a different graphical representation, is also an LSF module. An LSF model is composed of a
set of connected LSF modules, which will form together an LSF equation system or LSF cluster. The resulting
LSF model has input and output LSF ports to connect it with other modules.

LSF port LSF module LSF signal LSFjequation system

x(t) ()

Figure 3.1—Example of a basic LSF model composed of 4 LSF modules
3.1.1 Setup of the LSF equation system

The SystemC AMS extensions offer a finite set of predefined LSF primitive modules implementing functions
such as addition, multiplication, integration, etc. Unlike the TDF modeling style, LSF models can only be
composed from these primitives. The AMS extensions do not offer the possibility to implement user-defined
LSF primitives. Instead, the mathematical equations describing the intended functionality should be created
by composing the predefined set of LSF primitive modules. Figure 3.2 shows some basic examples of LSF
primitives and their corresponding mathematical equations.
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YO =k, x (1) + k, x,(0) x,(1) > (1) =k, x,() — k, x (1)

e

2

x,(8) x,(5)
a) Weighted addition (add) b) Weighted subtraction (sub)
B k|l d L dx()
X(f) =—l p— () =k x(2) X(1) m— E —> )=k —
c¢) Multiplication (gain) d) Scaled first-order time derivative (dot)

Figure 3.2—Examples of some basic LSF primitives
and their corresponding mathematical equations

When creating an LSF model (block diagram), the mathematical equations for each block and their
interconnection will be used to compose the overall equation system. For example, the LSF model presented
in Figure 3.1 will result in the following equation system based on the contributed equations of each primitive
as shown in Figure 3.2:

Note that the scale coefficients of the addition and the first-order time derivative block are set to 1. Instead,
additional multiplication blocks £/ and k2 are used for this example.

3.1.2 Time step assignment and propagation

Similar as for a TDF module, a time step can be assigned to an LSF module directly or can be assigned
automatically using the propagation mechanism of the time step within an LSF cluster. In the case where an
LSF model is connected to a TDF model, the time step from the connected TDF port(s) is propagated to the
LSF model. Consistency between locally defined LSF module time step and propagated time step is essential.
Otherwise, the time points for the solution of the LSF equation system or communication with the connected
TDF model cannot be defined properly (see also Section 2.1.4). The time step should be defined at least at
one location in the entire system.

During simulation, the LSF equation system is solved numerically with appropriate time steps, which could

be less than the assigned time step. The solver will at least provide results at the time points calculated from
the assigned time steps.

3.2 Language constructs
3.2.1 LSF modules
A Linear Signal Flow module is a predefined primitive module to represent a particular function or

mathematical relation, which will become part of an overall equation system. The available predefined LSF
primitive modules are listed in Table 3.1. Annex A gives the details for each LSF module.

Table 3.1—LSF primitive modules

LSF module name Description
sca_lsf::sca_add Weighted addition of two LSF signals.
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LSF module name

Description

sca_lsf::sca_sub

Weighted subtraction of two LSF signals.

sca_lsf::sca_gain

Multiplication of an LSF signal by a constant gain.

sca_lsf::sca_dot

Scaled first-order time derivative of an LSF signal.

sca_lsf::sca_integ

Scaled time-domain integration of an LSF signal.

sca_lsf::sca_delay

Scaled time-delayed version of an LSF signal.

sca_lsf::sca_source

LSF source.

sca_lsf::sca_Itf nd

Scaled Laplace transfer function in the time-domain in the numerator-
denominator form.

sca_lsf::sca_Itf zp

Scaled Laplace transfer function in the time-domain in the zero-pole
form.

sca_lsf::sca_ss

Single-input single-output state-space equation.

sca_lsf::sca_tdf::sca_gain,
sca_lsf::sca_tdf gain

Scaled multiplication of a TDF input signal with an LSF input signal.

sca_lsf::sca_tdf::sca_source,
sca_lsf::sca_tdf source

Scaled conversion of a TDF input signal to an LSF output signal.

sca_lsf::sca_tdf::sca_sink,
sca_Isf::sca_tdf sink

Scaled conversion from an LSF input signal to a TDF output signal.

sca_lsf::sca_tdf::sca_mux,
sca_lsf::sca_tdf mux

Selection of one of two LSF input signals by a TDF control signal
(multiplexer).

sca_lsf::sca_tdf::sca_demux,
sca_lsf::sca_tdf demux

Routing of an LSF input signal to either one of two LSF output signals
controlled by a TDF signal (demultiplexer).

sca_lsf::sca_de::sca_gain,
sca_lsf::sca_de_gain

Scaled multiplication of a discrete-event input signal by an LSF input
signal.

sca_lsf::sca_de::sca_source,
sca_lsf::sca_de_source

Scaled conversion of a discrete-event input signal to an LSF output
signal.

sca_lsf::sca_de::sca_sink,
sca_lsf::sca_de_sink

Scaled conversion from an LSF input signal to a discrete-event output
signal.

sca_lsf::sca_de::sca_mux,
sca_lIsf::sca_de_mux

Selection of one of two LSF input signals by a discrete-event control
signal (multiplexer).

sca_lsf::sca_de::sca_demux,
sca_lsf::sca_de_demux

Routing of an LSF input signal to either one of two LSF output signals
controlled by a discrete-event signal (demultiplexer).

3.2.1.1 Module time step

In order to solve the LSF equation system, a time step has to be associated to the set of connected LSF modules
as part of the elaboration phase. This can be done with the LSF module member function set_timestep.
Alternatively, the LSF model can rely on the time step propagation mechanism, which passes the time step
from module to module via its ports across the TDF, LSF, and ELN models of computation. So in the case
where an LSF model is connected to a TDF model, the time step from the connected port, if available, is
propagated to the LSF model. The consistency between propagated time steps and user-defined time steps is
compulsory, as described in Section 2.1.4.

The module time step can be assigned by calling the member function set_timestep of the instantiated object
within the constructor of the parent module, and passing a double value and the time unit or an object of type
sca_core::sca_time, as shown in Example 3.1.

Example 3.1: SystemC hierarchical module instantiating an LSF source with time step assignment

SC_MODULE( ny_| sf _source)

/1 port declaration
sca_l sf::sca_out vy;
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/1 child nodul e decl aration
sca_l sf::sca_source src;

SC _CTOR(ny_| sf _source)
Sy(ty"),

src("src", 0.0, 0.0, 1.0e-3, 1.0e3) /1 1 kHz sinusoidal source with an anplitude of 1le-3
{

src.set_tinmestep(0.5, sc_core::SC MS); // set nodule time step of source to 0.5 ns
src.y(y);

3.2.2 LSF ports

An LSF port is an object that can be used to connect several LSF models together using LSF signals which
are bound to this port. Due to the nature of the LSF modeling formalism, an LSF port can be either an input
port or an output port, but not inout. LSF ports are used to connect LSF modules using signals of class
sca_Isf::sca_signal. As LSF ports are always hierarchical ports inside a parent module, they can be used to
connect to the LSF child modules directly, following the port-to-port binding rule (see Section 3.3.1). LSF
ports have a predefined data type, also called signal flow nature, which prevents the usage of user-defined
data types.

There are currently two classes of LSF ports:
— LSF input ports of class sca_lIsf::sca_in.

— LSF output ports of class sca_lsf::sca_out.

Example 3.2 shows how LSF ports are used within an LSF structural model.

Example 3.2: LSF structural model with ports
SC_MODULE( ny_| sf _nodel )
{

/'l port declarations
sca_lsf::sca_in x; (1]
sca_| sf::sca_out y; (2]

SC_CTOR(ny_I sf _model ) : x("x"), y("y") ©
{

/1 LSF primtives instantiated here

}

(1] LSF input port that carries a continuous-time and continuous-value signal x(¢).

(2] LSF output port that carries a continuous-time and continuous-value signal y(?).

(3] Using the constructor initialization-list to assign the names “x” and “y” to the input and output ports,
respectively.

There are no converter ports available for LSF. Instead, specialized converter modules are provided to connect
to the TDF or discrete-event domain. This is explained in Section 3.4. Unlike TDF ports, the LSF ports do not
provide member functions to directly read to or write from the channel.

3.2.3 LSF signals

LSF signals are used to connect LSF primitive modules together. LSF signals represent a variable of the time
and value continuous equation system, while LSF ports determine the direction of the signals from one LSF
module to another. Therefore, the LSF signals are not defined as a template class and should be used according

to Example 3.3.

47
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

Example 3.3: LSF signal

/'l signal declaration
sca_l sf::sca_signal sig; // LSF signal

As in SystemC, the constructor initialization-list of the parent module can be used to assign a user-defined
name to a signal:

Example 3.4: Assigning names to LSF signals using the SystemC constructor

I/ assign the nanmes of LSF signal instance in the constructor initialization-list
SC CTOR(ny_nodul e) : sig("sig") {}

Section 3.3 will describe the creation of structural LSF models and will show examples of assigning user-
defined names to ports and signals.

3.3 Modeling continuous-time behavior

LSF models can be used to implement linear dynamic, continuous-time behavior. LSF models can only be
composed using LSF primitive modules. Therefore an LSF model is always a structural model.

3.3.1 Structural composition of LSF modules

LSF modules should be instantiated as child modules inside a regular SystemC parent module created
with the help of the macro SC_MODULE or by deriving publicly from sc_core::sc_module. This parent
module also instantiates all necessary ports to communicate with the outside world and internal signals for
the interconnection of the child modules. The parameterization of the instantiated modules as well as the
interconnection of the modules should be done in the constructor (e.g., created with the help of the macro
SC_CTOR) of the parent SystemC module.

3.3.1.1 Port binding
In order to connect LSF modules in a proper way to other LSF modules and signals, the following specific

bindings are possible, illustrated in Figure 3.3. The port binding rules are compatible and complementary to
the SystemC and TDF rules (see also Section 2.3.3).

Port-to-port binding )

x(t) k1 ot ()

LSF input port

© LSF output port
Instance of class

Instance of class

sca_lsf::isca_in k2 sca_lsf::sca_out
SystemC parent module  LSF signal Port-to-port binding
Object of class Instance of class
sc_core::sc_module sca_lsf::sca_signal

Figure 3.3—Port binding rules for LSF input and output ports

Binding an LSF input port to an LSF signal.

Binding an LSF input port to an LSF input port of the parent module (port-to-port binding).
Binding an LSF input port to an LSF output port of the parent module (port-to-port binding).
Binding an LSF output port to an LSF signal.

Binding an LSF output port to an LSF output port of the parent module (port-to-port binding).

0000
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Furthermore, each LSF signal should be bound to exactly one LSF output port of an LSF primitive module,
and may be bound to any number of LSF input ports of LSF primitive modules throughout the whole hierarchy.

For LSF primitive modules, which have ports connected to TDF or discrete-event signals or ports, should
follow the port binding rules of the corresponding models of computation.

Example 3.5 shows the implementation of the structural composition of Figure 3.3.

Example 3.5: Structural composition of LSF primitives in a SystemC hierarchical module

SC_MODULE(my_structural _| sf_nodel)
{

sca_l sf::sca_in x; (1]
sca_| sf::sca_out y;

sca_|l sf::sca_gain gainl, gain2; (2]

sca_l sf::sca_dot dot1;

sca_l sf::sca_add addi;

nmy_structural _| sf_nodel ( sc_core::sc_nmpdul e_nane, double k1, double k2 )

Dox("x"), y("y"), gainl("gainl", k1), gain2("gain2", k2), dotl("dotl"), addl("addl"), (3]
sigl("sigl"), sig2("sig2"), sig3("sig3")

gai nl1. x(x); (4]

gai nl.y(sigl);

gai nl.set _timestep(1,sc_core::SC_M); (5]
addl. x1(sigl);

addl. x2(sig3);
addl. y(sig2);

dot 1. x(si g2);
dot 1.y(y);

gai n2. x(y);
gai n2.y(sig3);
}
private:

sca_| sf::sca_signal sigl, sig2, sig3; (6
E;

The LSF input and output ports declared inside this module of class sc_core::sc_module become part
of the structural composition.

The LSF primitive modules are declared within the parent module as child modules.

The initialization-list in the parent module’s constructor propagates the necessary configuration
parameters to the LSF ports, LSF signals, and child modules.

Port binding is done inside the constructor of the parent module.

The time step for LSF primitive modules is done inside the constructor of the parent module. An LSF
module could also get its time step via propagation of the time step of its connected modules.
Internal LSF signals are used to connect the LSF ports and child modules. These signals are declared
to be private, as they should not be accessible from outside the module.

© 06 o000 o

3.3.2 Continuous-time modeling

Example 3.6 shows a first-order low-pass filter, based on the same Laplace transfer function as described in
Section 2.3.2:

Hs) = —2
S)=""T717
1+ 5 (3.2)
C
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where Hy is the DC gain and f; is the filter cut-off frequency in Hz. The Laplace transfer function can be
rewritten for an LSF implementation into:

d
Y(6)= Hox(t) - Tlfc% (3.3)

The block diagram notation and code implementation is given in Figure 3.4, where the scaling coefficients of
the LSF primitive modules are used to implement the DC gain Hy and the filter cut-off frequency f..

x(t) y(t)

LSF module |
Instance of class
sca_lsf::sca_sub

1 d
At LSF module
2nf, dt \\ Instance of class

sca_lsf::sca_dot

Figure 3.4—Example of an LSF model implementing a first-order low-pass filter

Example 3.6: LSF model implementing a first-order low-pass filter

SC_MODULE(ny I sf_filter)
{

sca_l sf::sca_in x;
sca_l sf::sca_out vy;

sca_l sf::sca_sub subil;
sca_l sf::sca_dot dot1;

ny_|sf_filter( sc_core::sc_nodul e_nane, double hO = 1.0, double fc = 1.0e3 )
Dox("x"), y("y"), subl("subl", h0), dotl("dotl1l", 1.0/(2.0*MPI*fc) ), sig("sig")
{

subl. x1(x);

subl. x2(sig);

subl.y(y);

dot 1. x(y);
dot1.y(sig);
}

private:
sca_l sf::sca_signal sig;

b

The gain coefficient 40 for the input signal is passed via the constructor to the instance sub1 and the frequency
fc is passed via the constructor to the instance dotl.

3.4 Interaction between LSF and discrete-event or TDF models

The LSF model of computation will setup and solve an equation system to simulate the modeled continuous-
time behavior, based on the basic set of LSF primitive modules described in Section 3.2.1. Any ‘external’ input
value, e.g., from a discrete-event signal or TDF sample, needs to be contributed to the equation system via one
of these LSF primitive modules. Therefore, specialized LSF primitive modules with ports to the discrete-event
domain and TDF models of computation are available, which are called converter modules. Main purpose of
these modules is to establish an interface to convert and transfer data from one model of computation to the
other.
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3.4.1 Reading from and writing to discrete-event models

In order to connect LSF models with discrete-event models, the LSF converter modules with an internal port
of class sc_core::sc_in or sc_core::sc_out should be used.

Figure 3.5 shows the LSF primitive module sca_lIsf::sca_de::sca_source reading from a discrete-event signal
and writing to an LSF signal. In this example a module time step of 1 ms is assigned to the LSF converter
module. The LSF model continuously reads values from the input at the time points, which are calculated from
the assigned time steps. The input value is assumed constant until the next value is read. The input values are
interpreted to form a continuous-time signal, which is made available at the output of the converter module
(read input samples shown as a dotted signal).

Discrete-event signal LSF converter module LSF signal

Instance of class Instance of class Instance of class

sc_core::sc_signal<double> sca_lsf::sca_de::sca_source sca_lsf::sca_signal
inp y(t)

A
inp | DE ()
1 I LSF
> toe / . >t/

00 3238 60 82 106 Tm:1ms 0123456789101 =™

Figure 3.5—LSF converter module reading from a discrete-
event input signal and writing to an LSF output signal

Figure 3.6 shows the LSF primitive module sca_lsf::sca_de::sca_sink, which reads an LSF signal and writes
the equivalent value to the discrete-event signal. The values at the output port are written at the time points,
which are calculated from the assigned module time step of 1 ms.

LSF signal LSF converter module discrete-event signal
instance of class instance of class instance of class
sca_lsf::sca_signal sca_lsf::sca_de::sca_sink sc_core::sc_signal<double> or

sc_core::sc_buffer<double>
x(t) outp

W= g

t ! ) LLL L,
0123456789111 '™ Tm:1ms 8 91011 oe'™MS

Figure 3.6—LSF converter module reading from an LSF
input signal and writing to a discrete-event output signal

3.4.2 Reading from and writing to TDF models

In a similar way, LSF models can be connected to TDF models using converter modules with an internal port
of class sca_tdf::sca_in or sca_tdf::sca_out.

Figure 3.7 shows the LSF primitive module sca_Isf::sca_tdf::sca_source reading from a TDF signal and
writing to an LSF signal. In this example a module time step of 1 ms is assigned to the LSF converter module.
The LSF model continuously reads the samples from the TDF input. The input samples are interpreted to form
a continuous-time signal, available at the output of the converter module (input samples shown as a dotted
signal).
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TDF signal LSF converter module LSF signal
Instance of class Instance of class Instance of class
sca_tdf::sca_signal<double> sca_lsf::sca_tdf::sca_source sca_lsf::sca_signal
inp y(t)
inp ()
—
1111 LSF
. " /' ms . >t/ Ms
012345678 91011 tror Tm:1ms 012345678 91011 *F

Figure 3.7—LSF converter module reading from a
TDF input signal and writing to an LSF output signal

Figure 3.8 shows the LSF primitive module sca_lsf::sca_tdf::sca_sink reading an LSF signal and writing the
equivalent values to a TDF signal. The samples at the output port are written at the time points, which are
calculated from the assigned module time step of 1 ms.

LSF signal LSF converter module TDF signal

Instance of class Instance of class Instance of class

sca_lsf::sca_signal sca_lsf::sca_tdf::sca_sink sca_tdf::sca_signal<double>
x(t) outp

x(®) |LsF outp

g TN

te ! .
0123456789111 '™ Tm:1ms 1011

> tor / MS

Figure 3.8—LSF converter module reading from an
LSF input signal and writing to a TDF output signal

3.4.3 Using discrete-event or TDF control signals

Although not fundamentally different from the LSF converter modules described in the previous
two sections, additional LSF primitives are available to control or scale variables or signals
within an LSF equation system. The LSF primitives used for control can be identified by
having an input port of class sc_core::sc_in or sca_tdf::sca_in of data type bool. Examples
are the multiplexers (sca_lsf::sca_de::sca_mux and sca_lsf::sca_tdf::sca_mux) and demultiplexers
(sca_lsf::sca_de::sca_demux and sca_lsf::sca_tdf::sca_demux). The primitives, which can scale variables
or signals make use of the same ports, but using data type double. Examples are the multiplication primitives
(sca_lsf::sca_de::sca_gain, and sca_Isf::sca_tdf::sca_gain). Note that if a parameter of an LSF module has
changed, the corresponding LSF equation system will be reinitialized.

Figure 3.9 shows an example how LSF primitives can be used in a structural model to control or scale signals.
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Discrete-event control input

_|_

1\~ Instance of class
sc_core::sc_in<bool>

A\ 4

y(®)

|~ LSF multiplication
Instance of class
sca_lsf::sca_de::sca_gain

TDF control input
— Instance of class
sca_tdf::sca_in<bool>

Figure 3.9—LSF model using discrete-event and TDF control signals

Similar as for the LSF converter modules described in Section 3.4, the discrete-event or TDF control signals
are read with a fixed time step, which corresponds to the module time step. Only then the LSF equation system

will be updated.

3.4.4 LSF model encapsulation

The converter modules described in the previous sections can be used to encapsulate an LSF model within
a different model of computation. Figure 3.10 shows an example on how to use converter modules to and
from the TDF model of computation to encapsulate LSF behavior. In this case, access to and from the LSF
equation system use discrete-time signals following the TDF semantics, whereas the internal LSF signals and
computations are continuous-time. This approach gives another possibility to embed continuous-time behavior
in the TDF model of computation, besides the embedded linear dynamic equations for TDF modules described

in Section 2.3.2.

Port-to-port TDF to LSF converter module LSF to TDF converter module Port-to-port
binding Instance of class instance of class binding
sca_lsf::sca_tdf::sca_source sca_lsf::sca_tdf::sca_sink
\ \ \\ /
x(t) d | Y@ |LsF
in ‘ - > out
LSF dt TDF

TDF input port TDF output port
Instance of class k2 Instance of class
sca_tdf::sca_in<double> sca_tdf::sca_out<double>

\

I

SystemC parent module
Object of class
sc_core::sc_module

\

LSF equation system

Figure 3.10—LSF equation system encapsulated for inclusion into
a structural TDF model description by using converter modules

Example 3.7 shows the implementation of Figure 3.10.

Example 3.7: SystemC hierarchical module with TDF input and output port encapsulating LSF behavior

SC_MODULE(I sf_in_tdf)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;
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sca_tdf::sca_source tdf2lsf;

sca_| sf::sca_add addi;
sca_| sf::sca_dot dot1;
sca_| sf::sca_gain gaini;
sca_l sf::

sca_| sf::sca_tdf::sca_sink

| sf 2t df;

I'sf_in_tdf ( sc_core::sc_nodul e_narme, double k, double k2 )
cin("in"), out("out"), addl("addl"), dotl("dotl", k), gainl("gainl", k2), tdf2lsf("tdf2lsf"),

I'sf2tdf ("1 sf2tdf"),

tdf 2l sf.inp(in);
tdf 2l sf.y(sigl);

addl. x1(sigl);
addl. x2(sig3);
addl.y(sig2);

dot 1. x(si g2);
dot 1.y(sig4);

gai nl. x(sig4);
gai nl.y(sig3);

I sf2tdf. x(sig4);

I sf2tdf. outp(out);

sigl("sigl"), sig2("sig2"), sig3("sig3"), sig4("sig4")

}

private:

}i

sca_| sf::sca_signal sigl, sig2, sig3, sig4;

A similar approach can be used to encapsulate an LSF model for inclusion into a structural discrete-event model
description, using the converter modules to and from the discrete-event domain as explained in Section 3.4.1.

3.5 LSF execution semantics

In addition to the elaboration and simulation phases as defined in SystemC language standard IEEE Std.
1666-2011, specific functionality is implemented for the elaboration and execution of LSF models.

As depicted in Figure 3.11, the elaboration phase includes the following steps:

— LSF time step calculation and propagation: Define the time step and check consistency inside each

LSF model (see also Section 3.1.2).

— LSF equation setup and solvability check: Compose the LSF equation system from the contributing
equations provided by the predefined LSF primitive modules and their relationship defined by the
composition. Check whether the resulting equation system can be solved.

The steps for the simulation phase are:

— LSF initialization: First set all LSF signals to zero and then set the initial conditions of the system based
on the potentially defined initial conditions of the LSF primitives.

— LSF time-domain simulation: The LSF equation system is solved numerically using appropriate time
steps, which could be less than the assigned time step. The solver will at least provide results at the
time points, calculated from the assigned time step.
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LSF time step calculation and propagation:
Define time step and check consistency

! > LSF elaboration phase

LSF equation set-up and solvability check:
Define the equation system and check if it can be solved

l J
o B . \
LSF initialization:
Set initial conditions, e.g., defined in LSF primitives
! > LSF simulation phase
LSF time-domain simulation:
Provide results at the calculated time points )

Figure 3.11—LSF elaboration and simulation phases

The elaboration and simulation phase are executed by starting a time-domain simulation using the function
sc_core::sc_start. This is explained in Section 6.1.1.
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4. Electrical Linear Networks modeling

4.1 Modeling fundamentals

The FElectrical Linear Networks model of computation introduces the use of electrical primitives and their
interconnections to model conservative, continuous-time behavior. The ELN modeling style allows the
instantiation of electrical primitives, which can be connected together using electrical nodes, to form an
electrical network. The mathematical relations between the electrical primitives are defined at each node in
the network, where both the potential (voltage) and flow (current) quantities are used according to Kirchhoff’s
voltage law (KVL) and Kirchhoff’s current law (KCL). As such, the electrical network is represented by a
set of differential algebraic equations, which will be resolved during simulation to determine the actual circuit
behavior.

Figure 4.1 shows an example of an electrical network, with two resistors, a capacitor, and a current source.
Such a network is called an ELN model and is composed of a set of connected ELN primitive modules, which
will form together an ELN equation system or cluster. Each ELN primitive module can have one or more
ELN terminals. The ELN primitive modules are interconnected via their terminals using ELN nodes. The
reference or ground node, which always has a voltage of zero, is called ELN reference node. ELN terminals
are also used as an interface to connect the ELN model with other ELN models.

ELN equation system ELN node ELN terminal

ELN reference node
(ground)

Figure 4.1—Example of a basic ELN model representing an electrical network
4.1.1 Setup of the equation system

The SystemC AMS extensions offer a finite set of ELN primitive modules such as sources (voltage or current),
linear lumped elements (resistors, capacitors, inductors), linear distributed elements (transmission lines), ideal
amplifier (nullor), ideal transformer, linear gyrator, and ideal switches. Similar to the LSF modeling style,
ELN models can only be composed from these primitives, as there is no possibility to implement user-defined
electrical primitives. Figure 4.2 shows some ELN lumped elements and their corresponding mathematical
equations.

p o , '
40 ) psi

j i A\rpnD* ¢ d(‘p,n(’“T)

R vpu®) =iy, (1) R —l—C lp,n(l‘)=C'w L w0 =L =21t

n n

Figure 4.2—Examples of the basic ELN lumped elements: resistor (R), capacitor
(C), and inductor (L) with their corresponding mathematical equations

When creating an ELN model (electrical network), the mathematical equations for each primitive and their
relationship defined at each node will be used to compose the overall equation system. For example, the
ELN model presented in Figure 4.1 will result in an ELN equation system for node A and B by following
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Kirchhoff’s current and voltage laws, and using the contributed equations of each primitive as shown in Figure
4.2.

99
Vg d(VaN?) (4.1)
i E—CT:O
99
Vp ”’(VWF) (4.2)
—py tC——F— =0

Note that the current through ELN primitives with two terminals is defined as the current flowing from terminal
p to terminal n. This also holds for the current sources.

4.1.2 Time step assignment and propagation

Similar as for a TDF module, a time step can be assigned to an ELN module directly or can be assigned
automatically using the propagation mechanism of the time step within an ELN equation system. In the case
where an ELN model is connected to a TDF model, the time step from the connected TDF port(s) is propagated
to the ELN model. Consistency between locally defined ELN module time steps and propagated time steps is
essential. Otherwise, the time points for the solution of the ELN equation system or communication with the
connected TDF model cannot be defined properly (see also Section 2.1.4). The time step should be defined at
least at one location in an ELN network or cluster.

During simulation, this ELN equation system is solved numerically at appropriate time steps, which could be

less than the assigned time step. The solver will at least provide results at the time points, calculated from the
assigned time steps.

4.2 Language constructs
4.2.1 ELN modules
An ELN module is a predefined electrical primitive, which can be used to build an electrical network. The

available predefined ELN primitive modules are listed in Table 4.1. Annex A gives the details for each
ELN module.

Table 4.1—ELN primitive modules

ELN module name Description
sca_eln::sca_r Resistor
sca_eln::sca_c Capacitor
sca_eln::sca_l Inductor
sca_eln::sca_vevs Voltage controlled voltage source
sca_eln::sca_vces Voltage controlled current source
sca_eln::sca_ccvs Current controlled voltage source
sca_eln::sca_cccs Current controlled current source
sca_eln::sca_nullor Nullor (nullator - norator pair), ideal op-amp
sca_eln::sca_gyrator Gyrator
sca_eln::sca_ideal transformer | Ideal transformer
sca_eln::sca_transmission_line | Transmission line
sca_eln::sca_vsource Independent voltage source
sca_eln::sca_isource Independent current source
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ELN module name

Description

sca_eln::sca_tdf::sca_r, Variable resistor controlled by a TDF input signal
sca_eln::sca_tdf r

sca_eln::sca_tdf::sca_c, Variable capacitor controlled by a TDF input signal
sca_eln::sca_tdf c

sca_eln::sca_tdf::sca 1, Variable inductor controlled by a TDF input signal
sca_eln::sca_tdf 1

sca_eln::sca_tdf::sca_rswitch, | Switch controlled by a TDF input signal

sca_eln::sca_tdf rswitch

sca_eln::sca_tdf::sca_vsource, | Voltage source driven by a TDF input signal
sca_eln::sca_tdf vsource

sca_eln::sca_tdf::sca_isource, | Current source driven by a TDF input signal
sca_eln::sca_tdf isource

sca_eln::sca_tdf::sca_vsink, Converts voltage to a TDF output signal
sca_eln::sca_tdf vsink

sca_eln::sca_tdf::sca_isink, Converts current to a TDF output signal

sca_eln::sca_tdf isink

sca_eln::sca_de::sca_r, Variable resistor controlled by a discrete-event input signal
sca_eln::sca_de_r

sca_eln::sca_de::sca_c, Variable capacitor controlled by a discrete-event input signal
sca_eln::sca_de_c

sca_eln::sca_de::sca_l, Variable inductor controlled by a discrete-event input signal
sca_eln::sca_de 1

sca_eln::sca_de::sca_rswitch, | Switch controlled by a discrete-event input signal

sca_eln::

sca_de_isink

sca_eln::sca_de_rswitch

sca_eln::sca_de::sca_vsource, | Voltage source driven by a discrete-event input signal
sca_eln::sca_de_vsource

sca_eln::sca_de::sca_isource, Current source driven by a discrete-event input signal
sca_eln::sca_de_isource

sca_eln::sca_de::sca_vsink, Converts voltage to a discrete-event output signal
sca_eln::sca_de_vsink

sca_eln::sca_de::sca_isink, Converts current to a discrete-event output signal

4.2.1.1 Module time step

In order to solve the ELN equation system, a time step should be associated to the set of connected
ELN modules as part of the elaboration phase. This can be done with the ELN module member function
set_timestep. Alternatively, the ELN model can rely on the time step propagation mechanism, which passes
the time step from module to module via its ports across the TDF, LSF, and ELN models of computation. So in
the case where an ELN model is connected to a TDF model, the time step from the connected port, if available,
is propagated to the ELN model. Consistency between the propagated time steps and user-defined time steps
is compulsory, as described in Section 2.1.4.

The module time step can be assigned by calling the member function set_timestep of the instantiated object
within the constructor of the parent module, and passing a double value and the time unit or an object of type
sca_core::sca_time, as shown in Example 4.1.

Example 4.1: SystemC module instantiating ELN voltage source with time step assignment

SC_MODULE( my_el n_sour ce)

/'l term nal declaration
sca_eln::sca_termnal p;
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/1 child nodul e decl aration
sca_el n::sca_vsource v_src;

SC_CTOR(ny_el n_source)

©op(tp),
v_src("v_src", 0.0, 0.0, 1.0e-3, 1.0e3), // 1 kHz sinusoidal source with an anplitude of 1 nV
gnd("gnd")

v_src.set_tinmestep(0.25, sc_core::SC MS); // set nodule tinme step to 0.25 ns

v_src.p(p);
v_src.n(gnd);

}

private:
sca_el n::sca_node_ref gnd;

¥
4.2.2 ELN terminals

An ELN terminal is an object that can be used to connect several ELN models together, using ELN nodes which
are bound to this terminal. Due to the conservative nature of the ELN modeling formalism, an ELN terminal is
not defined as an input or output port; instead, these terminal are used to allow making connections with nodes
of class sca_eln::sca_node or sca_eln::sca_node_ref (see Section 4.2.3). As ELN terminals are always used
in a structural (parent) module, they can also be used to connect to the ELN child modules directly, following
the port-to-port binding rule (see Section 4.3.1). ELN terminals make use of an internal data type, also called
electrical nature, which prevents the usage of user-defined data types.

Example 4.2 shows how ELN terminals are used within an ELN structural model.

Example 4.2: ELN structural model with terminals
SC_MODULE( my_el n_nodel )

// term nal declarations

sca_eln::sca_terninal p; @
sca_el n::sca_termnal n;

SC CTOR(ny_el n_nodel ) : p("p"), n("n") (2]

/1 ELN primtives instantiated here
}
b

(1] ELN positive (p) and negative (n) terminal that carries a continuous-time and -value signal.
(2] Using the constructor initialization-list to assign the names “p” and “n” to the p and n terminals,
respectively.

Specialized converter modules are available to connect ELN modules to the TDF or discrete-event domain.
This is explained in Section 4.4. ELN terminals do not provide read or write access methods.

4.2.3 ELN nodes

ELN nodes are used to connect ELN primitive modules together. In this case, multiple ELN primitives share
the same node (also called nef). There are two classes of ELN nodes:

— ELN node of class sca_eln::sca_node.

— ELN reference node (ground) of class sca_eln::sca_node_ref.

The ELN nodes and reference nodes are used to set up the overall equation system. Example 4.3 shows how
to use ELN nodes and ELN reference nodes.
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Example 4.3: ELN nodes and ELN reference nodes

/1 node decl arations
sca_el n:: sca_node netl; // ELN node (called "netl")
sca_el n::sca_node_ref gnd; // ELN reference node (called ground, "gnd")

As in SystemC, the constructor initialization-list of the parent module can be used to assign a user-defined
name to a node:

Example 4.4: Assigning names to ELN nodes using the SystemC constructor

/1 using the constructor initialization-list to assign the names to the declared ELN nodes
SC CTOR(ny_el n_nmodul e) : netl("netl1"), gnd("gnd") {}

Section 4.3 will describe the creation of structural ELN models and will show examples of assigning user-
defined names to terminals and nodes.

4.3 Modeling continuous-time behavior

ELN models can be used to implement linear dynamic, continuous-time, conservative behavior. ELN models
can only be composed using ELN primitive modules. Therefore an ELN model is always a structural model.

4.3.1 Structural composition of ELN modules

ELN modules should be instantiated as child modules inside a regular SystemC parent module created
with the help of the macro SC_MODULE or by deriving publicly from sc_core::sc_module. This parent
module also instantiates all necessary terminals to communicate with the outside world and internal nodes
for the interconnection of the child modules. The parameterization of the instantiated modules as well as the
interconnection of the modules should be done in the constructor (e.g., created with the help of the macro
SC_CTOR) of the parent SystemC module.

4.3.1.1 Port (terminal) binding
In order to connect ELN modules in a proper way to other ELN modules and nodes, the following specific

bindings are possible, as shown in Figure 4.3. The port binding rules are compatible and complementary to
the SystemC rules.

ELN terminal
e R1 e Instance of class

L a sca_eln::sca_terminal
Port-to-port binding o
Port-to-port binding
ELN node R2
Instance of class
sca_eln::sca_node
P net1
ELN reference node C1 SystemC parent module
Instance of class 2} Object of class
sca_eln::sca_node_ref sc_core::sc_module
gnd

Figure 4.3—Port binding rules for ELN terminals

o Binding an ELN terminal to an ELN node.
(2] Binding an ELN terminal to an ELN reference node.
(3] Binding an ELN terminal to an ELN terminal of the parent module (port-to-port binding).
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Furthermore, an ELN terminal should be bound to exactly one ELN node or reference node throughout the
whole hierarchy. An ELN node or ELN reference node should be bound to one or more ELN terminals
throughout the whole hierarchy.

ELN primitive modules, which have ports to connect to TDF or discrete-event signals or ports, should follow
the port binding rules of the corresponding models of computation.

Example 4.5 shows the implementation of the structural composition of Figure 4.3.

Example 4.5: Structural composition of ELN primitives in a SystemC hierarchical module

SC_MODULE( my_structural _el n_nodel)
{

sca_el n::sca_termnal a; (1]
sca_el n::sca_term nal b;

sca_eln::sca_r rl, r2; (2]
sca_eln::sca_c c1;
SC _CTOR(ny_structural _el n_nodel )
ca("a"), b("b"), ri("r1", 10e3), r2("r2", 100.0), cl("cl", 100e-6), netl("netl"), gnd("gnd") (3)
{
rl.p(a); (4]
rl.n(b);

r2.p(a;
r2.n(netl);

cl.p(netl);
cl.n(gnd);
}
private:

sca_el n::sca_node net1; (5]
sca_el n::sca_node_ref gnd;

b

(1] The ELN terminals declared inside this module of class sc¢_core::sc_module become part of the
structural composition.

(2] The ELN primitive modules are declared within the parent module as child modules.

(3] The initialization-list in the parent module’s constructor propagates the necessary configuration
parameters to the ELN terminals, ELN nodes, and child modules.

o Port (terminal) binding is done inside the constructor of the parent module.

(5] Internal ELN nodes are used to connect the ELN terminals and child modules. These nodes are
declared in the private space, as they should not be accessible from outside the module.

4.3.2 Continuous-time modeling

Example 4.6 shows a first-order low-pass filter, based on the same Laplace transfer function as described in
Section 2.3.2. The cut-off frequency of the filter is defined by the time constant of the filter, which is the
product of the resistance and capacitance value:

1 __1
fc_ 2rt ~ 2xRC (4.3)

The circuit implementation of this filter is rather simple, as shown in Figure 4.4.
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ELN resistor
R1
Instance of class
sca_eln::sca_r

C1 ELN capacitor
Instance of class
sca_eln::sca_c

gnd

Figure 4.4—ELN circuit implementation of a first-order low-pass filter

The code implementation for the first-order low-pass filter, implemented as RC network is shown in Example
4.6.

Example 4.6: ELN model of a low-pass filter

SC_MODULE(ny_el n_filter)
{

sca_el n::sca_termnal a;
sca_el n::sca_term nal b;

sca_eln::sca_r ri;
sca_eln::sca_c c1;

nmy_eln_filter( sc_core::sc_nmodul e_nane, double ri1_value, double cl1_value )
:a("a"), b("b"), ri("r1", rl_value), ci("c1", cl_value), gnd("gnd"),
{

rl.n(a);

ril.p(b);

cl.n(b);
cl.p(gnd);
}

private:
sca_el n::sca_node_ref gnd;

b

Note that the time step for this network has not been defined in this ELN module. This means that this model
relies on the time step propagation mechanism.

4.4 Interaction between ELN and discrete-event or TDF models

The ELN model of computation will setup and solve an equation system to simulate the modeled continuous-
time behavior, based on the basic set of ELN primitive modules described in Section 4.2.1. Any ‘external’
input value, e.g., from a discrete-event signal or TDF sample, needs to be contributed to the equation system
via one of these ELN primitive modules. Therefore, specialized ELN primitive modules with ports to the
discrete-event domain and TDF models of computation are available, which are called converter modules.
The main purpose of these modules is to establish an interface to convert and transfer data from one model
of computation to the other.

4.4.1 Reading from and writing to discrete-event models

In order to connect ELN models with discrete-event models, the ELN converter modules with an internal port
of class sc_core::sc_in or sc_core::sc_out should be used.

Figure 4.5 shows the ELN  primitive modules sca_eln::sca_de::sca_vsource  and
sca_eln::sca_de::sca_isource, which read a discrete-event signal representing a real value and converting this
value to an electrical voltage or current respectively. In this example a module time step of 1 ms is assigned
to the ELN converter module. The ELN model continuously reads values from the input at the time points,
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which are calculated from the assigned time steps. The input value is assumed constant until the next value is
read. The input values are interpreted to form a continuous-time signal, which is made available at the output
of the converter module (read input samples shown as a dotted signal).

ELN converter module ELN output voltage
Instance of class

sca_eln::sca_de::sca_vsource

Discrete-event signal
Instance of class
sc_core::sc_signal<double>

inp

ten / MS

012345678 910M1

T
0.0 3238 6.0

ELN converter module ELN output current
Instance of class

sca_eln::sca_de::sca_isource

Discrete-event signal
Instance of class
sc_core::sc_signal<double>

=

0.0 3238 6.0 82 106

inp Iplt)

T\ S

012345678 910M1

> te/ ms ten / Ms

Figure 4. 5—ELN converter modules reading double values from a discrete-event
input signal and converting them to a continuous-time electrical voltage or current

Figure 4.6 shows the ELN primitive modules sca_eln::sca_de::sca_vsink and sca_eln::sca_de::sca_isink,
which convert an electrical voltage or current to a real value, discrete-event signal. The values at the output
port are written at the time points, calculated from the assigned module time step of 1 ms.

ELN input voltage

Vp,n(t)

[
1
ten / Ms ny J:

ELN converter module
Instance of class
sca_eln::sca_de::sca_vsink

Discrete-event signal
Instance of class
sc_core::sc_signal<double> or
sc_core::sc_buffer<double>

[11]

> tyn/ms Ny >t/ ms
61234567891011 Tmims 8 91011
ELN input current ELN converter module Discrete-event signal
Instance of class Instance of class
sca_eln::sca_de::sca_isink sc_core::sc_signal<double> or
. sc_core::sc_buffer<double>
ipn(t) pe T i outp
A
! | outp 1
' i
A
>t /ms N : i 1 T toe / Ms
0123456789101 = Bl —wivr ity ! 012345678 91011

Figure 4.6—ELN converter modules to convert an electrical
voltage or current to a real value, discrete-event output signal

4.4.2 Reading from and writing to TDF models

In a similar way, ELN models can be connected to TDF models using converter modules with an internal port
of class sca_tdf::sca_in or sca_tdf::sca_out.

63
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

Figure 4.7 shows the ELN  primitive modules sca_eln::sca_tdf::sca_vsource and
sca_eln::sca_tdf::sca_isource, which read a value from a TDF signal and convert this value to an electrical
voltage or current, respectively. In this example a module time step of 1 ms is assigned to the ELN converter
module. The ELN model continuously reads the samples from the TDF input. The input samples are interpreted
to form a continuous-time signal, which is made available at the output of the converter module (input samples
shown as a dotted signal).

ELN converter module
Instance of class
sca_eln::sca_tdf::sca_vsource

TDF signal
Instance of class
sca_tdf::sca_signal<double>

Illzz

ELN output voltage

Voo(f)

[o ) Sm—-
~ f—

—
—

11 0123456789101 =n/ms
TDF signal ELN converter module ELN output current
Instance of class Instance of class
sca_tdf::sca_signal<double> sca_eln::sca_tdf::sca_isource
: __________ ! p ip,n(t)
i
| .
I
I I l I ] l
T T t /ms n >t/ ms
0123456789111 ™ S : 0123456789111 &

Figure 4.7—ELN converter modules reading double values from a TDF input
sighal and converting them to a continuous-time electrical voltage or current

Figure 4.8 shows the ELN primitive modules sca_eln::sca_tdf::sca_vsink and sca_eln::sca_tdf::sca_isink,

which will convert an electrical voltage or current to a TDF signal. The samples at the output port are written
at the calculated time points, which correspond to the assigned module time step of 1 ms.

ELN converter module

ELN input voltage
Instance of class
sca_eln::sca_tdf::sca_vsink

TDF signal
Instance of class
sca_tdf::sca_signal<double>

V,a(t) Y : outp
i i
1 | outp
e me ] ] T
1
1 — 1
§1 234567809111 =/M™ ne—" i 6iéé4 7 8 91011 tor/ms
Tm:1ms
ELN input current ELN converter module TDF signal
Instance of class Instance of class
sca_eln::sca_tdf::sca_isink sca_tdf::sca_signal<double>
Ip,1(0) N | outp
P i
i ) ! outp
T ] 1]
812345678011 =/M™ n i 012345686 9 1011 tor/mS

Figure 4.8—ELN converter modules convert an
electrical voltage or current to a TDF output signal
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4.4.3 ELN model encapsulation in TDF models

The converter modules described in the previous sections can be used to encapsulate an ELN model within
a different model of computation. Figure 4.9 shows an example on how to use converter modules to and
from the TDF model of computation to encapsulate ELN behavior. In this case, access to and from the
ELN equation system use discrete-time signals following the TDF semantics, whereas the internal ELN signals

and computations are continuous-time.

TDF to ELN converter module ELN to TDF converter module
Instance of class Instance of class
sca_eln::sca_tdf::sca_vsource sca_eln::sca_tdf::sca_vsink

\ \

TDFinputport | 1 te—mm—eeee
Instance of class
sca_tdf::sca_in<double>

| TDF output port

1 Instance of class

i sca_tdf::sca_out<double>
1

SystemC parent module ELN equation system
Object of class
sc_core::sc_module

Figure 4.9—ELN equation system encapsulated for inclusion into
a structural TDF model description by using converter modules

Example 4.7 shows the implementation of Figure 4.9.

Example 4.7: SystemC hierarchical module with TDF input and output port encapsulating ELN behavior

SC_MODULE( el n_i n_tdf)

{
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

sca_el n::sca_tdf::sca_vsource vin;
sca_el n::sca_tdf::sca_vsink vout ;
sca_eln::sca_r r;

sca_eln::sca_c c;

el n_in_tdf( sc_core::sc_nodul e_nane, double r_val, double c_val )
in("in"), out("out"), vin("vin"), vout("vout"), r("r", r_val), c("c", c_val),
nl("n1"), n2("n2"), gnd("gnd")

vin.inp(in);
vin.p(nl);
vin.n(gnd);

r.p(nl);
r.n(n2);

c.p(n2);
c.n(gnd);

vout. p(n2);
vout . n(gnd);
vout . out p(out);

}

private:
sca_el n::sca_node nl, n2;
sca_el n::sca_node_ref gnd;

}
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A similar approach can be used to encapsulate an ELN model for inclusion into a structural discrete-event
model description, using the converter modules to and from the discrete-event domain as explained in Section
44.1.

4.4.4 Non-linear modeling using TDF encapsulation in ELN

The encapsulation method explained in the previous section can also be applied in the ‘reverse’ order, where
TDF models are encapsulated in ELN models. Especially in the case where the predefined set of ELN primitive
models (see Annex A) are not sufficient to model continuous-time behavior, inclusion of TDF models offers
a very powerful approach to make advanced continuous-time models.

Figure 4.10 shows a combination of ELN and TDF models to create a non-linear model for a diode. In this
example, the diode is modeled by means of a TDF controlled voltage source of type sca_eln::sca_tdf vsource
in series with a variable resistor of type sca_eln::sca_tdf::sca_r, which is controlled by a TDF input
signal. The input voltage across the terminals p and n (¥}, ) is measured using the ELN primitive of type
sca_eln::sca_tdf vsink. The voltage source is used to model the threshold voltage (V). If the input voltage
is above the threshold voltage in the forward direction (7, ,), the diode starts conducting (the ON state) and it
will follow the I-V slope according to its ON-resistance R,,. If the input voltage remains below this threshold
voltage, the diode will not conduct (the OFF state) and the series resistor gets a high impedance, defined by
R,p As soon as the input voltage is below the breakdown voltage (7}, ), the diode will start conducting in
the reverse direction. A conventional diode will be destroyed due to the high reverse current caused by the
avalanche effect. The rectifier functionality to calculate the threshold voltage and the ON or OFF resistance
is implemented in a TDF model.

The same topology can be used to model a zener diode. The characteristics of a zener diode are equivalent to

the diode as described above, except that such diode is designed to operate at the (zener) breakdown voltage.
As such, a zener diode is normally used in reverse current operation.

sca_eln::sca_tdf_vsource

i
] s_vth
. 1
ON state: Slope =_R Slope = R_ __________
V off on .Q_+
oD Bon Vin . s_vin Jvin vth
P n v v Von rectifier
th_p -
OFF state: ro—
I.____A‘__
:lROff s_rout
p n sca_eln::sca_tdf vsink

sca_eln:isca_tdf r

Figure 4.10—Model of a non-linear element (diode) using TDF encapsulation in ELN

Example 4.8 shows the implementation of the diode.

Example 4.8: ELN model of a diode

SC_MODULE( di ode)

{
sca_eln::sca_termnal p;
sca_eln::sca_termnal n;

di ode( sc_core::sc_nodul e_nane,
double vth_p_ = 0.7,
doubl e vth_n_ -53.0,
doubl e ron_ le- 3,
doubl e rof f_ le8 )
cop("p"), n("n"), vth_p(vth_p_), vth_n(vth_n_), ron(ron_), roff(roff_),
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vth("vth"), rrect("rrect"), vrect("vrect"), rctrl("rctrl"),
s_vin("s_vin"), s_rout("s_rout"), s_vth("s_vth"), nl("n1")

rctrl.vin(s_vin);
rctrl.rout(s_rout);
rctrl.vth(s_vth);

vth. p(nl);
vth.n(n);
vth.inp(s_vth);

rrect.p(p);
rrect.n(nl);
rrect.inp(s_rout);

vrect.p(p);
vrect.n(n);
vrect.outp(s_vin);

}

private:
doubl e vth_p;
doubl e vth_n;
doubl e ron;
doubl e roff;

sca_el n::sca_tdf _vsource vth;
sca_eln::sca_tdf::sca_r rrect;
sca_eln::sca_tdf _vsink wvrect;
rectifier rctrl;

sca_tdf::sca_signal <doubl e> s_vin;
sca_tdf::sca_signal <doubl e> s_rout;
sca_tdf::sca_signal <doubl e> s_vth;

sca_el n::sca_node ni1;

Within the diode model, the rectifier functionality is implemented as TDF module, as shown in Example 4.9.
The TDF module calculates whether a state change (from ON to OFF or OFF to ON state) has occurred. In
case the state changed, the calculated time step was not correct, as the resistor and voltage source hold the
values of the previous state. Therefore the TDF module has to provide the corresponding values for the new
state and initiates a repetition of the time step. This is done by requesting a time step of zero seconds. If a
zero time step is scheduled for an ELN network, the equation solver resets to the previous state and repeats
the time step with the new values.

Example 4.9: TDF model of the rectifier

SCA TDF_MODULE(rectifier)

{
sca_tdf::sca_i n<doubl e> vin;
sca_tdf::sca_out <doubl e> rout;
sca_t df::sca_out <doubl e> vt h;

SCA CTOR(rectifier) : vin("vin"), rout("rout"), vth("vth") {}
double ron, roff, vth_p, vth_n;

voi d set_attributes()
{
rout.set_del ay(1);
vt h. set _del ay(1);
vth_p = 0.7; /1 threshold vol tage
vth_n = -53.0; // breakdown vol tage

ron = le-3; /1 on resistance
roff = 1e8; /1 off resistance
does_attribute_changes();

}

void initialize()

{
rout.initialize(roff);
vth.initialize(0.0);
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ron_st at e=true;
recal cul ate 0;
activations 0;
iterations = 0;
max_i terations = 0;

}
voi d change_attributes()
{
activations++;
if(recalculate > 0) {
request _next_activation(sc_core:: SC ZERO Tl ME) ; /1l repeat last tine step
if(recalculate > 10)
SC_REPORT_ERROR("dtdf _rectifier_ctrl","Convergence failed. Sinulation will termnate.");
iterations++;
if(recalculate > max_iterations) max_iterations = iterations;
}
}

voi d processing() {
double vin_tnmp = vin.read();
if(ron_state) {
if((vin_tmp > vth_p)||(vin_tmp < vth_n)) // hysteresis, as curves do not fit exactly
recalculate = 0;
el se {
recal cul at e++;
ron_st at e=f al se;

} else {
if((vin_tmp > vth_p)||(vin_tmp < vth_n)) {
recal cul at e++;
ron_state=true;

el se recalculate = 0;

}

if(ron_state) {
rout.write(ron); /'l set resistance and threshold in dependency of the state
if(vin_tnp > vth_p) vth.wite(vth_p);
el se vth.wite(vth_n);

el se {

rout.write(roff);
vth.wite(0.0);

}
}

private:
bool ron_state;
unsigned |l ong recal cul ate, iterations, activations, max_iterations;

}i

4.5 ELN execution semantics

In addition to the elaboration and simulation phases as defined in SystemC language standard IEEE Std.
1666-2011, specific functionality is implemented for the elaboration and execution of ELN models. These
additions are similar to the ones in LSF.

As depicted in Figure 4.11, the elaboration phase includes the following steps:

— ELN time step calculation and propagation: Define the time step and check consistency inside each
ELN model (see also Section 4.1.2).

ELN equation setup and solvability check: Compose the ELN equation system from the contributing
equations provided by the predefined ELN primitive modules and their relationship defined by the
composition. Check whether the resulting equation system can be solved.

The steps for the simulation phase are:
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— ELN initialization: At time zero, a static equation system to determine the initial condition has to
be setup and solved. Therefore all capacitors with a defined initial charge are replaced by a voltage
source with a voltage v = ¢y / C and all inductors with a defined initial linked flux are replaced
by a current source with a current / = psiy / L. In the case where a capacitor has an initial charge
of sca_util::SCA_UNDEFINED, the capacitor is removed from the initial condition calculation.
Consequently, the initial charge of this capacitor is calculated using the voltage across the removed
capacitor (determined by the initial condition calculation without the capacitor), gg = C - vy. In the case
where an inductor has an initial linked flux of sca_util::SCA_UNDEFINED, the inductor is replaced
by a short for the initial condition calculation. Consequently, the initial linked flux of this inductor is
calculated using the current flowing through the short, psip = L - iy.

— ELN time-domain simulation: The ELN equation system is solved numerically using appropriate time
steps, which could be less than the assigned time step. The solver will at least provide results at the
time points, calculated from the assigned time step.

ELN time step calculation and propagation:
Define time step and check consistency
! > ELN elaboration phase

ELN equation set-up and solvability check:
Define the equation system and check if it can be solved

l

ELN initialization:
Set initial conditions, e.g., defined in ELN primitives

! > ELN simulation phase

ELN time-domain simulation:
Provide results at the calculated time points

J

Figure 4.11—ELN elaboration and simulation phases

The elaboration and simulation phase are executed by starting a time-domain simulation using the function
sc_core::sc_start. This is explained in Section 6.1.1.
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5. Small-signal frequency-domain analyses

5.1 Modeling fundamentals

To analyze the frequency-domain behavior of an analog/mixed-signal system, varying small signals, called
alternating-current (AC) signals, at different frequencies are used to stimulate and analyze the steady-state
response of the circuit. Either small-signal sinusoidal sources or noise sources are used, and applied to the
circuit, which is being linearized around a given direct-current (DC) operating-point. This means that large-
signal behavior, such as non-linearities causing distortion, are not captured during small-signal frequency-
domain analyses.

These AC-domain analysis methods can compute the small-signal frequency-domain behavior of the entire
analog/mixed-signal system, which can be composed of modules from the available models of computation.
TDF modules can embed a user-defined small-signal frequency-domain description. For LSF and ELN
primitive modules, the small-signal frequency-domain behavior is implicitly part of the primitive’s description.
Figure 5.1 shows an example of a mixed-signal system containing TDF, LSF and ELN models. The modules
labeled with ‘AC’ have, besides their time-domain description, a small-signal frequency-domain representation
associated with it. Based on the structural composition, a linear complex equation is extracted.

eIn_modle_ _____ Isf_model tdf_model
AC
i v LSF o H
K - (s) @
C1 = =
I d
dt
] / ]
ELN model Complex linear equation system  LSF model TDF model

Figure 5.1—Small-signal frequency-domain description using TDF, LSF and ELN modules
5.1.1 Setup of the equation system

The linear complex equation system will make use of the TDF cluster as well as the LSF and ELN equation
systems, which are initially defined for time-domain simulation. Transformation of LSF and ELN equation
systems from the time-domain representation into the small-signal frequency-domain representation is done
using the Laplace transform rules. Generally, for a given function f{¢), the following substitutions will be
applied to the time-domain-oriented ELN and LSF equation systems:

— A derivation d/dt is substituted by jw.
— An integration is substituted by //jw.

—  Adelay f{t-delay) is substituted by ¢7* ~delay
Substitution will result in the frequency-domain function F(jw) for the LSF and ELN contributions.

TDF modules allow the definition of user-defined small-signal frequency-domain behavior as part of the
primitive definition. There is no mechanism available to derive an ‘AC representation’. It is entirely the
responsibility of the user to ensure the consistency of the defined frequency-domain and time-domain
representations. How to implement small-signal frequency-domain behavior in TDF modules is discussed in
Section 5.2.1.
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5.1.2 Analysis methods

Two types of analyses are supported:

— Small-signal frequency-domain analysis: Solves for each frequency point the linear complex equation
system, including all small-signal frequency-domain source contributions.

— Small-signal frequency-domain noise analysis: Solves the linear complex equation system for each
frequency point and each small-signal frequency-domain noise source contribution, whereby all
contributions of small-signal frequency-domain sources and small-signal frequency-domain noise
sources, except the currently activated noise source, are set to zero.

The result of a small-signal frequency-domain or noise analysis is the steady-state response or transfer function
of the circuit, described from the input port to the output port of the overall system. During analysis, the
resulting linear complex equation system is solved for the given frequency points.

5.2 Language constructs
5.2.1 Small-signal frequency-domain description in TDF modules

The small-signal frequency-domain behavior of a TDF module can be defined in the member function
ac_processing. This member function describes the contribution of the module to the overall complex equation
system. The description should be written in the form of a linear complex transfer function, capturing the
behavior from the TDF input port to the TDF output port. Different functions are available to define the linear
complex transfer function, as presented in the next sections. For these calculations, a data container of type
sca_util::sca_complex should be used.

Example 5.1 shows the implementation of a transfer function H(s) = 1. The intermediate result is stored in a
variable res of type sca_util::sca_complex, which is assigned to the TDF output port. More details on the port
access methods are given in the next section.

Example 5.1: Small-signal frequency-domain description of the function H(s) =1

SCA_TDF_MODULE(f | at _r esponse)
{

sca_tdf::sca_i n<doubl e> in;
sca_t df::sca_out <doubl e> out;

SCA_CTOR(fl at _response) {}

voi d processing()

{

out.wite( in.read() );

}

voi d ac_processing()

{
double h = 1.0; // flat frequency response H(s) =1

sca_util::sca_conpl ex res;

res = h * sca_ac_anal ysis::sca_ac(in);
sca_ac_anal ysis::sca_ac(out) = res;

In the case where a small-signal frequency-domain analysis is performed, but no member function
ac_processing is defined, or if no complex value is assigned to one or more TDF output ports, all related port
values are set to zero, independently from the available value(s) at the input ports.

Note that there is no automatic consistency check between the time- and frequency-domain descriptions, as
these definitions are used-defined.
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5.2.2 Port access

For small-signal frequency-domain analysis, the complex value of all TDF ports, excluding the converter
ports, can be accessed by using the function sca_ac_analysis::sca_ac with as argument the port instances,
as shown in the previous example. This access method is independent from the port type required in time-
domain simulation.

For input ports, the function sca_ac_analysis::sca_ac returns a constant reference to a value of type
sca_util::sca_complex, which means that no value can be assigned to a TDF input port. For output ports,
the function returns a reference to a value of type sca_util::sca_complex, allowing the assignment of a
contribution for small-signal frequency-domain analysis.

For small-signal frequency-domain noise analysis, a noise source independent from the input port values, can
be assigned to a TDF output port using the function sca_ac_analysis::sca_ac_noise.

Note that the values returned from the functions sca_ac_analysis::sca_ac and sca_ac_analysis::sca_ac_noise
are implementation-defined and have no physical interpretation. These values can only be used to
describe the complex linear relation between the input and output ports, accessed using these port
access functions. Consequently, the values read during simulation from the input ports using the function
sca_ac_analysis::sca_ac does not represent a result for this port for the current frequency point.

5.3 Utility functions

The SystemC AMS extensions offer a set of utility functions, which can be used within the member function
ac_processing to define the small-signal frequency-domain behavior. Note that these functions cannot be used
in the time-domain processing method processing.

5.3.1 Frequency-domain delay

The function sca_ac_analysis::sca_ac_delay can be used to implement a continuous-time delay, defined as
e/ deley Example 5.2 shows the extension of the TDF delay example presented in Section 2.3.5. The delay is
now a module parameter, and used to initialize the delay samples to 0.0 for the time-domain simulation. Note
that the delay parameter is an integer value, reflecting the number of samples which will be inserted for time-
domain simulation, using a discrete time step. The member function ac_processing implements the frequency-
domain behavior of this delay. First, the delay is translated into a continuous-time variant, using the member
function get_timestep multiplied with the number of delayed samples. This value of type sca_core::sca_time
is passed as argument to the function sca_ac_analysis::sca_ac_delay, which defines the delay in the frequency
domain.
Example 5.2: Small-signal frequency-domain description of a continuous-time delay
SCA_TDF_MODULE(ny_t df _ac_del ay)
{

sca_tdf::sca_i n<doubl e> in;

sca_tdf::sca_out <doubl e> out;

nmy_tdf _ac_del ay( sc_core::sc_nodul e_nanme, unsigned |ong delay_ )
cin("in"), out("out"), delay(delay_) {}

void set_attributes()

{
}

out . set _del ay(del ay);

void initialize() /] tinme-donmin initialization
{
for( unsigned long i = 0; i < delay; i++)
out.initialize( 0.0, i );
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voi d processing() /1 time-donain inplenmentation

{
}

out.wite( in.read() );

voi d ac_processing() // frequency-donain inplenentation
{
sca_core::sca_tinme ct_delay = out.get_tinestep() * delay; // calculate continuous-tine del ay
sca_ac_anal ysis::sca_ac(out) = sca_ac_anal ysis::sca_ac(in) *
sca_ac_anal ysi s::sca_ac_del ay( ct_delay );
}

private:
unsi gned | ong del ay;

5.3.2 Laplace transfer functions

The frequency-domain descriptions of the Laplace transfer functions in the numerator-denominator
and zero-pole form are available, using the utility functions sca_ac_analysis::sca_ac_Itf nd or
sca_ac_analysis::sca_ac_Itf_zp, respectively. They can be used in combination with the time-domain
representation, as shown in Example 5.3.

Example 5.3: TDF model with embedded Laplace transfer function in the time- and frequency-domain filter
SCA_TDF_MODULE(I tf_filter_ac)

sca_tdf::sca_i n<doubl e> in;
sca_t df::sca_out <doubl e> out;

Itf _filter_ac( sc_core::sc_nmpdul e_name nm double fc_, double hO_ = 1.0 )
in("in"), out("out"), fc(fc_), hOo(h0o_) {}

void initialize()

{

nun(0) = 1.0;

den(0) = 1.0;

den(1) = 1.0/ ( 2.0 * MPI * fc );
}
voi d processing() /1 tinme-donmin inplementation
{

out.wite( Itf_nd( num den, in.read(), h0O ) );
}

voi d ac_processing() // frequency-donmain inplenentation
{
sca_ac_anal ysis::sca_ac(out) = sca_ac_anal ysis::sca_ac_|tf_nd(
num den, sca_ac_anal ysis::sca_ac(in), h0 );

}

private:
sca_tdf::sca_ltf_nd Itf_nd; /1 Laplace transfer function
sca_util::sca_vector<doubl e> num den; // nunmerator and denom nator coefficients

double fc; // 3dB cutoff frequency in Hz
doubl e hO; // DC gain
b

5.3.3 S-domain definitions

The function sca_ac_analysis::sca_ac_s supports frequency-domain representations defined in the s-domain,
by using the Laplace operator s” = (jw)".

Figure 5.2 and Example 5.4 show the definition and frequency response H(s) and implementation of a second

order low-pass filter, implemented in the time- and frequency-domain.
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Ip_filter_ac_s H(s)

H(s):ﬂz 1 X(s) Y(s)
X(s) s +s+1 \

Figure 5.2—Frequency response of second order
low-pass filter implemented in the s-domain

> f(Hz)

Example 5.4: TDF model of a second order low-pass filter in the time- and frequency-domain

SCA_TDF_MODULE(!| p_filter_ac_s)
{
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;
SCA CTOR(I p_filter_ac_s) : in("in"), out("out") {}

void initialize()

{
num(0) = 1.0;
den(0) = 1.0;
den(1l) = 1.0;
den(2) = 1.0;
}
voi d processing() /1 time-donain inplenmentation
{
out.wite( Itf_nd( num den, in.read(), 1.0 ) );
}
voi d ac_processing() // frequency-donain inplenentation
{
sca_util::sca_conplex h = 1.0 / ( sca_ac_anal ysis::sca_ac_s(2) +
sca_ac_anal ysis::sca_ac_s(1) + 1.0 );
sca_ac_anal ysis::sca_ac(out) = h * sca_ac_anal ysis::sca_ac(in);
}
private:
sca_tdf::sca_ltf_nd Itf_nd;
sca_util::sca_vector<doubl e> num den;
I

Alternatively, the frequency-domain behavior can be implemented using the relation s = jw. The member
function ac_processing from the previous example can be replaced with an implementation which uses the
function sca_ac_analysis::sca_ac_w, which returns the current angular frequency in radians/seconds:

Example 5.5: Small-signal frequency-domain implementation using s = jw
voi d ac_processi ng()

sca_util:: SCA_ COWLEX_J * sca_ac_anal ysis::sca_ac_wW);
1.0/ (s *s +s +1.0);

sca_util::sca_conplex s
sca_util::sca_conplex h

sca_ac_anal ysis::sca_ac(out) = h * sca_ac_anal ysis::sca_ac(in);

}

According to the relation o = 2xf, the frequency term can be used as well. The implementation using the
function sca_ac_analysis::sca_ac_f, which returns the current frequency in Hertz, becomes:

Example 5.6: Small-signal frequency-domain implementation using s = j2zf

voi d ac_processing()

sca_util::sca_conplex s
sca_util::sca_conplex h

sca_util::SCA_ COWLEX J * 2.0 * MPlI * sca_ac_anal ysis::sca_ac_f();
1.0/ (s *s +s +1.0);

sca_ac_anal ysis::sca_ac(out) = h * sca_ac_anal ysis::sca_ac(in);
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5.3.4 Z-domain definitions

The function sca_ac_analysis::sca_ac_z supports frequency-domain representations defined in the z-domain,

by using the operator z*( = e/ """ 5%P) Where n is an integer defining the delay, and sstep is the time step
between the delays. If the #step argument is not used, zstep will be defined as the time step returned by the
member function get_timestep.

Figure 5.3 shows the definition and frequency response H(z) of a comb-filter.

comb_filter H(z)

Figure 5.3—Frequency response of a comb-filter implemented in the z-domain

_Y@ _(1-z* !
H(Z)_X(z) [I—ZIJ

For the frequency-domain implementation, the function sca_ac_analysis::sca_ac_z is used, as shown in
Example 5.7.

Example 5.7: TDF model of a comb-filter in the time- and frequency-domain

SCA_TDF_MODULE(conb_filter)
{

sca_tdf::sca_i n<bool > in;
sca_tdf::sca_out<sc_dt::sc_int<28> > out;

conb_filter( sc_core::sc_nmodul e_nanme, int k_ =64, int n_ =3)
in("in"), out("out"), k(k.), n(n_) {}

void set_attributes()

{
in set_rate(k);
out.set_rate(1);

}
voi d ac_processing() // frequency-donain inplenentation

/1 conplex transfer function
sca_util::sca_conplex h = pow( ( 1.0 - sca_ac_anal ysis::sca_ac_z(-k) ) /

( 1.0 - sca_ac_analysis::sca_ac_z(-1) ), n);
sca_ac_anal ysis::sca_ac(out) = h * sca_ac_anal ysis::sca_ac(in) ;

}

voi d processing() /1 tinme-donmin inplenentation

{ . .
int x, vy, i;
for( i =0; i <k; i++) {
X = in.read(i);

out.wite(y);

}

private:
int k; // decimtion factor
int n; // order of filter

b
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5.3.5 Detection of small-signal frequency-domain analyses

The utility functions sca_ac_analysis::sca_ac_is running and sca_ac_analysis::sca_ac_noise_is_running
can be used within the member function processing or ac_processing of a TDF module, to implement specific
behavior, which depends on the type of analysis running.

The function sca_ac_analysis::sca_ac_is_running returns true when a small-signal frequency-domain or
noise analysis is running. The function sca_ac_analysis::sca_ac_noise_is_running only returns true if a
small-signal frequency-domain noise analysis is running.

Example 5.8 shows the implementation of a sinusoidal source, which can be used in time-domain and
frequency-domain simulations.

Example 5.8: TDF model of a sinusoidal source in the time- and frequency-domain
SCA_TDF_MODULE( si n_src)
sca_tdf::sca_out <doubl e> out;

sin_src( sc_core::sc_nodul e_name nm double offset_= 0.0, double anpl_= 1.0,

doubl e noi se_anpl _= 0.1, double freq_ = 1.0e3,

sca_core::sca_time Tm = sca_core::sca_tinme(0.125, sc_core::SC M) )
: out("out"), offset(offset_), anpl(anpl_), noise_anpl (noise_anpl_), freq(freq.), Tnm(Tm)
{}

void set_attributes()

{
set_tinmestep(Tm;

}
voi d processing()
double t = get_tinme().to_seconds(); // actual tinme

out.wite( offset + anpl * std::sin( 2.0*MPl*freg*t ) );
}

voi d ac_processing()
{
if( sca_ac_anal ysis::sca_ac_noise_is_running() ) (1]
sca_ac_anal ysi s::sca_ac_noi se(out) = noise_anpl;
el se
sca_ac_anal ysis::sca_ac(out) = anpl;
}

private:
doubl e of fset, anpl, noise_anpl, freq;
sca_core::sca_time Tm

i

(1] Only for small-signal frequency-domain noise analysis, the function
sca_ac_analysis::sca_ac_noise_is_running returns true. In this case, the noise amplitude of the
source is set.

5.4 Small-signal frequency-domain analysis with combined TDF, LSF and ELN
models

As already stated in the introduction of this chapter, the small-signal frequency-domain analysis is able to
extract the frequency behavior of the entire analog/mixed-signal system. The frequency response of the entire
system can be analyzed by using TDF modules, which have their frequency-domain behavior defined in their
member function ac_processing, plus the frequency-domain description of LSF and ELN primitive modules,
which is extracted from the LSF and ELN equation system during elaboration.
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The implementation shown in Example 5.9 is based on the module composition as presented in Figure 5.1. The
example shows time-, small-signal frequency-domain and small-signal frequency-domain noise simulation.
The results are written to different trace files.

Example 5.9: Time- and frequency-main simulation in sc_main

int sc_main(int argc, char* argv[])
{
sca_el n:: sca_node net 1;
sca_tdf::sca_signal <doubl e> sigl, sig2, sig3;

/'l source and sink
el n_nodel a("a");
a.p(netl);
a.outp(sigl);

| sf _nmodel b("b");

b.in(sigl);

b. out (si g2);
tdf _nodel c("c");

c.in(sig2);

c.out(sig3);
/'l tracing
sca_util::sca_trace_file* tf = sca_util::sca_create_tabular_trace_file("trace.dat");
sca_util::sca_trace(tf, netl, "netl");
sca_util::sca_trace(tf, sigl, "sigl");
sca_util::sca_trace(tf, sig2, "sig2");
sca_util::sca_trace(tf, sig3, "sig3");

/1l start tine-domain sinulation
sc_core::sc_start(10, sc_core::SC MS);

tf->reopen("ac_trace.dat");
tf->set_npde(sca_util::sca_ac_format(sca_util::SCA AC_MAG RAD));

I/ start frequency-domain sinmulation
sca_ac_anal ysis::sca_ac_start(1.0e3, 100.0e4, 4, sca_ac_analysis::SCA LOG;

tf->reopen("ac_noise_trace.dat");
tf->set_node(sca_util::sca_noise_format(sca_util::SCA NO SE_ALL));

I/ start frequency-domain noise sinulation
sca_ac_anal ysis::sca_ac_noi se_start(1.0e3, 100.0e4, 4, sca_ac_analysis::SCA LOG;

sca_util::sca_close_tabular_trace_file(tf);

return O;

More information on the simulation control and tracing capabilities can be found in Chapter 6.
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6. Simulation and tracing

The AMS extensions use the SystemC functions to start and stop time-domain simulations. New functions are
available for frequency-domain simulation. Advanced tracing mechanism are available to enable or disable
time-domain or frequency-domain tracing while running simulations.

6.1 Simulation control
6.1.1 Time-domain simulation

Time-domain (transient) simulation is started by calling sc_core::sc_start from within the function sc_main,
as shown in Example 6.1.

Example 6.1: Time-domain (transient) simulation in sc_main
#i ncl ude <systent-ans>

#i ncl ude "ny_source. h"
#i ncl ude "ny_control . h"
#i ncl ude "ny_dut.h"

#i ncl ude "ny_sink. h"

int sc_main(int argc, char* argv[])

{

sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);

sca_tdf::sca_si gnal <doubl e> sigl, sig2;
sc_core::sc_signal <bool > sc_sig;

my_source i_mny_source("i_ny_source");
i _my_source.out(sigl);

my_control i_my_ctrl("i_my_ctrl");
i_my_ctrl.out(sc_sig);

my_dut i_nmy_dut("i_nmy_dut");
i_my_dut.in(sigl);
i_my_dut.ctrl(sc_sig);
i _my_dut.out(sig2);

nmy_sink i_my_sink("i_ny_sink");
i_my_sink.in(sig2);

sc_core::sc_start(10.0, sc_core::SC M);

return O;

6.1.1.1 Program arguments

The function sc_main acts as main program, and has the same signature of arguments and return value as
C++’s usual program entry function i nt main(int argc, char* argv[]). The argument ar gc specifies the
number of arguments passed to the main routine. The argument ar gv[] is a field of pointers to the different
string arguments, where argv[0] is the program name.

Note that implementations or simulators, which support SystemC and the AMS extensions may use different
mechanisms to define the main program body or even use an alternative approach to sc_main.

6.1.1.2 Time resolution
For AMS simulations, it is recommended to use the smallest time resolution possible covering the required

simulation time using the function sc_core::sc_set_time_resolution. It is recommended to add this function as
the first statement in the sc_main function. For time-domain simulation, a time resolution of 1 femtosecond (fs)

78
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

is recommended, which is the smallest time resolution possible allowing a maximum simulation time of 2% fs,
which is approximately 5 hours. In the case where longer simulation times are needed, the time resolution
should be increased resulting in a coarser time grid and in possible rounding errors.

6.1.1.3 Simulation arguments

The function sc_core::sc_start without arguments will result in a simulation that runs until the last event has
been processed, which might be forever. To simulate for a limited amount of time, the to-be-simulated-time
can be specified as a double value together with the time unit, or as an object of class sc_core::sc_time. The
function sc_core::sc_start can be called multiple times, as shown in Example 6.2.

Example 6.2: Time-domain simulation calling sc_core::sc_start multiple times
int sc_main(int argc, char* argv[])
{
/1 instantiate design and testbench, setup tracing,
sc_core::sc_start(10.0, sc_core::SC_Ms); (1]

sc_core::sc_time simtinme(10.0, sc_core::SC M5);
sc_core::sc_start(simtine); (2]

sc_core::sc_start(); ©

return O;

o Start transient analysis, where the simulation time is specified with two arguments. The first argument
is the time of type double. The second argument is the time unit, which is an object of class
sc_core::sc_time_unit.

(2] Start transient analysis, where the simulation time is specified with a single argument, which is an
object of class sc_core::sc_time.
(3] In this case, no simulation time is specified. Transient analysis will run till the event queue is empty.

6.1.2 Small-signal frequency-domain simulation

Frequency domain simulations are also started from within the function sc_main, using
sca_ac_analysis::sca_ac_start for a small-signal (AC) simulation and sca_ac_analysis::sca_ac_noise_start
for a small-signal frequency-domain noise simulation. In the case that the model description has not been
elaborated, because sc_core::sc_start has not yet been called, this will be automatically done before the first
frequency-domain simulation starts.

It is possible to subsequently call the frequency-domain and time-domain analyses start functions in any order
inside the function sc_main, to analyze the system description under different operating points or digital states.

Example 6.3 shows the wusage of the functions sca_ac analysis::sca_ac start and
sca_ac_analysis::sca_ac_noise_start, which take as arguments the start frequency, stop frequency,
number of frequency points, and whether a linear (sca_ac_analysis::SCA_LIN) or logarithmic
(sca_ac_analysis::SCA_LOG) frequency scale should be used.

Example 6.3: Small-signal frequency-domain simulation

/1 frequency-donain sinulations from1lkHz to 10kHz with 100 points on a linear scale:
sca_ac_anal ysi s::sca_ac_start(1.0e3, 10.0e3, 100, sca_ac_anal ysis::SCA LIN);
sca_ac_anal ysi s::sca_ac_noi se_start(1.0e3, 10.0e3, 100, sca_ac_anal ysis::SCA LIN);

/'l frequency-donain sinulations from1lHz to 1MH with 1001 points on a logarithmc scale:

sca_ac_anal ysis::sca_ac_start(1.0, 1.0e6, 1001, sca_ac_anal ysis::SCA LOG ;
sca_ac_anal ysi s::sca_ac_noi se_start(1.0, 1.0e6, 1001, sca_ac_anal ysis::SCA LOG ;
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6.2 Tracing

The SystemC AMS extensions provide utility functions to record the simulation results (waveforms) into trace
files, using the Value Change Dump (VCD) format or tabular format. The VCD format has limited capabilities
to trace AMS signals, nodes, ports, terminals, or variables. Besides the tracing of regular SystemC variables
and signals, it only supports tracing for time-domain simulations. The tabular format can be used to record
both time-domain and frequency-domain traces.

The trace file is usually created at the top-level (e.g., inside sc_main) after all modules and
signals have been instantiated, and just before starting the actual simulation using sc_core::sc_start,
sca_ac_analysis::sca_ac_start, or sca_ac_analysis::sca_ac_noise_start.

6.2.1 Trace files and formats
6.2.1.1 Tracing to a VCD file

For tracing waveforms using the VCD format, the trace file is created by calling the function
sca_util::sca_create_vcd_trace_file with the name of the file as an argument. This function returns a
pointer to a data structure that is used for tracing. Closing the trace file is done using the function
sca_util::sca_close_vcd_trace_file with as argument the pointer to the same data structure.

Example 6.4: Tracing to a VCD file

/1 open trace file in VCD fornat
sca_util::sca_trace_file* atf = sca_util::sca_create_vcd_trace_file( "ny_trace.vcd" );

Il close the trace file
sca_util::sca_close_vcd_trace_file( atf );

6.2.1.2 Tracing to a tabular file

For tracing waveforms using the tabular format, the trace file is created by calling the function
sca_util::sca_create_tabular_trace_file with the name of the file as an argument. The function returns
a pointer to a data structure that is used for tracing. Closing the trace file is done using the function
sca_util::sca_close_tabular_trace_file with as argument the pointer to the same data structure, as shown in

Example 6.5.

Example 6.5: Tracing to a tabular file

/1 open trace file in tabular fornmat
sca_util::sca_trace_file* atf = sca_util::sca_create_tabular_trace_file( "ny_trace.dat" );

Il close the trace file
sca_util::sca_close_tabular_trace_file( atf );

6.2.1.3 Tracing to a tabular stream

As tracing of analog signals could result in very big trace files, the AMS tracing functionality has been extended
to trace to an output stream, so there is no file generated. This allows direct processing of the AMS signals
available in the output stream derived from std::ostream, for example to immediately display the results or to
compact the results into an archive file.

For tracing waveforms to an output stream, the trace file is created by calling the function
sca_util::sca_create_tabular_trace_file with the output stream object as an argument. The function returns
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a pointer to an object of class sca_util::sca_trace_file, which references the stream and is used to manage the
signal tracing to it. Closing the trace file is done using the function sca_util::sca_close tabular_trace_file
with as argument the pointer to the same output stream, as shown in Example 6.6.

Example 6.6: Tracing to a tabular stream

/1l trace in tabular format to the shell
sca_util::sca_trace_file* atfs = sca_util::sca_create_tabular_trace_file(std::cout);

I/ close the trace file handle, the streamis automatically closed once the scope of os is left.
sca_util::sca_close_tabular_trace_file(atfs);

6.2.1.4 Trace file control

As tracing of AMS signals could result in very large and unmanageable waveform files, additional functionality
is available to control the recording of trace files. The following trace file control methods are available for
class sca_util::sca_trace_file:

a)
b)

c)

d)

The member function enable will start tracing at the simulation time where this method is called.

The member function disable will stop tracing at the simulation time where this method is called.

The member function reopen will close the existing trace file (if it was open), and will continue tracing
in a new trace file at the simulation time where this method is called.

The member function set_mode will change the mode of the trace file at the simulation time where
this method is called. The following modi are available:

1)

2)

3)

4)

5)

The time step (sampling) between samples can be set by using the function
sca_util::sca_sampling, where the first argument is the time step and the second argument
is the time offset. Both arguments should be an object of class sca_core::sca_time.

The function sca_util::sca_decimation, with argument n, will only write the n-th sample
to the trace file.

The function sca_util::sca_multirate defines which signal value should be
written to the trace file if no actual value is available. This can occur
while tracing signals with different rates and time steps. Available arguments
are to interpolate (sca_util::SCA_INTERPOLATE), to use the last available
value (sca_util::SCA_HOLD_SAMPLE), or to not write a value at all
(sca_util::SCA_DONT_INTERPOLATE). In the latter case, the symbol ‘*’ is written
to the trace file.

For small-signal frequency-domain tracing, the function sca_util::sca_ac_format
defines the format, in which the signals are written. Available function
arguments are: real/imaginary (sca_util::SCA_AC_REAL IMAG) and amplitude/
phase in magnitude/radians (sca_util::SCA_AC_MAG_RAD) or dB/degrees
(sca_util::SCA_AC_DB_DEG).

For small-signal frequency-domain tracing, the function sca_noise_format defines how
the noise contribution is written to the trace file. If sca_util::SCA_NOISE_ALL
is passed, each individual noise contribution is written to the trace file. If
sca_util::SCA_NOISE_SUM is passed, the sum of all noise contributions is written to
the trace file..

The following sections give some examples on how to use trace file control in combination with simulation
control.
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6.2.2 Tracing sighals and comments
6.2.2.1 Supported AMS signals

The function sca_util::sca_trace is used to trace the actual AMS signals. The following elements can be traced:

— For TDF models, tracing is possible for TDF signals, TDF ports, and variables derived from class
sca_tdf::sca_trace_variable.

— For LSF models, tracing is possible for LSF signals and LSF ports.

— For ELN models, voltage tracing is supported for nodes and terminals. Current tracing through ELN
primitive modules having two terminals is supported. Some simulators also support current tracing
through ELN primitive modules with more than two terminals.

—  SystemC (discrete-event) signals and ports.

Example 6.7 shows how to use the function sca_util::sca_trace for the tracing of AMS signals of TDF, LSF
or ELN models.

Example 6.7: Tracing AMS signals

sca_util::sca_trace( atf, sigl, "sigl" ); /1 trace TDF signal sigl
sca_util::sca_trace( atf, sig_de, "sig_de" ); /1 trace SystenC signal sig_de
sca_util::sca_trace( atf, nmy_source.out, "outl" ); /1 trace output of nodule ny_source
sca_util::sca_trace( atf, my_source.i_sin_src->out, "out2" ); // trace output of nested nodul e
sca_util::sca_trace( atf, my_sink.trv, "trv" ); /1 trace variable in nodul e ny_sink

6.2.2.2 Writing comments to a trace file

In order to write some user-specific comments or remarks in a tabular trace file, the function
sca_util::sca_write_comment can be used, where the first argument is the pointer to the data structure of the
trace file and the second argument is the string containing the comment. The comment, including the preceding
character ‘%’, is added to the trace file at the simulation time where this function is called.

Example 6.8: Writing comments to a trace file

/1 open trace file in tabular fornat
sca_util::sca_trace_file* atf = sca_util::sca_create_tabular_trace_file( "ny_trace.dat" );

// add comment to trace file
sca_util::sca_wite_comrent( atf, "user-defined coments" );

Il close the trace file
sca_util::sca_close_tabular_trace_file( atf );

Note that adding user-specific comments could result in incompatibilities when using a specific waveform
viewer, depending on file formats supported. It is recommended to check whether a particular waveform viewer
supports a format which allows inclusion of user-specific comments.

6.2.2.3 Trace file example

This section shows some results of tracing time- and frequency signals, based on the tracing definition in the
sc_main program shown in Example 6.9.
Example 6.9: Tracing signals in the time- and frequency-domain

int sc_main(int argc, char* argv[])

{
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. /1 instantiate design and testbench
sca_util::sca_trace_file* tf = sca_util::sca_create_tabular_trace_file("trace.dat"); (1]

sca_util::sca trace(tf, sigl, "sigl"); @
sca_util::sca_trace(tf, sig2, "sig2");

sc_core::sc_start(2.0, sc_core::SC _M); (3]

tf->reopen("ac_trace.dat"); (4]

tf->set_node(sca_util::sca ac_format(sca_util::SCA AC MAG RAD)); ©
sca_ac_anal ysis::sca_ac_start(1.0e3, 1.0e6, 4, sca_ac_anal ysis::SCA LOG; (6]
tf->reopen(“trace.dat", std::ios_base::app); (7]

sc_core::sc_start(10, sc_core::SC M5); ©

tf->reopen("ac2_trace.dat"); o

sca_ac_anal ysis::sca_ac_start(1.0e3, 1.0e6, 4, sca_ac_anal ysis::SCA LOG ; ®

sca_util::sca_close_tabular_trace_file(tf); (11}

-

Trace AMS signals to a file in tabular format using the tracing functionality of the AMS extensions.
Define which signals to trace.

Execute time-domain simulation for 2 ms. Signals si g1 and si g2 will be traced.

Close the current trace file and start tracing to a new file for the first AC analysis.

Definition to trace the amplitude and phase of the signals in magnitude and radians.

Execute AC simulation at the operating point at the current time. AC analysis is done from 1 kHz to
1 MHz with 4 points on a logarithmic scale.

Re-open time-domain trace file and continue tracing (append).

Continue time-domain simulation for 10 ms.

Open new trace file for next AC simulation.

Execute AC simulation at the operating point at the current time.

Close the trace file.

6000 ©0000OOCS

The file trace. dat is shown in Example 6.10. The %time in the first line indicates that this file was created
during time-domain simulation, and shows the signal names, which are traced. Each line shows the time in
seconds and signal values at that point in time. The values are separated by one or more spaces.

Example 6.10: Tabular trace file of time-domain simulation

%ime sigl sig2
000

0.0005 1 1le-6
0.001 2 1.5e-6
0.0015 3 2e-6
0.002 4 2.5e-5

Example 6.11 shows the result of the small-signal frequency-domain tracing in ac_t r ace. dat . The file starts
with %frequency in the header. The format of the AC signals is set to amplitude (the magnitude) and phase (in
radians) indicated with .mag and .rad suffixes to the signal names, respectively.

Example 6.11: Tabular trace file of small-signal frequency-domain simulation

% requency sigl.mag sigl.rad sig2. nag sig2.rad
1000 1 0 2.53302962314e-08 -3.14143349864
10000 1 O 2.53302959138e-10 -3.1415767381
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100000 1 O 2.53302959106e-12 -3.14159106204
1000000 1 O 2.53302959106e-14 -3.14159249443

6.3 Testbenches

Testbenches are used to provide stimulus to a device under test (DUT) and check the results or response of the
DUT. Very often the DUT is put into a certain state, using an external control. A typical testbench structure

is given in Figure 6.1.

main program
: Testbench :
! Control :
I I
I | i —————— I
: | dl ! i :
I L | device | I |
: Stimuli [ 1 I under | 1y Checker :
I | test : I
]! .

Figure 6.1—Testbench containing stimulus, control, checker, and device under test

A testbench can be implemented in various ways:

— The stimulus and controller can be embedded in the main program and the results is checked in another
module. In this way, the main program acts as the testbench.

— The stimulus, controller, and checker are part of a dedicated module, which is instantiated in the main
program. Such a module is often called a verification component, which basically acts as the testbench.

— The stimulus and controller are separate modules, both instantiated in the main program. The checker
is embedded in the main program, which acts as the testbench.

Besides the examples listed above, there are other possibilities to create a testbench. Obviously, there is no
single ‘right’ way to create a testbench; it depends on the application.

Example 6.12 shows the main program in which the stimuli my_sour ce, the control ny_control and the sink
my_si nk are instantiated as objects. Together with the tracing implemented as inline code, they form the
testbench. The device under test ny_dut 1is instantiated as a module and is connected to the modules of the
testbench.

Example 6.12: Simple test bench in s¢_main

#i ncl ude <systenc-anms>

#i nclude "ny_source. h"

#include "ny_control . h"

#i nclude "ny_dut.h"

#i nclude "ny_sink. h"

int sc_main(int argc, char* argv[])

{

sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS)

sca_tdf::sca_signal <doubl e> sigl, sig2
sc_core::sc_signal <bool > sc_sig

ny_source i_ny_source("i_ny_source")
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i _my_source.out(sigl);

nmy_control i_ny_ctrl("i_nmy_ctrl");
i_my_ctrl.out(sc_sig);

nmy_dut i_ny_dut("i_nmy_dut");
i_ny_dut.in(sigl);
i_ny_dut.ctrl(sc_sig);
i _ny_dut.out (sig2);

ny_sink i_nmy_sink("i_my_sink");
i_ny_sink.in(sig2);

sc_core::sc_trace_file* tf = sc_core::sc_create_vcd_trace_file("ny_sc_trace"); (1]
sc_core::sc_trace(tf, sc_sig ,"sc_sig");

sca_util::sca_trace_file* atfl = sca_util::sca_create_vcd_trace_file("anms_vcd_trace.vcd"); (2]
sca_util::sca_trace(atfl, sigl ,"sigl");
sca_util::sca_trace_file* atf2 = sca_util::sca_create_tabular_trace_file("anms_trace.dat"); (3]
sca_util::sca_trace(atf2, sig2 ,"sig2");

sc_core::sc_start(2.0, sc_core::SC _M); (4]

atf 2->reopen("ans_trace2.dat"); (5]
sc_core::sc_start(2.0, sc_core::SC _M);

atf2->disable(); O
sc_core::sc_start(2.0, sc_core::SC _MS);

atf2->enable(); @
atf2->set _node( sca_util::sca_decimtion(2) );
sc_core::sc_start(2.0, sc_core::SC _M);

atf2->reopen("anms_trace3.dat"); (8]

sca_core::sca_time tstep(1.0, sc_core::SC_M); o
atf2->set_node( sca_util::sca_sanpling( tstep, sc_core::SC ZEROTIME ) );
sc_core::sc_start(10.0, sc_core::SC_M);

sc_core::sc_close_vcd_trace_file(tf); {10]
sca_util::sca_close_vcd_trace_file(atfl);
sca_util::sca_close_tabular_trace_file(atf2);

return O;

Trace signals using SystemC'’s standard tracing facility.

Trace AMS signals to a file in VCD format using the tracing functionality of the AMS extensions.
Trace AMS signals to a file in tabular format using the tracing functionality of the AMS extensions.
Start time-domain simulation. Signals si g1 and si g2 will be traced.

Close the current trace file and start tracing to a new file.

Disable tracing to at f 2 to not record the next 2 ms.

Re-enable tracing to at f 2, but with a different sample period defined by a decimation factor of 2 (skip
one sample).

Close the current trace file of at f 2 and start tracing to a new file using a different time step.

Define how samples are written to the trace file. Sample every 1 ms starting from 0 ms.

Close all trace files.

600 00O00ODO0O0O
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7. Application examples

This chapter shows concrete application examples using the different models of computation offered by the
SystemC AMS extensions. These application examples are also made available for download®.

7.1 Binary Amplitude Shift Keying (BASK) example

This section shows a Binary Amplitude Shift Keying (BASK) modulator and demodulator application example.
It demonstrates the use of the TDF model of computation and its multirate capabilities. Especially, the
interaction of time steps and data rates will play an important role here. The reader is encouraged to reproduce
the computations regarding data rates and time steps of the examples in this section in order to grasp the
concepts of Timed Data Flow modeling.

7.1.1 BASK modulator

This example considers Binary Amplitude Shift Keying (BASK) modulation, where a sinusoidal carrier is
modulated by a binary signal. A BASK modulator consists of the carrier signal source (si n_src) and a mixer
(mi xer ), which basically multiplies a binary baseband signal (bi t _sr c) with segments of the carrier signal.
Figure 7.1 shows a structural composition of the BASK modulator. The signals in this figure illustrate the
concept of Binary Amplitude Shift Keying.

carrier
bask_mod e 1 o o 1 1 e

sin_src

Tp:5ns

carrier

bit_src

—~— -

Figure 7.1—BASK modulator

The module si n_sr ¢ is already described in Section 2.3.1. The mixer reads 40 carrier samples per baseband
sample. Example 7.1 shows the implementation.
Example 7.1: TDF model of a mixer

SCA_TDF_MODULE( i xer )
{

sca_tdf::sca_i n<bool > i n_bin; /1 input port baseband signal
sca_tdf::sca_i n<doubl e> in_wav; /1 input port carrier signal
sca_t df::sca_out <doubl e> out; /1 output port nodul ated signal

SCA_CTOR( i xer)
cin_bin("in_bin"), in_wav("in_wav"), out("out"), rate(40) {} // use a carrier data rate of 40

voi d set_attributes()

{
in_wav.set_rate(rate);
out.set_rate(rate);

}

¢ Application examples are available for download at the Accellera Systems Initiative SystemC community pages https:/

www.accellera.org/community/systemc/about-systemc-ams/.
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voi d processing()

{

for(unsigned long i = 0; i < rate; i++)

if (in_bin.read() )
out.wite( in_wav.read(i), i );
el se
out.wite( 0.0, i );
}

}

private:
unsigned long rate;

}i

This is obviously more sensible than up-sampling the binary signal first to a data rate of 40 such that both
the carrier signal and the base band signal fit to a mixer with both input ports set to a data rate of 1. Example
7.2 shows how the two modules can be combined to form a BASK modulator module. Note that a regular
SC_MODULE is used in this case, in which the two TDF primitive modules are instantiated.

Example 7.2: TDF model of the BASK modulator

SC_MODULE( bask_nnd)
{

sca_tdf::sca_i n<bool > in;
sca_t df::sca_out <doubl e> out;

sin_src sine;
m xer m Xx;

SC_CTOR( bask_nnd)

cin("in"), out("out"),
sine("sine", 1.0, 1.0e7, sca_core::sca_time( 5.0, sc_core::SCNS) ),
m x("mx")

sine.out(carrier);
m x.in_wav(carrier);
m X.in_bin(in);

m x. out (out);

}

private:
sca_t df::sca_signal <doubl e> carrier;

b

Note that the carrier frequency of 10 MHz is set by passing a parameter to the module si n_src, while the
baseband frequency is determined indirectly by the data rate of the module ni xer, and the time step set at
the output of module si n_src. The port i n_wav of the module ni xer has the same time step as the output of
module si n_src (namely 5 ns), but a data rate of 40. Therefore, the port i n_bi n of the module ni xer, which
has a data rate of 1, gets a time step of 200 ns. This results in a baseband frequency of 5 MHz, which is exactly
the situation depicted in Figure 7.1.

The code of the binary baseband source, which produces a random binary signal is given in Example 7.3.

Example 7.3: TDF model of the source generating random bits
SCA_TDF_MODULE(bi t _src)

sca_tdf::sca_out<bool > out; // output port

SCA CTOR(bit_src) : out("out") {}

voi d processing()

{
out.wite( (bool)(std::rand()%®) );

}
¥
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7.1.2 BASK demodulator

The demodulation of a BASK modulated signal is done by first using a rectifier (which takes the absolute value
of the signal), followed by a low-pass filter, which can be implemented as described in Section 2.3.2 with the
module I tf_nd_filter. Example 7.4 shows the implementation of the rectifier.

Example 7.4: TDF model of the rectifier

SCA_TDF_MODULE(rectifier)

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

SCA CTOR(rectifier) : in("in"), out("out") {}

voi d processing()

{

out.wite( std::abs(in.read()) );
}
e

The output signal of the low-pass filter is a signal of type double, which contains 40 samples per 200 ns, and
needs to get sampled down to 1 sample per 200 ns (see Figure 7.2).

bask_demod

-

sampler
R:40

-~

A\
1/ \ I/ \\ l/ \‘
1 1 1 e — L
. \ 1 \ ! !
in\ J rc out \ Y, Ip_out \ J out
NG A M e
AT B I S e
i M / I 1
T t o7 O t o7 " >t 1 > t

Figure 7.2—BASK demodulator

Example 7.5 shows an implementation of the sampler. It has an input data rate of 40. Therefore, it reads exactly
the number of samples, which are associated to one specific bit in the baseband signal. It only uses one sample
at a fixed sampling position within the second half of the sample stream read per module execution. The idea
behind this is that the output of the low-pass filter can be expected to be settled by that time. If the value
of a sample is greather than the threshold value, the output of the sampler is true, and false otherwise. This
effectively models a 1-bit A/D converter, which samples its input every 200 ns.

Example 7.5: TDF model of the sampler

SCA_TDF_MODULE( sanpl er)
{

sca_tdf::sca_in<double> in; // input port
sca_tdf::sca_out<bool> out; // output port

SCA CTOR(sanpler) : in("in"), out("out"), rate(40), threshol d(0.2) {}

void set_attributes()

{
in set_rate(rate);
sanpl e_pos = (unsigned long)std::ceil( 2.0 * (double)rate/3.0 );

}

voi d processing()
{
if( in.read(sanple_pos) > threshold )
out.wite(true);
el se
out.wite(false);
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}
private:

unsigned |long rate;
doubl e threshol d;

}i

Note that the above code bears a certain causal looseness, which can occur if the rate of the input port is
greater than 1: The value of the output sample is computed based on an input sample, which has a time stamp
greater than the output token. Therefore, regarding the simulation time of the TDF model of computation, effect
precedes cause. This irregularity can easily be resolved by introducing a delay, for example with a set_delay(1)
at the output port. However, this is not really necessary since serious problems (i.e. paradoxes) could occur
only if a produced output value would be fed into a feedback loop. But in this case, a delay has to be introduced
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unsi gned | ong sanpl e_pos;

anyway (see Section 2.1.3), which resolves the problem automatically.

Example 7.6 shows how the three modules are combined for the overall BASK demodulator module. Note
that no time step is explicitly set here, since we expect it to be set in the part of the model which provides

the modulated signal.

Example 7.6: TDF model of the BASK demodulator

SC_MODULE( bask_dennd)
{

sca_tdf::sca_i n<doubl e> in;

sca_tdf::sca_out <bool >

rectifier rc;
Itf_nd_filter Ip;
sanpl er sp;

SC_CTOR( bask_dennd)
cin("in"), out("out")
{
rc.in(in);
rc.out(rc_out);

Ip.in(rc_out);
I p.out (I p_out);

sp.in(lp_out);
sp. out (out);

}

private:

out;

, rc("rc"), Ip("lIp", 3.3e6), sp("sp"), rc_out("rc_out"),

sca_tdf::sca_si gnal <doubl e> rc_out, |p_out;

b

7.1.3 TDF simulation of the BASK example

The implementation of the complete BASK application is done in the s¢_main program, see Example 7.7.
Within the program body, the bit source module bi t _src, BASK modulator module bask_nod and BASK
demodulator module bask_denod are instantiated. These TDF modules are interconnected using TDF signals.

Example 7.7: BASK application main program

int sc_main(int argc, char* argv[])

{

sc_core::sc_set_time_resolution(1.0, sc_core::SC_FS);

sca_tdf::sca_signal <bool > in_bits, out_bits;
sca_t df::sca_si gnal <doubl e> wave;

bit_src bs("bs"); /1 random bit source
bs.out (in_bits);

bask_nmod nod("nod"); /1 nodul at or

89
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

| p_out ("I p_out")



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

mod. i n(in_bits);
nod. out (wave) ;

bask_denod denod(“denod"); // denodul ator
denod. i n(wave) ;
denod. out (out _bits);

sca_util::sca_trace_file* atf = sca_util::sca_create_vcd_trace_file( "tr.vcd" );
sca_util::sca_trace( atf, in_bits, "in_bits" );

sca_util::sca_trace( atf, wave, "wave" );

sca_util::sca_trace( atf, out_bits, "out_bits" );

sc_core::sc_start(1, sc_core::SC US);
sca_util::sca_close_vcd_trace_file( atf );

return O;

More information on the simulation control and tracing capabilities can be found in Chapter 6.
7.1.4 Interfacing the BASK example with SystemC

As shown by Figure 7.1, the components instantiated in the BASK example are all TDF modules that belong
to the same TDF cluster. In particular, the random binary signal at the data input of the mixer is generated by
the pure TDF module bi t _src.

In practice, this binary signal is more likely to be produced by a digital component that follows the
discrete-event domain rules, resulting in a true heterogeneous system composed of two digital parts (the
random data generator and the data drain) and one AMS TDF part (the BASK modulator and demodulator).
Figure 7.3 shows the major modification induced by this design: the data input of the BASK modulator
(respectively, the data output of the BASK demodulator) should now be a SystemC sc_core::sc_in<T> port
(resp. sc¢_core::sc_out<T> port) carrying Boolean values. From the TDF perspective, a converter port is thus
required to read from the channel (resp. to write to the channel) corresponding to the discrete-event domain
port. Such ports are indicated by the symbol B in this Figure.

bask_mod_de

sin_src

Tp:5ns

carrier

R:40

bit_src_de _Ra0
- = mixer_de

—~— ———

Figure 7.3—BASK modulator, mixing discrete-event and TDF domain

The code shown in Example 7.8 is pure SystemC. Thanks to the infinite loop in a SystemC SC_THREAD
construct, this new version of the bit source, now called bi t _sr c_de, generates a new random Boolean value
on its output port out every 200 ns.

Example 7.8: SystemC discrete-event model of the source generating random bits
SC_MODULE( bit _src_de)

{

sc_core::sc_out<bool > out;
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SC CTOR(bit_src_de): out("out")

SC_THREAD( bi t _gen_t hread);

}
voi d bit_gen_thread()
{
whi | e(true)
bool var = (bool)(std::rand()%);
out.wite(var);
sc_core::wait( 200, sc_core::SC NS );
}
}

¥

The TDF mixer module has now a digital input i n_bi n connected to the output of the bi t _src_de SystemC
module. The mixer source code as shown in Example 7.9 does not differ too much from the one shown in
Example 7.1; the major modification being the introduction of the discrete-event converter input port.

Example 7.9: TDF model of a mixer with an input port from the discrete-event domain

SCA_TDF_MODULE( i xer _de)

{
sca_tdf::sca_de::sca_in<bool > in_bin; // TDF converter input port fromdiscrete-event domain
sca_tdf::sca_i n<doubl e> in_wav;
sca_t df: : sca_out <doubl e> out ;

SCA_CTOR( i xer _de)
in_bin("in_bin"), in_wav("in_wav"), out("out"), rate(40) {}

voi d set_attributes()

{
in_wav.set_rate(rate);
out.set_rate(rate);

}
voi d processing()
{
for(unsigned long i = 0; i < rate; i++)
if(in_bin.read())
out.wite( in_wav.read(i), i );
el se
out.wite( 0.0, i );
}
}
private:

unsi gned |ong rate;

b

Accordingly, the source code for the BASK modulator, shown in Example 7.10, details the minor change
needed: the data input is now a discrete-event input port.

Example 7.10: SystemC hierarchical model of the BASK modulator

SC_MODULE( bask_nod_de)
{

sc_core::sc_i n<bool > in, // data input is now digital
sca_t df::sca_out <doubl e> out;

sin_src sine;
m xer_de mx; // use mxer with discrete-event input

SC_CTOR( bask_nod_de)

cin("in"), out("out"),
sine("sine", 1.0, 1.0e7, sca_core::sca_time( 5.0, sc_core::SCNS) ),
mx("mx"), carrier("carrier")

sine.out(carrier);
m x.in_wav(carrier);
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m X.in_bin(in);
m x. out (out);

}

private:
sca_tdf::sca_signal <doubl e> carrier;

}i

For completeness, the source code for the BASK sampler in the demodulator is given in Example 7.11. The
data output out is now a converter output port. The corresponding port in the demodulator which instantiates
the sampler is declared as a traditional SystemC output port.

Example 7.11: TDF model of the BASK sampler

SCA_TDF_MODULE( sanpl er _de)
{

sca_tdf::sca_in<double> in; // input port
sca_tdf::sca_de::sca_out<bool > out; // TDF converter output port to discrete-event domain

SCA CTOR(sanpler_de) : in("in"), out("out"), rate(40), threshold(0.2) {}

void set_attributes()

{
in . set_rate(rate);
sanpl e_pos = (unsigned long)std::ceil( 2.0 * (double)rate/3.0 );

}

voi d processing()
{
if( in.read(sanple_pos) > threshold )
out.wite(true);
el se
out.wite(false);

}

private:
unsigned long rate;
doubl e threshol d;
unsi gned | ong sanpl e_pos;

b

7.2 Proportional-Integral-Derivative (PID) controller example

The Linear Signal Flow modeling formalism is very suitable to model control systems. An example of such
a control system is shown in Figure 7.4. This example shows the use of a Proportional-Integral-Derivative
(PID) controller, which is part of a control loop. The input of the PID controller is an error signal e(#), which is
the difference between a measured output value () of a certain device and the desired reference input y,. The
control output u(¢) generated by the PID controller, which regulates the behavior of the device under control,
will be such that the error signal will be minimized. The responsiveness and behavior of the PID controller
to an error, either caused by a (sudden) change of the reference input or output value, depends on the PID
controller characteristics defined by the parameters K, K;, and K.
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Figure 7.4—Block diagram of a PID controller within a control loop

The parameters K, K;, and K; are used within the PID controller to set the proportional, integral, and derivative
terms, which are then summed to calculate the control output. The equation system of the PID controller, in
which e(?) is the error input signal and u(z) is the controller output, then becomes:

t

The PID controller can be implemented by using LSF primitive modules in a parent module as shown in
Example 7.12.

Example 7.12: LSF model of the PID controller

SC_MODULE( pi d_controller)
{

sca_l sf::sca_in e;
sca_l sf::sca_out u;

sca_l sf::sca_gain gainl;
sca_l sf::sca_integ integl;
sca_l sf::sca_dot dot 1;

sca_l sf::sca_add addl, add2; (1)

pid_controller( sc_core::sc_nodul e_nanme, double kp, double ki, double kd ) (2]
:e("e"), u("u"), gainl("gainl", kp), integl("integl", ki), dotl("dotl", kd), addl("addl"),
add2("add2"), sig_p("sig_p"), sig_i("sig_i"), sig_d("sig_d"), sig_pi("sig_pi")

gai nl.x(e);
gainl.y(sig_p);

integl. x(e);
integl.y(sig_i);

dot1.x(e);
dot1.y(sig_d);

addl. x1(sig_p);
addl. x2(sig_i);
addl.y(sig_pi);

add2. x1(sig_pi);
add2. x2(sig_d);
add2.y(u);

}

private:
sca_l sf::sca_signal sig_p, sig_i, sig_d, sig_pi;

b
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(1] In order to sum the proportional, integral, and derivative terms, two adders are used, as each primitive
adder module has only two inputs.
(2] The parameters for the PID controller can be assigned via the constructor, which allows their setting

from the parent module (or se_main function) in which the PID controller is instantiated.

7.3 Continuous-time Sigma-Delta (CTSD) modulator example

Figure 7.5 shows the application of a continuous-time sigma-delta (CTSD) modulator architecture, containing
a loop filter H(s), a quantizer and a digital to analog converter (DAC) in the feedback path. The loop filter is
implemented using LSF primitives. The quantizer and DAC are implemented as TDF modules. LSF converter
modules to and from the TDF model of computation are used, to be able to sample the continuous-time filter
output signal U(s) to a discrete-time domain signal V(z), and to convert the discrete-time DAC output signal
W(z) to a continuous-time feedback signal 7{(s).

loop filter H(s)

k3

k2

Y(2)

X(s)
J

v
[S—
v
=
-
—

quantizer

T(s)

Figure 7.5—Block diagram of a continuous-time sigma-delta (CTSD) modulator

A 3"-order loop filter is implemented using three integrators, which are cascaded and summed with weightings
factors k1, k2, and k3. The corresponding transfer function H(s) for this loop filter then becomes:

ky+kos+ kss2
H(S):% (7.2)

The loop filter can be implemented by using LSF primitive modules in a parent module as shown in Example
7.13.

Example 7.13: LSF model implementing a loop filter

SC_MODULE( ctsd_l oop_filter)

{
sca_l sf::sca_in x;
sca_tdf::sca_out <doubl e> v;
sca_tdf::sca_i n<doubl e> w,

sca_l sf::sca_tdf::sca_source tdf2lsf;
sca_l sf::sca_sub subl;

sca_l sf::sca_integ integl, integ2, integ3;
sca_l sf::sca_gain gain2, gain3;

sca_l sf::sca_add addl, add2;

sca_l sf::sca_tdf::sca_sink |sf2tdf;

ctsd_l oop_filter( sc_core::sc_nodul e_narme, double k1, double k2, double k3 )

ox("x"), v("v"), w("w'), tdf2lsf("tdf2lsf"), subl("subl"), integl("integl", k1), integ2("integ2"),
integ3("integ3"), gain2("gain2", k2), gain3("gain3", k3), addl("addl"), add2("add2"),
I sf2tdf ("Isf2tdf"), sig_t("sig_t"), sig_i("sig_1"), sig_il("sig_il"), sig_i2("sig_i2"),
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sig_i3("sig_i3"), sig_al("sig_al"), sig_a2("sig_a2"), sig_a3("sig_a3"), sig_u("sig_u")

tdf 21 sf.inp(w;
tdf 2l sf.y(sig_t);

subl. x1(x);
subl. x2(sig_t);
subl.y(sig_i);

integ3.x(sig_i);
integ3.y(sig_i3);

integ2.x(sig_i3);
integ2.y(sig_i2);

integl. x(sig_i2);
integl.y(sig_il);

gai n3. x(sig_i3);
gai n3.y(sig_al);

gai n2. x(sig_i2);
gai n2.y(sig_a2);

addl. x1(sig_al);
addl. x2(sig_a2);
addl.y(sig_a3);

add2. x1(sig_a3);
add2. x2(sig_i1);
add2. y(sig_u);

I'sf2tdf.x(sig_u);
I sf2tdf.outp(v);

}

private:
sca_| sf::sca_signal sig_t, sig_i, sig_il, sig_i2, sig_i3;
sca_| sf::sca_signal sig_al, sig_a2, sig_a3, sig_u;

}i

7.4 Plain Old Telephone System (POTS) example

The Plain Old Telephone System (POTS) front-end is depicted in Figure 7.6. It consists of a phone, transmission
line, a protection circuit and a subscriber line interface circuit (SLIC), which can be modeled naturally using
ELN primitives. The interface from and to the POTS front-end are based on TDF or discrete-event signals.

phone transmission line protection circuit subscriber line interface circuit (slic)
\
- - :HIH: - - - driver1 \
tip al a2 tip rprot1 rprot2 tip_slic tip : T Lv2w l \‘
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prot2 : e 1y - |‘
1 |Ven P —D
ring b1 b2  ring rprotS} rprot4  ring slic ring |13 1 \
driver2 t———1 \
itr_meas \

Figure 7.6—The Plain Old Telephone System (POTS) front-end

The implementation of the phone, protection circuit and subscriber line interface circuit (SLIC) are given in
Example 7.14, Example 7.15, and Example 7.16, respectively.
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Example 7.14: SystemC hierarchical model of the phone
SC_MODULE( phone)

/1 termnals and ports

sca_el n::sca_term nal tip;
sca_el n::sca_term nal ring;
sca_tdf::sca_i n<doubl e> voi ce;
sc_core::sc_i n<bool > hook;

/1 electrical primtives

sca_el n::sca_de::sca_rswitch swi;

sca_el n::sca_de::sca_rswitch sw2;

sca_eln::sca_c cr, cp;

sca_eln::sca_r rr, rs, rp;

sca_el n::sca_tdf::sca_vsource nic;

phone( sc_core::sc_nodul e_name nm double cr_val 1. 0e-6, double rr_val = 1.0e3,
doubl e rs_val 220.0, double cp_val = 115.0e-9,
doubl e rp_val 820.0 )

tip("tip"), ring("ring"), voice("voice"), hook("hook"),

swi("swl"), sw2("sw2"), cr("cr", cr_val), cp("cp", cp_val),

re("rr", rr_val), rs("rs", rs_val), rp("rp", rp_val), mc("mc"),

w_of f hook("w_of f hook"), w_onhook("w_onhook"), wi("wl"), w2("w2"), wing("wing")

/1 architecture

swi. p(tip);

swl. n(w_onhook) ;

swl. ctrl (hook);

swl. of f _state = true;

sw2. p(tip);
sw2. n(w_of f hook) ;
sw2. ctrl (hook);

cr.p(wing);
cr.n(w_onhook) ;

rr.p(wing);
rr.n(ring);

rs.p(wl);
rs.n(w2);

cp. p(wl);
cp. n(w_of f hook) ;

rp. p(w_of f hook) ;
rp.n(wl);

mc. p(w2);
mc.n(ring);
m c.inp(voice);

}
private:
/1 nodes

sca_el n::sca_node w_of f hook, w_onhook, wl, w2, wing;

b

Example 7.15: SystemC hierarchical model of the protection circuit
SC_MODULE( prot ection_circuit)

/1l termnals
sca_eln::sca_termnal tip_slic;
sca_eln::sca_termnal ring_slic;
sca_eln::sca_termnal tip;
sca_eln::sca_termnal ring;

/1 electrical primtives
sca_eln::sca_r rprotl, rprot2, rprot3, rprot4;
sca_eln::sca_c cprotl, cprot2;

protection_circuit( sc_core::sc_nodul e_nanme, double rprotl_val
doubl e rprot3_val

20.0, double rprot2_val
20.0, double rprot4_val
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doubl e cprotl_val = 18.0e-9,

doubl e cprot2_val = 18.0e-9 )
tip_slic("tip_slic"), ring_slic("ring_slic"), tip("tip"), ring("ring"),
rprot1(“rprotl", rprotl_val), rprot2(“rprot2", rprot2_val),
rprot3(“rprot3", rprot3_val), rprot4(“rprot4", rprot4_val),
cprot1(“cprotl", cprotl_val), cprot2(“cprot2", cprot2_val),
n_tip("n_tip"), n_ring("n_ring"), gnd("gnd")

Il architecture

rprotl. p(tip);
rprotl.n(n_tip);

rprot2.p(tip_slic);
rprot2.n(n_tip);

cprotl.p(n_tip);
cprot1l.n(gnd);

rprot3.p(ring);
rprot3.n(n_ring);

rprot4.p(ring_slic);
rprot4.n(n_ring);

cprot2.p(n_ring);
cprot2.n(gnd);
}

private:

/1 nodes

sca_el n::sca_node n_tip, n_ring;
sca_el n::sca_node_ref gnd;

}i

Example 7.16: SystemC hierarchical model of the subscriber line interface circuit

SC_MODULE(sl i c)

{
/! termnals and ports
sca_eln::sca_termnal tip;
sca_eln::sca_termnal ring;
sca_tdf::sca_i n<doubl e> v2w,
sca_tdf::sca_out <doubl e> i _trans;

/1 electrical primtives

sca_el n::sca_tdf::sca_vsource driverl, driver2;
sca_el n::sca_tdf::sca_vsink itr_neas;
sca_eln::sca_cccs mrrorl, mrror2;
sca_eln::sca_r rtr;

slic( sc_core::sc_nodul e_name, double scale_v_tr = 1.0, double scale_i_tr =1.0)
cotip("tip"), ring("ring"), v2w("v2w'), i_trans("i_trans"),
driver1("driverl", scale_v_tr/2.0), driver2("driver2", scale_v_tr/2.0),
itr_meas("itr_meas", scale_i_tr),
mrrorl("mrrorl", 0.5), mirror2("mrror2", -0.5), rtr("rtr", 1.0),
n_tr_i("n_tr_i"), n_tip_gnd("n_tip_gnd"), n_ring_gnd("n_ring_gnd"),
gnd("gnd")

/'l architecture
driverl.inp(v2w);
driverl. p(tip);
driverl.n(n_tip_gnd);

driver2.inp(v2w);
driver2.p(ring);
driver2.n(n_ring_gnd);

rrorl.ncp(n_tip_gnd);
rrorl. ncn(gnd);
rrorl.np(n_tr_i);
rrorl.nn(gnd);

3333

rror2.ncp(n_ring_gnd);
rror2.ncn(gnd);
rror2.np(n_tr_i);
rror2.nn(gnd);

3333
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rtr.p(n_tr_i);
rtr.n(gnd);

itr_meas.p(n_tr_i);
itr_neas.n(gnd);
itr_meas.outp(i_trans);

}

private:

/1 nodes

sca_eln::sca_node n_tr_i, n_tip_gnd, n_ring_gnd;
sca_el n::sca_node_ref gnd;

}i

The implementation of the POTS front-end is done in the function sc_main, which is the main program, see
Example 7.17. Only the instantiation and structural composition is shown.

Example 7.17: POTS front-end main program

int sc_mmin(int argc,char* argv[])

{
sca_eln::sca_node n_slic_tip, n_slic_ring;
sca_eln::sca_node n_tip_al, n_tip_a2, n_ring_bl, n_ring_b2;

sca_tdf::sca_si gnal <doubl e> s_v_in;
sca_tdf::sca_signal <doubl e> s_i _trans;

sca_t df::sca_si gnal <doubl e> s_voi ce;
sc_core::sc_signal <bool > s_hook;

/'l testbench nodul es

slic i_slic("i_slic");
i_slic.tip(n_slic_tip);
i_slic.ring(n_slic_ring);
i_slic.v2w(s_v_in);
i_slic.i_trans(s_i_trans);

protection_circuit i_protection_circuit("i_protection_circuit");
i_protection_circuit.tip_slic(n_slic_tip);
i_protection_circuit.ring_slic(n_slic_ring);
i_protection_circuit.tip(n_tip_a2);
i_protection_circuit.ring(n_ring_b2);

sca_eln::sca_transm ssion_line i_transm ssion_line("i_transm ssion_line",
50.0, sc_core::SC_ZERO TIME, 0.0);

i_transmission_line.al(n_tip_al);

i _transmission_line. bl(n_ring_bl);

i _transmission_line. a2(n_tip_a2);

i _transmission_line.b2(n_ring_b2);
phone i _phone("i _phone");

i _phone.tip(n_tip_al);

i _phone.ring(n_ring_bl);

i _phone. voi ce(s_voice);

i _phone. hook(s_hook);

7.5 Vibration sensor and sensor frontend example

The model of the vibration sensor and sensor frontend is shown in Figure 7.7. The vibration sensor output
signal is fed through a programmable gain amplifier (PGA) and digitized using an analog-to-digital converter
(ADC). To make optimal use of the ADC dynamic range, the sensor frontend contains a feedback loop to
control the PGA.
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Figure 7.7—Vibration sensor and sensor frontend

The implementation of the vibration sensor and the sensor is shown in the following examples.

Example 7.18: TDF model of the vibration sensor

class vibration_sensor

{
public:

sca_tdf::sca_i n<doubl e> x_in;
sca_tdf::sca_out <doubl e> v_out;

public sca_tdf::sca_nodul e

/1 Displacenent [n]
/1 Sensor output voltage [V]

/1 Construct TDF vibration sensor fromits name and conversion
/'l factor fromvibration speed to output voltage [V s / nj
vi bration_sensor(sc_core::sc_nodul e_nanme nm double k_)

x_in("x_in"),

{}

voi d processing()

{

v_out ("v_out"),

k(k_), start_up(true), x_in_last(0.0)

, X_dot (0.0)

I/ Calculate velocity as 1st time derivative of displacenment by eval uating
/1 Newton's difference quotient for the current and | ast sanple

if (!start_up) {
x_dot
} else {

start_up = fal se;

x_in_last = x_in.r

ead();

= (x_in.read() - x_in_last) / x_in.get_timestep().to_seconds();

/1 Convert vibration velocity to output voltage via conversion factor k

v_out.wite(k * x_dot);
}
private:
doubl e k; /1 Conversion factor fromvibration velocity to output voltage [V s / nj
bool start_up; /1 Flag to mark first execution of processing()
double x_in_last; // Last displacement read in previous processing() execution
doubl e x_dot; /1 1st time derivative of displacenent, a.k.a. velocity

}

Example 7.19: SystemC hierarchical model of the sensor frontend

t enpl at e<i nt NBi t SADC>
class sensor_frontend :

{
public:

public sc_core::sc_nodul e

sca_tdf::sca_i n<doubl e> v_in;
sca_tdf::sca_out<sc_dt::sc_int<NBitsADC> > adc_out;

sc_core::sc_out<int> k_out;

sensor _frontend(sc_core::sc_nodul e_name nm sca_core::sca_tinme dt_adc_,

doubl e v_supply_,

doubl e avg_n_sanpl es_,

doubl e anp_l ow_t hreshol d_,

doubl e anp_hi gh_t hreshol d_,

int k 0, int k_mn_, int k_max_)
v_in("v_in"), adc_out("adc_out"), k_out("k_out"),
anmp_si g("anp_sig"), pga_1("pga_1", v_supply_),

avg_1("avg_1",

avg_n_sanpl es_),

adc_1("adc_1",

v_anp_sig("v_anp_sig"),
v_supply_),

clk_sig("clk_sig"),

gain_ctrl_1("gain_ctrl_1",

anp_l ow_t hreshol d_,

anp_hi gh_t hreshol d_,

k

_0_

k_

mn_

k_max_)

Il netlist
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pga_1.in(v_in);
pga_1. k_in(k_out);
pga_1. out (v_anp_sig);

adc_1.set_tinmestep(dt_adc_);
adc_1.in(v_anp_sig);
adc_1. out (adc_out);

avg_1l.in(adc_out);
avg_1l.cl k(clk_sig);
avg_1l. out (anp_sig);

gain_ctrl_1.clk(clk_sig);
gain_ctrl_1.anp_in(anp_sig);
gain_ctrl_1.k_out(k_out);

}

private:
sca_tdf::sca_signal <doubl e> v_anp_sig;
sc_core::sc_signal <bool > cl k_sig;
sc_core::sc_signal <sc_dt::sc_int<NBi tsADC> > anp_si g;

programubl e_gai n_anplifier pga_1;
ad_converter <NBi t SADC> adc_1;

abs_anpl i tude_aver ager <NBi t SADC> avg_1;
gai n_control | er<NBi t SADC> gai n_ctrl _1;

Example 7.20: TDF model of the programmable gain amplifier

class programmaebl e_gain_anplifier : public sca_tdf::sca_nodul e
{
public:
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_de::sca_in<int> k_in;
sca_t df::sca_out <doubl e> out;

programmabl e_gai n_anplifier(sc_core::sc_nodul e_name nm double v_supply_)
in("in"), k_.in("k_in"), out("out"), v_supply(v_supply_)

{
sc_assert(v_supply > 0.0);

}

voi d processing()

{
double k = k_in.read();

/1 Anplify input value to output val ue
doubl e val = std::pow(2.0, k) * in.read();

/1 Test if output saturates.

if (val > v_supply) {
out.wite(v_supply);

} elseif (val < -v_supply) {
out.wite(-v_supply);

} else {
out.wite(val);

}

}

private:
const double v_supply; // Supply voltage |limting output

b

Example 7.21: TDF model of the A/D converter

tenpl ate<i nt NBi ts>
class ad_converter : public sca_tdf::sca_nodul e
{
public:
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out<sc_dt::sc_int<NBits> > out;

ad_converter(sc_core::sc_nodul e_name nm double v_max_)
in("in"), out("out"), v_max(v_max_)
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{
sc_assert((2 <= NBits) & & (NBits <= 64));
sc_assert(v_max_ > 0.0);

}

voi d processing()

{

usi ng nanespace std;
double v_in = in.read();

if (v_in < -v_max) {
out.wite(-((1 << (NBits - 1)) - 1));
} elseif (v_in > v_max) {
out.wite((1 << (NBits - 1)) - 1);
} else {
sc_dt::sc_int<NBits>

g_v_in = lround((v_in / v_max) * ((1 << (NBits - 1)) -

out.wite(q_v_in);

1));

}
}

private:

}i

const doubl e v_nax;

Example 7.22: TDF model of the absolute amplitude averager

tenpl at e<i nt NBi t s>

class abs_anplitude_averager : public sca_tdf::sca_nodul e

{
public:

sca_tdf::sca_in<sc_dt::sc_int<NBits> > in;
sca_tdf::sca_de::sca_out <bool > cl k;
sca_tdf::sca_de::sca_out<sc_dt::sc_int<NBits> > out;

explicit abs_anplitude_averager(sc_core::sc_nodul e_name nm
in("in"), clk("clk"), out("out"), n_sanples(n_sanples_)

{
sc_assert((NBits >= 2) & & (NBits <= 64));
sc_assert(n_sanples_ > 0);

}

voi d set_attributes()

{
in. set_rate(n_sanples);
clk.set_rate(2);
cl k. set_del ay(2);
out.set_rate(l);
out.set_del ay(1);

}

void initialize()

{
clk.initialize(true, 0);
clk.initialize(false, 1);
out.initialize(0);

}

voi d processing()

{
/'l Generate clock signal
clk.wite(true, 0);
clk.wite(false, 1);

/1 Cal cul ate and output average of absol ute anplitudes
long sum = 0;
for (longi =0; i < n_sanples; ++i) {
sum += std::labs(in.read(i));
}
long avg = sum/ n_sanpl es;
out.wite(avg);

}

private:
const long n_sanples; // Nunber of averaged sanples
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The gain controller implements a finite state machine (FSM) as shown in Figure 7.8. A regular SystemC
module is used for the implementation of the FSM, see Example 7.23.

amp_in < high_threshold

INCREASE_GAIN

amp_in >= high_threshold
amp_in < high_threshold

amp_in < low _threshold

intialize

KEEP_GAIN

DECREASE_GAIN

Figure 7.8—Gain controller finite state machine (FSM)

Example 7.23: SystemC hierarchical model of the gain controller

tenpl ate<i nt NBi ts>
class gain_controller : public sc_core::sc_npdul e
{
public:
sc_core::sc_i n<bool > cl k;
sc_core::sc_in<sc_dt::sc_int<NBits> > anp_in;
sc_core::sc_out<int> k_out;

SC_HAS_PROCESS(gai n_control ler);

explicit gain_controller(sc_core::sc_nodul e_name nm
int lowthreshold_ = 0.2 * ((1 << (NBits - 1)) - 1),
int high_threshold_ = 0.8 * ((1 << (NBits - 1)) - 1),
int k 0_ =0, int k_mn_=0, int k_max_ = 16)
clk("clk"), amp_in("anmp_in"), k_out("k_out"),
I ow_t hreshol d(1 ow_t hreshol d_), high_threshol d(hi gh_threshold_),
k_mn(k_mn_), k_max(k_max_), state(KEEP_GAIN), k(k_0_)

sc_assert(low_threshold_ > 0);
sc_assert(low_threshold_ < high_threshold_);
sc_assert(high_threshold_ < ((1 << (NBits - 1)) - 1));
sc_assert(k_mn_ < k_max_);

sc_assert(k_mn_ <= k_0_ && k_0_ <= k_max_);

SC_METHOD( gai n_fsm) ;
sensitive << cl k. pos();

}

voi d gain_fsm()
{
switch (state) {
case KEEP_GAI N:
if (amp_in.read() < low_threshold) {
state = | NCREASE_GAI N,
++k;
} else if (anp_in.read() >= high_threshold) {
state = DECREASE_GAI N,
--k;
}
break;
case | NCREASE_GAI N:
if (amp_in.read() < high_threshold) {
++k;
} else {
state = DECREASE_GAI N,
--k;
}
break;
case DECREASE GAI N:
if (amp_in.read() < high_threshold) {
state = KEEP_GAI N
} else {

}
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// Limt and set new gain

if (k <k_mn) { k =k_nin; }
if (k >k_max) { k = k_max; }
k_out.wite(k);

}

private:
int |ow_threshol d; /1 Low threshold for anplitude to increase gain
int high_threshol d; /1 H gh threshold for anplitude to | ower gain

const
const
const
const

doubl e k_min;
doubl e k_nax;

/1 M ni mum gai n power
/1 Maxi mum gai n power

enum state_type {KEEP_GAI N, | NCREASE_GAI N, DECREASE_GAI N};

state_type state;

int k;

// Current state
// Current gain power

Example 7.24: TDF model of the vibration source

class vibration_source :

public:

public sca_tdf::sca_nodul e

sca_t df::sca_out <doubl e> out;

/'l Construct sinusoidal wavel ets waveform generator

vi bration_source(sc_core::sc_nodul e_nane nm

doubl e of fset_, double anplitude_, double f_0_,
int n_period_ =1, int n_harmnic_ = 3)

out("out"),

n_period(n_period_),

T 0(1.0/ f_0),

of fset (offset_), anplitude(anplitude_), f_0O(f_0_),

n_har noni ¢(n_harnonic_),

T_period(n_period * T_0)

sc_assert(f_0_ > 0.0);
sc_assert(n_period_ >= 1);
sc_assert(n_harmonic_ >= 0);

}

/1 Cal cul ate and output value of waveformat tine t
voi d processing ()

{

doubl e t

= this->get_tinme().to_seconds();

doubl e t_pos = frod(t, T_period);

int harmonic = static_cast<int>(floor(t / T_period)) % (n_harnonic + 1);
doubl e val = offset;
+= anplitude * sin(2.0 * MPI * powm(2.0, harnmobnic) * f_0 * t_pos);

val

out .

}

wite(val);

private:

const
const
const
const
const
const
const

bi

doubl e of fset;

/Il O fset of the sine wave

doubl e anplitude; // Anplitude of the sine wave

doubl e f_0;

int n_period;
int n_harnonic;
doubl e T_O;
doubl e T_peri od;

/1 Base frequency of the sine wave

/'l Nunber of periods for one wavelet with f_0_
/1 Nunmber of harnonics in the wavel et sequence
/1 Period of sine wave with f_0_

/1 Period of a sine wavel et

The testbench of the vibration sensor is implemented in the function s¢_main.

Example 7.25: Vibration sensor main program

int sc_main(int argc,

{

char* argv[])

usi ng nanmespace sc_core;
usi ng namespace sca_util;

/1 vibration sensor transducer constant for transfornation of speed into voltage
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const double k_trans = 1.0; I/ Vs/ m

/'l Resolution of the ADC
const int NBi tsADC = 5;

/1 ADC sanpling period (equal to TDF time step)
const sc_tinme dt_adc(10.0, SC_US);

/| Absolute anplitude averager paraneters
const |ong avg_n_sanpl es = 50;

/1 Gain controller paraneters
const int anmp_low threshold = 0.2 * ((1 << (NBitsADC - 1)) - 1);
const int anp_high_threshold = 0.66 * ((1 << (NBitsADC - 1)) - 1);

const int k_0 = §;
const int k_mn = 0;
const int k_max = 16;

/1 Supply voltages for pre-anplifier and ADC
const double v_supply =5.0; // V

I/ Vibration test signal

const double x_offset = -8.0e-6; /1 m
const double x_anplitude = 4.0e

const double x_f_0 = 2.0e3; //
const int x_n_period = 8;

const int x_n_harmonic = 2;

- 6;
Hz

/1 Sinulation stop time
const sc_time t_stop(25.0, SC_MS);

/1 Signals

sca_tdf::sca_signal <doubl e> x_sig("x_sig"), v_sig("v_sig");
sca_tdf::sca_signal <sc_dt::sc_int<NBitsADC> > adc_si g("adc_sig");
sc_core::sc_signal <int> k_sig("k_sig");

/1 Mechani cal vibration source x(t)
vi bration_source vib_src("vib_src", x_offset, x_anplitude, x_f_0, x_n_period, x_n_harnonic);
vib_src.out(x_sig);

/1 Vibration sensor with displacenment input and velocity proportional voltage output
vi bration_sensor vib_sensor("vib_sensor", k_trans);

vi b_sensor. x_in(x_sig);

vi b_sensor.v_out (v_sig);

I/ Sensor frontend with PGA and gain controller to use fully the dynanmc range of its ADC
sensor _front end<NBi t SADC> frontend("frontend", dt_adc, v_supply, avg_n_sanples,

anmp_| ow_t hreshol d, anp_hi gh_threshold, k_0, k_mn, k_max);
frontend.v_in(v_sig);
frontend. adc_out (adc_si g);
frontend. k_out (k_sig);

/1 Tracing

sca_trace_file *tfp = sca_create_tabular_trace_file("vibration_sensor_tbh");
sca_trace(tfp, x_sig, x_sig.name());

sca_trace(tfp, v_sig, v_sig.name());

sca_trace(tfp, adc_sig, "adc_sig");

sca_trace(tfp, k_sig, "k_sig");

/1 Sinulation
sc_start(t_stop);

/1 Close and save trace file
sca_cl ose_tabul ar_trace_file(tfp);

sc_stop();

return O;

The waveforms of the vibration sensor example are shown below.
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Figure 7.9—Simulation results of the vibration sensor example

7.6 DCDC converter example

Figure 7.10 shows a switching regulator circuit implemented in the form of a step-down (buck) converter.
The output power is regulated using pulse-width modulation (PWM) to change the duty cycle of the control

signal to the switch.
J o vout
n

vsupply

compen-
sator

Figure 7.10—DCDC converter
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The implementation of the DCDC converter is shown in the examples below.

Example 7.26: SystemC hierarchical model of the DCDC converter

SC_MODULE( dcdc_converter)

{

// termnals and ports

sca_el n::sca_termnal vout;
sca_tdf::sca_i n<doubl e> vsupply;
sca_tdf::sca_i n<doubl e> vref;

/| paraneters

doubl e | _val ue;

doubl e c_val ue;
sca_core::sca_tinme sanple_ting;

conpensat or i_conpensator;

sca_el n::sca_tdf _vsource i_vsupply;
sca_eln::sca_tdf _rswitch i_switch;
sca_eln::sca_l i_sca_l;

sca_eln::sca_c i_sca_c;

sca_el n::sca_tdf _vsink i_sca_tdf_vsink;
dcdc_pwm i _dcdc_pwm

di ode i _di ode;

dcdc_converter( sc_core::sc_nodul e_name nm

double | _val _ = 6.5e-3,
doubl e c_val _ = 6e-6,
sc_core::sc_time sanple_time_ = sc_core::SC ZERO TI ME )

vout ("vout"), vsupply("vsupply"), vref("vref"),

| _val ue(l _val _), c_value(c_val_), sanple_tine(sanple_tine_),
_conpensat or ("i _conpensator”, 806.0/2.0, 806.0/2.0, 7.5e3, 531.0e3, 100.0),

i
i _vsupply("i_vsupply", 1.0),
i_switch("i_switch", le-3, 1e9, false),
i_sca_l("i_sca_l", | _value, 0.0),
i_sca_c("i_sca_c", c_value, 0.0),

i _sca_tdf _vsink("i_sca_tdf_vsink", 1.0),

i _dcdc_pwm("i _dcdc_pwnr', sc_core::sc_tinme(40.0,
i _diode("i_diode", 0.7, le-3, 1e9),

rsw("rsw'), ctrl("ctrl"), s_vout("s_vout"),
gnd("gnd"), vx("vx"), n_supply("n_supply")

Il netlist

i _conpensator.inp(s_vout);
i _compensator.ref(vref);

i _conmpensator.outp(ctrl);

i _vsupply.p(n_supply);
i _vsupply.n(gnd);
i _vsupply.inp(vsupply);

i_switch.p(n_supply);
i_switch.n(vx);
i_switch.ctrl(rsw);

i_sca_l.p(vx);
i_sca_l.n(vout);

i_sca_c.p(gnd);
i_sca_c.n(vout);

i _sca_tdf_vsink.p(vout);
i _sca_tdf_vsink.n(gnd);
i _sca_tdf _vsink.outp(s_vout);

i _dcdc_pwm inp(ctrl);
i _dcdc_pwm out p(rsw);

i _di ode. np(gnd);
i _di ode. nn(vx);

}

private:
/1 nodes and signals
sca_tdf::sca_signal <bool > rsw;
sca_tdf::sca_signal <doubl e> ctrl;

sc_core::SC US),
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sca_tdf::sca_signal <doubl e> s_vout;
sca_el n::sca_node_ref gnd;

sca_el n:: sca_node vx;

sca_el n:: sca_node n_supply;

Example 7.27: TDF model of the compensator

SCA_TDF_MODULE( conpensat or)

{
/1 ports
sca_tdf::sca_i n<doubl e > inp;
sca_tdf::sca_i n<doubl e> ref;
sca_t df::sca_out <doubl e> out p;

/1 paraneters
double fzl1, fz2, fpl, fp2, gain;

void initialize()

{
/1 linear transfer function - zeros coefficients
zeros(0) -2.0* MPI * fzl;
zeros(1) -2.0* MPI * fz2;

/1 linear transfer function - poles coefficients

poles(0) = -2.0 * MPl * fpl;
poles(1l) = -2.0 * MPl * fp2;
pol es(2) = 0.0;

/1 scale due SystenC zp uses (s-k) like Matlab and Veril og- AMS (1-s/k)
scale = fpl * fp2 / fz1 / fz2 * gain;

}

voi d processing()

{
outp = -scale * |Itfzp(zeros, poles, inp - ref);

}

conpensator( sc_core::sc_nodul e_name nm double fzl_ = 806.0/2.0,
double fz2_ = 806.0/2.0, double fpl_ = 7.5e3, double fp2_ = 531.0e3,
doubl e gain_ = 100.0 )
inp("inp"), ref("ref"), outp("outp"),
fzi(fz1.), fz2(fz2_), fpl(fpl)), fp2(fp2_), gain(gain)

{
accept _attribute_changes();

}

private:
sca_util::sca_vector<sca_util::sca_conpl ex> zeros, poles;

doubl e scal e;
sca_tdf::sca_ltf_zp Itfzp;
b

Example 7.28: TDF model of the pulse-width modulator

SCA_TDF_MODULE( dcdc_pwm)

{
/1 ports
sca_tdf::sca_i n<doubl e > inp;
sca_tdf::sca_out <bool > out p;

/] paraneters

sc_core::sc_tinme clk_period;
doubl e sawt oot h_anp;
sca_core::sca_time sanple_tine;

void initialize()

{
}

outp.initialize(false);

voi d processing()

//do not iterate - use first result
if (this->get_tinmestep() > sc_core::SC ZERO TI ME)

107
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

I/ generate sawt ooth
double freq = 1.0 / clk_period.to_seconds();

Il circular integration between -pi and pi
doubl e increment = freq * (this->get_tinestep()).to_seconds();

if (sum+ increment > 1.0) {
sum = sum + increnent - 1.0;

} else if (sum+ increment < 0.0) //at time zero {
sum = 0.0;

} else {
sum += i ncrenent;

}
sawt ooth = sawtooth_anp * sum

I/ calculate swtch output
rswitch = (sawtooth > inp.read()) ? false : true;

}

outp.wite(rswtch);

}

void set_attributes()

{
if (sanple_tine !'= sc_core::SC ZERO TI ME) {
set _tinmestep(sanple_tine);

outp. set _del ay(1);

}

dcdc_pwr( sc_core::sc_nodul e_name nm
sc_core::sc_tinme clk_period_ = sc_core::sc_tine(25.0, SC US),
doubl e sawt oot h_anmp_ = 2.5,
sca_core::sca_tinme sanple_tinme_ = sc_core:: SC ZERO TI ME )

inp("inp"), outp("outp"),
cl k_period(cl k_period_), sawt ooth_anp(sawtooth_anp_), sanple_tine(sanple_tine_)
{

accept _attribute_changes();

I/ initial values
sum = 0. 0;

sawt oot h=0. 0;

rswit ch=fal se;

}

private:

doubl e sum
doubl e sawt oot h;
bool rswitch;

}i

Example 7.29: SystemC hierarchical model of a diode

SC_MODULE( di ode)

{
/'l termnals
sca_el n::sca_term nal np;
sca_el n::sca_termnal nn;

/1 paraneters

di ode_dt df i _di ode_characteristic;
sca_el n::sca_tdf _vsource i_vth;
sca_el n::sca_tdf _vsink i_vdi ode2tdf;
sca_el n::sca_tdf _r i_rdiode;

di ode(sc_core::sc_nodul e_name nm
double vth_p_ = 0.7, double ron_ = 1e-3, double roff_ = 1e9)
np("np"), nn("nn"

_di ode_characteristic("i_di ode_characteristic", ron

_vth("i_vth", 1.0),

_vdi ode2t df ("i _vdi ode2tdf", 1.0),

_rdi ode("i _rdiode", 1.0),

s_rout("s_rout"),

s_vth("s_vth"),

i _, roff_, vth_p),
i
i
i
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n_r di ode(" n_rdi ode"),
s_vdi ode("s_vdi ode")

Il netlist

i _di ode_characteristic.vin(s_vdiode);
i _di ode_characteristic.vth(s_vth);

i _di ode_characteristic.rout(s_rout);

i_vth.p(np);
i _vth.n(n_rdi ode);
i_vth.inp(s_vth);

i _vdi ode2t df . p(np);
i _vdi ode2t df . n(nn);
i _vdi ode2t df . out p(s_vdi ode);

i _rdiode. p(nn);
i _rdi ode. n(n_rdiode);
i _rdiode.inp(s_rout);

}

private:
/1 nodes and signals
sca_tdf::sca_signal <doubl e> s_rout;
sca_tdf::sca_signal <doubl e> s_vth;
sca_el n:: sca_node n_rdi ode;
sca_tdf::sca_si gnal <doubl e> s_vdi ode;

Example 7.30: TDF model implementing the diode characteristic

SCA_TDF_MODULE( di ode_dt df)

{

/1 ports

sca_tdf::sca_i n<doubl e > vin;
sca_t df::sca_out <doubl e> vt h;
sca_tdf::sca_out <doubl e> rout;

/1 paraneters
doubl e ron;
doubl e roff;
doubl e vth_p;

void initialize()
{
// iteration at tine zero is possible
rout.initialize(roff);
vth.initialize(0.0);
ron_state = true;
recal cul ate 0;
activations 0
iterations = 0;
max_iterations = 0;
timestep_cnt = 0;

}

voi d processing()

{

double vin_tnp = vin.read();

if (this->get_timestep() > sc_core:: SC ZERO Tl ME)
timestep_cnt ++;

/1 switch between states
if (ron_state) {
/'l hysteresis due curves do not fit exactly
if (vin_tmp > vth_p) {
recal culate = 0;
}
el se {
recal cul at e++;
ron_state = false;

} else {
if (vin_tnp < vth_p) {
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recal culate = 0;
} else {
recal cul at e++;
ron_state = true;
}
}

I/ set resistance and threshold in dependency of the state
if (ron_state) {

rout.wite(ron);

vth.wite(vth_p);
} else {

rout.write(roff);

vth.wite(0.0);

}
}
voi d end_of _si mul ati on()
{
std::ostringstreamstr;
str << "Repeat tinmestep requests: " << iterations << " from
<< timestep_cnt << " valid tinmesteps ";
str << " overall timesteps: " << activations;
str << " maxi mumrepeat of a timestep: " << max_iterations;
SC_REPORT_I NFO(" di ode_dtdf", str.str().c_str());
}

void set_attributes()

vth. set _del ay(1);
rout.set_del ay(1);

}
voi d change_attributes()
{
activations++;
if (recalculate > 0) {
I/ invalid, repeat |ast tinestep
request _next_activation(sc_core:: SC ZERO Tl ME) ;
if (recalculate > 30) {
SC_REPORT_ERROR("di ode_dtdf", "Convergence failed");
}
iterations++;
if (recalculate > max_iterations)
max_i terations = recal cul ate;
}
}

di ode_dtdf ( sc_core::sc_nodul e_nane nm
doubl e ron_ = 1le-3, double roff_ = 1e9, double vth_p_ = 0.7 )
vin("vin"), vth("vth"), rout("rout"),
ron(ron_), roff(roff_), vth_p(vth_p_)

accept _attribute_changes();
does_at tri bute_changes();

}

private:
bool ron_state;
I ong recal cul ate;
I ong activations;
long iterations;
I ong max_iterations;
long tinestep_cnt;

Example 7.31: TDF model implementing a constant source
SCA_TDF_MODULE( const _src)

sca_t df::sca_out <doubl e> out p;
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voi d processing()

{
outp.wite(val ue);
}
SCA_CTOR(const _src) : outp("outp")
{
accept _attribute_changes();
val ue=0. 0;
}
doubl e val ue;

The testbench of the DCDC converter is shown below.

Example 7.32: DCDC converter main program

int sc_main(int argc, char* argv[])
{

usi ng nanespace sc_core;

usi ng nanmespace sca_util;

sc_set_time_resolution(1.0, SC FS);

sca_tdf::sca_si gnal <doubl e> i nput _s("i nput_s");
sca_t df::sca_si gnal <doubl e> vsupply_s("vsupply_s");
sca_tdf::sca_signal <doubl e> vref_s("vref_s");
sca_tdf::sca_si gnal <doubl e> vout _s("vout_s");
sc_core::sc_signal <doubl e> rload_s("rload_s");
sca_el n::sca_node n_out("n_out");

sca_el n::sca_node_ref gnd("gnd");

const_src i_const_vsupp("i_const_vsupp");
i _const_vsupp. val ue = 42.0;
i _const _vsupp. out p(vsupply_s);

const_src i_const_vref("i_const_vref");
i_const_vref.value = 4.8;
i_const_vref.outp(vref_s); //output port

dcdc_converter dut("dut", 5.0e-3, 10.0e-6, sca_core::sca_tinme(0.7777, SC_US));
dut.vref (vref_s);

dut . vsuppl y(vsuppl y_s);

dut . vout (n_out);

sca_eln::sca_de_r i_sca_de_rload("i_sca_de_rload");
i_sca_de_rload.scale = 1.0;

i_sca_de_rload. p(n_out);

i _sca_de_rload. n(gnd);

i_sca_de_rload.inp(rload_s);

/'l tracing

sca_trace_file *tf = sca_create_tabular_trace_file(
"dcdc_converter_trace.dat");

sca_trace(tf, n_out, "vout");

sca_trace(tf, i_sca_de_rload, "iout");

sca_trace(tf, vsupply_s, "vsupply");

sca_trace(tf, vref_s, "vref");

I/ set load resistance to 2.4 Chm
rload_s.wite(2.4);

/1 run 25 ns
sc_start(25.0, SC M5);

/'l set load resistance to 5 Chm
rload_s.wite(5.0);

/1 run 15 ns
sc_start(15.0, SC M5);

Il close trace file
sca_cl ose_tabular_trace_file(tf);
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/1 stop simulation to print statistics
sc_stop();

std::ostringstreamstr;

str << sc_core::sc_time_stanp() << " time domain sinmulation finished";

SC_REPORT_I NFQ("sc_mai n", str.str().c_str());

return O;

The waveforms of the DCDC converter example are shown below.
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Figure 7.11—Simulation results of the DCDC converter example
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8. Modeling strategies

The SystemC AMS extensions provide designers with powerful tools for modeling analog/mixed-signal
systems. The extensions cover the use cases described in Chapter 1, by providing the models of computation
Timed Data Flow, Linear Signal Flow, and Electrical Linear Networks, in addition to the discrete-event and
Transaction Level Modeling approaches of SystemC. This chapter gives additional advice on how to use and
combine these models of computation in an efficient way. The presented strategies are not mandatory, and
sometimes there might be other or better approaches. They are provided in order to guide an inexperienced
user in creating understandable models, to achieve high simulation performance, and to increase productivity
when designing mixed analog/digital systems.

8.1 Behavioral modeling using the available models of computation

The models of computation provided by the SystemC AMS extensions are primarily intended to facilitate the
behavioral modeling of analog circuits, as well as of signal processing functions (no matter whether they will
be implemented in the analog or digital domain). Depending on the abstraction required, a suitable model
of computation for behavioral modeling has to be selected. Figure 8.1 gives an overview of the available
models of computation and the abstractions imposed by them, considering the aspects behavior, structure,
communication, and time/frequency.

Imposed abstractions

Model of
AT Behavior Structure Communication Time/Frequency
Linear Signal Linear functional Structgral represgntatlon Directed signals, No abstraction
- of linear equations . : )
Flow (LSF) descriptions . continuous value (continuous time)
(non-conservative system)
Electrical Macro modeling with
Linear ’ oceling Simplified network No abstraction No abstraction
linear primitives and ) . " - .
Networks . . (conservative system) (physical quantities) (continuous time)
(ELN) ideal switches

Figure 8.1—Abstractions imposed by the AMS models of computation

The most important abstractions imposed by the models of computation are:

—  Linearization of non-linear behavior due to the focus on /inear behavior in the models of computation
that require the solving of equation systems (LSF, ELN).

— Structural abstraction of circuits (conservative systems) to functional blocks (non-conservative
systems) with directed signals in the models of computation LSF and TDF. This abstraction replaces
the physical quantities (i(¢), u(¢)) with abstract quantities x(z).

—  Sampling of continuous-time signals to discrete-time signals for the TDF model of computation. Fixed
time step and dynamic time step are supported when using the TDF static mode of operation or dynamic
mode of operation, respectively (see Section 2.1.2).

Figure 8.2 shows the impact of abstraction and sampling to non-conservative behavior of a signal in an
electrical network.
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x(t) x(t) (t)

X
abstraction l z j -\. abstraction abstraction
t t t t

a) Electrical Linear Networks b) Linear Signal Flow ¢) Timed Data Flow d) Timed Data Flow
(fixed time step) (dynamic time step)

Figure 8.2—Abstraction of communication and time using the AMS models of computation

In the following subsections, a brief and general description of the capabilities of each model of computation
is given. When using multiple models of computation, it is important to combine them appropriately. The
required partitioning of functionality onto different models of computation is discussed in Section 8.2.1.

8.1.1 Macromodeling with Electrical Linear Networks

The ELN model of computation permits macromodeling: Accurate physical devices such as transistors are
modeled by simple electrical primitives such as (ideal) switches, voltage sources, and other electrical linear
primitives. The objective is to specify an abstract model with simplified behavior. Considering signals and
interfaces, no abstraction is required. The ELN model of computation should be used in the following cases:

— Description of systems where it is not easy or natural to give equations, e.g., transmission-line models,
or nearly linear loads that are switched within a duty cycle.

— Analog interfaces and components, which are relevant for the dimensioning of the system or its overall
behavior. Therefore, they must show up at the system level.

In order to setup an ELN macromodel, the electrical circuit behavior must be linearized. The availability of
switches in addition to linear components enables to handle the switching between different operating modes or
the on/off switching of loads. The following strategy might be useful to get an ELN model from a given circuit:

— Identify partitions of the circuit with nearly linear behavior, and model them using ELN components.
Components that are not required for the overall functionality (e.g., clamping diodes) can be omitted.

— Identify switching components and replace them with ideal switches.

— Depending on the intended environment of the model: If applied as part of ELN, model input and output
impedances. If applied as part of TDF or discrete-event, use appropriate converter elements.

Note that the ELN model of computation does not support modeling of non-linear limitation or saturation
effects. It is recommended to partition a model such that non-linear effects are modeled using the TDF model
of computation.

Figure 8.3 shows an example of a power driver using Pulse Width Modulation (PWM). The original circuit is
shown in Figure a). In order to apply ELN macromodeling, the clamping diodes are omitted assuming that the
circuit itself has been validated using a circuit simulator. The CMOS transistors that are switching the load,
a coil with 10 Ohm resistance, are replaced with ideal switches. The resulting ELN macromodel is shown in
Figure b).
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From controller
From (SystemC, Discrete-event)
controller

<
ELN

macromodel (
e

[

a) Circuit netlist of PWM power driver b) Macromodel using ELN primitives

Figure 8.3—Abstraction of PWM power driver into an ELN macromodel

The PWM driver together with its load has the behavior of a low pass filter for the load current /;(¢). As such, it
could also be modeled as a functional block. However, the load itself is usually an external part, and thus might
be changed by the user. Therefore, it makes sense to provide an electrical terminal, and a (linear) macromodel
of the load. Example 8.1 shows the ELN model of the PWM driver.

Example 8.1: ELN model of a PWM driver

SC_MODULE( pwm dri ver)

{
sc_core::sc_in<bool > in;
sca_eln::sca_termnal out;

sca_el n::sca_vsource vcc; // voltage source
sca_el n::sca_de::sca_rswitch highside, lowside; // two swtches

pwm driver( sc_core::sc_nodul e_name nm double vcc_ = 5.0)
cin("in"), out("out"),
vce("vece"), highside("highside"), |owside("lowside"), node("node"), gnd("gnd")

vce. of fset = vec_; // usage as constant vol tage source
vce. p(node);
vce. n(gnd);

highside.ctrl(in); // 1st switch
hi ghsi de. p(node) ;
hi ghsi de. n(out);

I owside.ctrl (in); /1 2nd switch...

| owsi de. p(out);

| owsi de. n(gnd) ;

| owsi de. of f_state = true; // ...is inverted

}

private:
sca_el n:: sca_node node;
sca_el n::sca_node_ref gnd;

b

The load can also be described easily using linear primitives, in the most simple case, a coil with some resistance
might be sufficient:

Example 8.2: ELN model of the load

SC_MODULE( | oad)

{

sca_eln::sca_termnal p, n;

sca_eln::sca_r r;
sca_eln::sca_|l |;

| oad( sc_core::sc_nodul e_name nm
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doubl e res_ = 500.0, double ind_ = 0.000001 )
Sop(tp"), n("n"), r("r", res_ ), I("I", ind_), node("node")

r.p(p);
r.n(node);

| . p(node);
I.n(n);

private:
sca_el n:: sca_node node;

L
8.1.2 Behavioral modeling with Linear Signal Flow

The LSF model of computation permits the description of block diagrams for the computation of linear
differential equations. Compared to transfer functions, LSF allows to specify the order of computations and to
access intermediate results or coefficients. In particular, LSF is useful to:

— Model filters with a given structure that has, e.g., impact on noise.

— Model continuous-time control systems, in particular those that require access to coefficients from
other models of computation.

For LSF, an abstraction of physical signals is required as described in Chapter 3. Most notably, this also requires
the abstraction of communication towards directed signals. Considering the structure and behavior, functional
blocks have to be identified, and their behavior has to be described by instantiating the pre-defined functional
primitives. Considering time, no abstraction is required.

Note that LSF does not provide means to specify non-linear limitation or saturation. It is recommended to
partition a model in a way that non-linear effects, if needed, are specified using the TDF model of computation.
A typical application example where LSF is useful is shown in Figure 8.4 and Example 8.3. It is a PID controller
that can be part of a closed loop control system model. Its coefficients can be adjusted from a TDF model.
In order to model a closed-loop control system without delay, the device itself must also be modeled using
the LSF model of computation. Using any other model of computation (ELN, TDF) will introduce a delay
in the control loop.

PID controller
P
» X
—
in@ » X I out
» X
L I
p i d

Figure 8.4—LSF model of a PID controller with adjustable coefficients

Example 8.3: LSF model of a PID controller with adjustable coefficients

SC_MODULE( | sf _pi d_external _control)
{

sca_lsf::sca_in in;
sca_l sf::sca_out out;

sca_tdf::sca_in<double> p, i, d; // adjustable coefficients
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sca_l sf::sca_tdf::sca_gain gain_p, gain_i, gain_d; // coefficients used to scale the gain
sca_| sf::sca_integ integ;

sca_| sf::sca_dot dot ;

sca_| sf::sca_add addl, add2;

| sf_pid_external _control ( sc_core::sc_nodul e_nane nanme )

in("in"), out("out"), p("p"), i("i"), d("d"),
gain_p("gain_p"), gain_i("gain_i"), gain_d("gain_d"),
integ("integ"), dot("dot"), addl("addl"), add2("add2"),
sig_gain("sig_gain"), sig_integl("sig_integl"), sig_integ2("sig_integ2"),
sig_dot1("sig_dotl"), sig_dot2("sig_dot2"),
si g_add("sig_add")

gai n_p. x(in);
gai n_p.y(sig_gain);
gain_p.inp(p);

gain_i.x(in);
gain_i.y(sig_integl);
gain_i.inp(i);

gai n_d. x(in);

gain_d.y(sig_dotl);
gain_d.inp(d);

integ. x(sig_integl);
integ.y(sig_integ2);

dot . x(si g_dot1);
dot . y(sig_dot2);

addl. x1(sig_gain);
addl. x2(sig_integ2);
addl. y(sig_add);

add2. x1(si g_add);
add2. x2(si g_dot 2);
add2. y(out);

}

private:
sca_| sf::sca_signal sig_gain, sig_integl, sig_integ2, sig_dotl, sig_dot2, sig_add;

L
8.1.3 Behavioral and baseband modeling with Timed Data Flow

The TDF model of computation permits the modeling of analog systems at a high level of abstraction, as well
as the modeling of signal processing functions.

For modeling analog behavior, the TDF model of computation requires a discrete-time approximation of
the continuous-time analog signals. However, TDF permits, in contrast to LSF and ELN, the modeling of
static non-linear behavior. The discrete-time approximation reduces the continuous-time signal to a sequence
of discrete samples. The time-distance between the samples can be constant (fixed time step) or controlled
dynamically, triggered by events from the discrete-event domain or by requested activations in TDF modules
(see Section 2.1.2).

The imposed data flow modeling style avoids the need for solving (non-linear) equations, or delta iterations,
and thus improves simulation performance. Besides the discretization, the TDF model of computation also
requires the breaking of cyclic dependencies (also known as algebraic loops) by inserting delays (see Section
2.1.3).

Taking advantage of these abstractions, TDF models permit describing the processing of streams of samples in
an arbitrary, algorithmic way with the help of the member function processing. In particular, also non-linear
transfer functions (i.e., for modeling limitation) or look-up tables can be implemented easily. Furthermore,
the specification of signal processing methods in terms of transfer functions H(s), H(z), or state space
representations is supported in TDF (see Section 2.3.2).
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The following abstractions are introduced by TDF:

— Like in LSF, a block diagram structure has to be defined. Unlike in LSF, there is virtually no restriction
to the behavior of single blocks.

— The sampling frequency, or time/event of the next cluster activation must be defined.

— The TDF model requires acyclic structures to ensure schedulability. The acyclic structure can be
achieved by introducing a delay into the cycle (Section 2.1.3). Note that most control loops use digital
controllers that introduce delays. The location of the digital controller might be a good location for
introducing such a delay.

8.1.3.1 Definition and propagation of time steps and rates

The time steps and rates in TDF must be selected carefully to match the modeling problem. It is also
recommended to carefully select the places where time steps and rates are defined.

For modeling analog behavior, it is recommended to ensure a sufficiently high sample frequency. The sampling
frequency must be significantly higher than twice the frequency defined by the lowest time constant in the
system. If in doubt, a factor 10 is recommended. Selecting a higher rate or smaller time steps results in a higher
accuracy at high frequencies at the cost of simulation performance. An appropriate place to define the time
step might be the test bench.

Systems with time constants that differ by orders of magnitudes (stiff systems) are a particular problem. We
recommend partitioning such systems into parts with low time constants, and parts with higher time constants.
Then, different rates of the TDF model of computation can be used to define different sample frequencies in
each partition.

Note that for digital signal processing (DSP) methods (e.g., using H(z), or state space representations of digital
filters), there is a dependency between functionality and the selected time step. For DSP methods that are
intended for use at a particular sample frequency, it is therefore recommended to define a time step in the
module itself (or at its ports respectively). Then, a test bench can still define time steps. However, an error will
be reported if the consistency check after propagation of time steps fails (see Section 2.5).

The ability to use non-equidistant time steps available since SystemC AMS version 2.0 enables very powerful
modeling strategies that permit solving a number of challenging modeling issues, such as:

— Modeling change of rates in adaptive radio,
— Modeling jitter in implementation of discrete-time systems, or

— Modeling discrete-time systems where pulses of variable length are used, like in PWM (digitally
controlled length), or PLL (continuously controlled length).

8.1.3.2 Behavioral modeling with TDF

Section 7.1 shows an application example demonstrating behavioral modeling using the TDF model of
computation. Note that the SystemC AMS extensions permit to write arbitrary C++ code into the TDF module
member function processing. This allows combining ideal signal processing functions (usually found in block
libraries) such as amplification, multiplication, or transfer functions in a very easy and effective way with non-
ideal behavior. An amplifier, for example, can be modeled by combining the following features:

— Large-signal behavior (e.g., saturation, non-linearity) can be modeled by using functions in C++.
— The frequency-domain behavior can be modeled using a Laplace transfer function, as discussed in
Section 2.3.2. Poles and zeros can be identified easily using circuit simulation, or using the Bode plot.
Example 8.4: TDF model of an amplifier

SCA_TDF_MODULE(anpl i fier)
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sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

anmplifier( sc_core::sc_nodul e_nane, double gain_ = 100. 0,
doubl e dom pol e_ = 5. 0e8,
double limt_ =50)

in("in'), out("out"), gain(gain_), dompole(dompole_ ), limt(limt_) {}

void initialize()

/1 filter requires no zeros to be defined
pol es(0) = sca_util::sca_conplex( -2.0 * MPlI * dompole, 0.0 );
k = gain* 2.0 * MPl * dom pole;

}

voi d processing()

{

/1 time-domain inplenmentation of anplifier behavior as function of frequency
double internal = |tf_zp( zeros, poles, state, in.read(), k );

/1 limting the signal
if (internal > limt) internal =1limt;
else if (internal < -limt) internal = -limt;

out.wite(internal);

}

private:

doubl e gai n; /1 DC gain

doubl e dom pole; // 3dB cutoff frequency in Hz

double limt; /1 limter value

doubl e k; /Il filter gain

sca_tdf::sca_ltf_zp Itf_zp; // Laplace transfer function
sca_util::sca_vector<sca_util::sca_conplex > poles, zeros; // poles and zeros as conpl ex val ues
sca_util::sca_vector<doubl e> state; // state vector

8.1.3.3 Baseband modeling with TDF

When modeling radio frequency (RF) systems with high carrier frequencies, a significant speed-up of
simulation can be achieved by applying baseband modeling. This modeling strategy is based on the fact that
digital modulation techniques use the amplitude » and the phase ¢ to transmit information. The information
itself is then independent from the (usually high) carrier frequency. The idea of baseband modeling is to map
the RF carrier frequency to zero, as shown in Figure 8.5. The required sampling rate then only depends on
the bandwidth of the modulated signal.

bandW|dth—f+b bandW|dth 2b
m » frequenc —m— frequenc
0 f-b f f+b a y b 0 a Y
a) passband signal b) baseband signal

Figure 8.5—Passband (a) and baseband (b)
representation of signals in the frequency domain

Formally, the modulated carrier signal x(¢) can be described as:

x(?) r(t) cos(2m [+ (1))
Re{r(t) e/ @m0} (8.1)

= Re{r(t) e/#ei2n 1}
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where r(f) is the modulating signal, ¢(f) the modulating phase and f; the carrier frequency. The term, which
includes the carrier frequency f., can be separated from the signal part, which contains the transmitted
information. The signal v(¢), which contains the information, is independent from the carrier frequency f;:

w(t) = r(t) e/ (8.2)

This signal is called the complex low-pass equivalent or the complex envelope. For the baseband signal, the
carrier frequency f; is set to zero. With s; = r cos(¢) and s, = r sin(¢), the resulting baseband signal becomes:

w(t) = s{8) + jsq(?) (8.3)

where s; represents the in-phase term of the baseband signal, and s, represents the quadrature term. The
amplitude and phase of the carrier signal can be computed from these signals at each point in time.

To implement baseband modeling using the SystemC AMS extensions, the C++ data type specialization
st d: : conpl ex<doubl e> can be used to represent complex numbers. This data type offers arithmetic and
associated C++ operators for calculations supporting complex numbers. Example 8.5 shows a simple baseband
amplifier with an input and output port supporting complex envelope signals.

Example 8.5: TDF model of an amplifier using baseband modeling
#i ncl ude <conpl ex>

SCA_TDF_MODULE( baseband_anplifier)
{

sca_tdf::sca_in<std::conpl ex<double > > in;
sca_tdf::sca_out<std::conpl ex<doubl e > > out;

baseband_anplifier( sc_core::sc_nodul e_name nm double gain_ = 1.0 )
in("in"), out("out"), cl( gain_) {}

voi d processing()

{

out.wite( cl1 * in.read() );

}

private:
doubl e c1;
b

The limitation of using st d: : conpl ex<doubl e> as data type is that it only describes the complex envelope of
the modulated signal, and that the carrier frequency information is lost. Due to this, effects like harmonics of
the carrier or intermodulation products are not represented. The solution to this is to create a user-defined data
type supporting multi-carrier equivalent baseband computations.

8.2 Modeling embedded analog/mixed-signal systems

Behavioral modeling using a single model of computation imposes a number of restrictions as shown in Section
8.1. They can be overcome by combining (the strengths of) different models of computation. The following
subsections describe how to partition the functional behavior onto the different models of computation. Then,
anumber of simple modeling guidelines is given, how to model architecture-level properties of analog circuits.

8.2.1 Partitioning behavior to different models of computation
A simple, but general strategy that allows beginners to distribute a block diagram like specification to the

different models of computation provided by the SystemC AMS extensions is shown by Figure 8.6. It can be
applied for each block successively.
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Figure 8.6—Partitioning of behavior to different models of computation

In the first two steps (see @ and @), the functionality to be modeled should be investigated to select the
most appropriate language. The SystemC AMS extensions are a good choice for modeling signal processing
functions and electrical (conservative) networks (see @). Note that signal processing functions implemented
in analog, digital or software can be modeled very efficiently using the SystemC AMS extensions at the
functional level. For the modeling of digital hardware/software systems (e.g., microcontrollers and processors),
interconnect and communication protocols, SystemC and transaction-level modeling approaches are most
suitable.

The decomposition of each function is evaluated in the steps labelled ® to ®. Here, the most efficient and
applicable model of computation is selected. The Timed Data Flow model of computation can be used to
model static non-linear behavior (see ®). Note that in some cases delays should be introduced in the models
to facilitate interpolation or to resolve cyclic dependencies in the static TDF schedule (see @). Dynamic linear
systems can be modeled efficiently using the Linear Signal Flow model of computation, enabling a block
diagram notation to represent the function (see ©).

Another good reason to use the SystemC AMS extensions would be the need for having analog terminals
and/or physical quantities such as current available, e.g., for modeling external loads or analog behavior of
communication lines. For this purpose, the Electrical Linear Network model of computation offers the most
natural modeling approach to include electrical primitives and to capture conservative behavior. In addition,
piecewise linear approximation techniques using a combination of TDF and ELN models can be applied to
model non-linear behavior. For strong non-linear systems, it is recommended to incorporate (or cosimulate
with) a non-linear solver like SPICE (see ©).

When the TDF MoC is considered to model the AMS subsystem, different approaches are available to abstract
the signal in time (see @). In the most straight forward way, a signal can be sampled or even oversampled
in equidistant time steps. In this case, the TDF static mode of operation is used, resulting in fixed time steps
during the entire simulation. The TDF model of computation can also be used if the size of the time steps
should be determined by events, by time outs, or by other computations. In this case, the TDF dynamic mode
of operation can be used, which enable changing TDF attributes such as time steps, delays, or rates during
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simulation. Alternatively, regular SystemC discrete-event models can be created to become event-driven and
cycle-accurate, but such approach is less efficient due to the additional simulation overhead imposed by the
dynamic scheduling mechanism of SystemC for each evaluate/update cycle.

8.2.2 Modeling of architecture-level properties

In order to evaluate feasibility and performance of different architectures, the functional model can be used
and refined by adding specific properties. These properties include: noise, attenuation, distortions, limitation,
jitter, delays, quantization, sampling frequencies, and many other. In the following, some simple guidelines
for handling these effects during architecture exploration are given.

8.2.2.1 Modeling distortions, limitation, and quantization

In order to study the impact of distortions and limitations on the overall system functionality, analog modules
should be split into linear dynamic behavior and nonlinear static behavior. Linear dynamic behavior can be
specified, e.g., using transfer functions in TDF (see Section 2.3.2). Non-linear behavior such as distortions
and limitation can be modeled easily using C++ functions in the TDF module’s member function processing
(see Section 8.1.3).

8.2.2.2 Modeling noise in the time domain

Noise in the TDF model of computation can be modeled by adding Gaussian distributed random numbers
to a TDF signal. Example 8.6 demonstrates a simple model for (white) noise and attenuation in a wireless
communication link. For this purpose, a function gauss_rand is used that generates Gaussian distributed
random numbers.

Example 8.6: Modeling Gaussian noise

/1 the gauss_rand() function returns a Gaussian distributed
/1 random nunber with variance "variance", centered around 0, using the Marsaglia polar nethod

#include <cstdlib> // for std::rand
#include <cmath> // for std::sqrt and std::log

doubl e gauss_rand(doubl e vari ance)

{
doubl e rndl, rnd2, Q Ql, @;

do

{
rndl = ((double)std::rand()) / ((double)RAND MAX) ;
rnd2 = ((doubl e)std::rand()) / ((double)RAND MAX) ;
Q =2.0* rndl - 1.0 ;
@ =2.0*rnd2 - 1.0 ;

Q=QA * A +Q@* @
} while (Q> 1.0) ;

return ( std::sqrt(variance) *( std::sqrt( - 2.0 * std::log(Q / Q * Q) );
}

SCA_TDF_MODULE( ai r _channel _wi t h_noi se)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

voi d processing()

{

out.wite( in.read() * attenuation + gauss_rand(variance) );

}

ai r_channel _wi th_noi se( sc_core::sc_nodul e_nane nm
doubl e attenuation_,
doubl e variance_ )
:in("in"), out("out"), attenuation(attenuation_), variance(variance_) {}
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private:
doubl e attenuation;
doubl e vari ance;

}i

In order to get colored noise, the output of the function gauss_r and can be filtered using appropriate transfer
functions.

8.3 Design refinement and mixed-level modeling
8.3.1 Mixed-signal, mixed-level simulation

The design of embedded analog/digital systems requires the combination of different models of computation
and of different levels of abstraction. This requires the conversion of communication/synchronization at
the border between different models of computation. The SystemC AMS extensions provide a basic set of
language primitives that enable conversion between SystemC (discrete-event), TDF, ELN, and LSF. In ELN
and LSF, converter modules are provided; in TDF, converter ports are available. Note that ELN and LSF can
communicate with discrete-event and TDF, but not with each other in a direct way.

It is recommended to model the general signal flow of a system using the TDF model of computation, if
possible. This has the following advantages:

— The TDF model of computation provides conversion to all other models of computation.

— The TDF model of computation is needed to provide time steps to connected ELN and LSF components.

Figure 8.7 shows a part of a signal processing chain as an example: The LSF controller (shown left) feeds
its output via a controlled voltage source into an ELN low-pass filter. In order to connect ELN and LSF, an
LSF signal is converted to a TDF signal, for which a time step must be given. The TDF signal controls a (TDF)
controlled voltage source that is part of the ELN model.

Isf_model eln_model
x(0) det -
L]
k2 ]

Figure 8.7—Coupling of LSF and ELN via an LSF/TDF converter module
8.3.2 Design refinement and use cases

For the design of digital systems, top-down design is state-of-the-art. The integration of analog/mixed-
signal subsystems, which are mostly designed bottom-up, into a digitally dominated top-down flow is still a
challenge. In Section 1.2.1, the intended use cases of the AMS extensions have been introduced. This section
describes how to apply the SystemC AMS extensions in order to yield higher efficiency and productivity in the
design process of embedded analog/digital systems. This complements the refinement approach known from
SystemC. Figure 8.8 gives an overview of the application of the SystemC AMS extensions.
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Figure 8.8—Use cases for the SystemC AMS extensions within top-down refinement

In the ideal case, top-down refinement begins with an executable specification of the intended behavior at
system level. Usually, the TDF model of computation is suitable to develop a functional model for this purpose.
Refinement of the executable specification is part of the architecture exploration use case. The refinement
process consists of a stepwise approach of replacing the blocks in the system with more accurate (less abstract)
models.

Architecture exploration distinguishes three separate aspects, each one being the opposite of one of the
abstractions in Figure 8.1:

— Refinement of behavior.
— Refinement of structure.

— Refinement of communication/interfaces.

Behavioral refinement augments the functional model used for the executable specification with specific
properties of an architecture (implementation). This permits the evaluation of the feasibility and performance of
different architectures (implementations). Properties that can easily be included in a functional model include:
noise, attenuation, distortions, limitation, jitter, delays, quantization, sampling frequencies, and many other.

As an example, Figure 8.9 shows an ideal (linear) and non-linear power amplifier, where the linear gain (c1)
and non-linear third-order term (c3) are approximated by using a Taylor series.

Refinement

of behavior

Vou = a4V, Vou = a1V, + 35V,°

out

a) Ideal (linear) amplifier b) Non-linear amplifier
Figure 8.9—Refinement of behavior of a power amplifier
Example 8.7 shows the implementation of the power amplifier. The function st d: : pow( x, y) from the C++
standard library cmat h is used, which computes x raised to the power of y.
Example 8.7: TDF modeling of a non-linear power amplifier
#i ncl ude <cnmat h>

SCA_TDF_MODULE( non_l i near _anplifier)
{
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sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <doubl e> out;

non_l i near _anplifier( sc_core::sc_nodul e_nane nm
doubl e pow_gain_db_ = 10.0, double iip3_dbm = 10.0, double zref_ = 50.0 )
in("in"), out("out")

al = std::pow10.0, pow_gain_db_ / 10.0);
double iip3_lin = std::sqgrt(std::pow10.0, (iip3_dbm-30.0)/10.0) * 2.0 * zref_);
a3 = (4.0 * al)/ (3.0 * std::powmiip3_lin, 2.0));

}

voi d processing()

{
out.wite( al * in.read() - a3 * std::powin.read(),3) );

}

private:
doubl e al, a3;

Refinement of structure repartitions the (usually block-diagram-like) system, used for executable specification,
with a structure of functional blocks that each represent a circuit or processor to be designed. Note that also
the model of computation changes depending on the intended domain of implementation.

Refinement _:
] — . - R c
of structure
out = f(in)
a) Laplace transfer function b) Electrical network

Figure 8.10—Structural refinement of a filter

In order to make the refinement of a model easier, the namespace concept allows to re-use a large part of existing
modeling infrastructure such as module and port declarations. However, behavior and (refined) structure have
to be written from scratch.

Refinement of communication/interfaces replaces the abstract communication used within the TDF model of
computation with concrete signals, e.g., electrical voltages and currents or digital (discrete-event) SystemC
signals. This requires to add also converter ports or modules to the models. Conversion between the models
of computation is discussed in Section 8.3.1. In order to support the refinement of communication/interfaces,
it is recommended to create adapter/converter classes as known from SystemC TLM extensions.

8.4 Modeling and coding style
8.4.1 Namespaces

The SystemC AMS extensions make extensive use of C++ namespaces to be able to clearly identify the
available models of computation and use the available primitive modules within the right context. The
namespaces sca_tdf, sca_Isf and sca_eln are reserved names for the language constructs used for the TDF,
LSF and ELN model of computation, respectively. Other reserved namespaces are sca_util for utility classes
and functions, and sca_ac_analysis for small-signal frequency-domain analyses. The user should not add new
definitions in these namespaces. Instead, it is recommended to declare user-defined modules belonging to the
same model of computation to a unique user-defined namespace, as shown in Example 8.8.
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Example 8.8: Defining a namespace
namespace ny_tdf _library {

SCA_TDF_MODULE( ny_sour ce)
{

}

}; // namespace ny_tdf _library

Instantiation of this object will look like this:

Example 8.9: Instantiation of a module from a specific namespace

SC_MODULE( anal og_t op)
{

ny_tdf _library::my_source i_my_source("i_mny_source");

}

8.4.1.1 Header files and naming conventions

The header file systemc-ams does not import the reserved namespaces sca_tdf, sca_lsf, sca_eln, sca_util,
and sca_ac_analysis into the scope of the program. This means the user has to explicitly add the namespace
identifier to each element, when instantiating or declaring such an object. Although the names are a bit longer
to write, it will result in a clear naming convention, where the user can recognize immediately whether the
object belongs to a particular class library of the SystemC AMS extensions, or whether the object is part of a
user-defined library. Example 8.10 and all other examples in this user’s guide follow this naming convention.

Example 8.10: Usage of header file systemc-ams

#i ncl ude <systent-ans>

#i ncl ude "ny_source. h"

int sc_main(int argc, char* argv[])

{ sc_core::sc_set_time_resolution(1.0, sc_core::SC FS);

sca_t df::sca_si gnal <doubl e> si g1;

/1 instantiate user-defined nodul e fromuser-defined 'ny_tdf_library' nanespace
nmy_tdf _library::my_source i _ny_source("i_ny_source");
i _my_source.out(sigl);
/'l instantiate other nodul es
/'l tracing AMS signals
sca_util::sca_trace_file* tf = sca_util::sca_create_tabular_trace_file("trace.dat");

sca_util::sca_trace(tf, sigl ,"sigl");

sc_core::sc_start(10.0, sc_core::SC M);
tf->set_node(sca_util::sca_ac_format(sca_util::SCA AC MAG RAD));
sca_ac_anal ysis::sca_ac_start(1.0e3, 1.0e6, 4, sca_ac_anal ysis::SCA LOG;
sca_util::sca_close_tabular_trace_file(tf);

return O;

When using the header file systemc-ams.h, all elements, which belong to the namespace sca_core, sca_util
and sca_ac_analysis, are imported into the scope of the program. This means the user can omit to prefix
the elements in these namespaces. Note that the namespace for the different models of computation are not
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declared, so even in this case, the user has to explicitly use the namespace to create TDF, LSF, and ELN models.
Example 8.11 shows the use of the header file systemc-ams.h.
Example 8.11: Usage of header systemc-ams.h
#i ncl ude <systent-ans. h>
#i nclude "ny_source. h"
int sc_main(int argc, char* argv[])
{
sc_set_tine_resolution(1.0, sc_core::SC FS);
sca_tdf::sca_si gnal <doubl e> si g1;
Il instantiate user-defined nodul e fromuser-defined 'ny_tdf' nanespace
ny_tdf::ny_source i _ny_source("i _my_source");
i _nmy_source.out (sigl);
/1 instantiate other nodul es
/1 tracing AMS signals
sca_trace_file* tf = sca_create_tabular_trace_file("trace.dat");
sca_trace(tf, sigl ,h"sigl");
sc_start(10.0, SC_Ms);
tf->reopen("ac_trace.dat");
tf->set_node( sca_ac_format(SCA AC_MAG RAD) );
sca_ac_start(1.0e3, 1.0e6, 4, SCA LOG;

sca_cl ose_tabul ar_trace_file(tf);

return O;

It is recommended to use the header file systemc-ams, resulting in a naming convention reflecting the full
names of classes and functions.

8.4.1.2 Using directive

The using directive of C++ allows the elements in a namespace to be used without explicitly adding the
namespace identifier to each element. It should only be used in a module implementation, not in the module
declaration (e.g., definition in a header file). It is recommended to apply the using directive only within the
local scope, e.g., as part of the implementation of a class member function. Example 8.12 shows how this
concept can be applied for a frequency-domain description as described in Section 5.3.3.

Example 8.12: Using directive

voi d ac_processing()
{
usi ng nanmespace sca_util;
usi ng nanespace sca_ac_anal ysis;

sca_conplex s
sca_conplex h

SCA COWPLEX J * sca_ac_wW();
1.0/ (s * s +s +1.0);

>

sca_ac(out) = h * sca_ac(in);

8.4.2 Dynamic memory allocation

Most of the examples shown in this user’s guide use objects (e.g., primitive modules), which are directly
instantiated in a function body, and thus are allocated automatically on the stack. In the case of big designs using
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many modules in a complex hierarchy, this approach is not the most efficient way as it can lead to an overflow
of the stack for automatic variables. The instantiated objects are referenced by pointers so that they do not need
to reside anymore in a consecutive memory area, which can lead to resource allocation problems. Furthermore,
it allows the instantiation of an arbitrary number of modules determined at runtime, which are referenced from
a dynamically created array of module pointers, and which constructors can be called individually to vary the
parameterization of each object.

The C++ operator newis used to dynamically allocate memory on the heap to store the objects. As allocation
returns the address to the newly allocated memory, access to the object’s member functions is done using a
pointer. Any memory dynamically allocated with the operator new must be released (deallocated) using the
operator del et e. This operator is usually called for each dynamically created member object in the destructor
of the class.

Example 8.13 shows the use of dynamic memory allocation and deallocation for the BASK demodulator similar
as described in Section 7.1.2.

Example 8.13: Dynamic memory allocation

SC_MODULE( bask_denod)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <bool > out;

rectifier* rc;
Itf_nd_filter* Ip;
sanpl er * sp;

SC _CTOR(bask_derod) : in("in"), out("out"), rc_out("rc_out"), Ip_out("lp_out")
{

rc = newrectifier("rc");

rc->in(in);

rc->out(rc_out);

Ip =new ltf_nd_filter("lp", 3.3e6);
I p->in(rc_out);
| p->out (I p_out);

sp = new sanpler("sp");
sp->in(lp_out);
sp->out (out);

}
~bask_denod()

del ete(rc);

del ete(l p);

del ete(sp);
}

private:
sca_tdf::sca_signal <doubl e> rc_out, |p_out;

}i

8.4.3 Module parameters

Modules need to be flexible to be reusable, i.e., their behavior and internal structure must be parameterized
to a reasonable degree to allow their adoption to varying specifications. This is especially interesting for the
early design stages of architecture exploration and successive refinement of the system structure.

In Section 7.1.1, a BASK modulator model is presented with hard coded design parameters, like the carrier
frequency of 70 MHz. With respect to this carrier frequency, the time step values and the data rates were
hard coded, such that the resulting signal was sufficiently sampled. Such ‘magic numbers’, hard coded port
rates, delays, and time steps, are typical signs of an inflexible implementation. If, for example, the carrier
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frequency would be increased without changing the time step, the model might not work properly because
of undersampling.

A more flexible approach is to derive time step and data rate values from the functional module parameters. In
this section it is shown how to make a parameterized version of the BASK modulator from Section 7.1.1, with
adjustable carrier-frequency and baseband frequency, and how to derive data rates and time steps automatically
from that. Firstly, a mixer with parameterized data rate is needed:

Example 8.14: TDF module of a mixer with parameterized data rate

SCA_TDF_MODULE( mi xer)

{
sca_tdf::sca_i n<bool > in_bin; // input port baseband signal
sca_tdf::sca_in<double> in_wav; // input port carrier signal
sca_tdf::sca_out <doubl e> out; /1 output port nodul ated signal

m xer ( sc_core::sc_nodul e_name nm unsigned long rate_ )
cin_bin("in_bin"), in_wav("in_wav"), out("out"), rate(rate_)
{

usi ng nanespace sc_core;
sc_assert(rate_ > 0);

}

void set_attributes()

{
in_wav.set_rate(rate);
out.set_rate(rate);

}
voi d processing()
{
for(unsigned long i = 0; i < rate; i++)
if( in_bin.read() )
out.wite( in_wav.read(i), i );
else out.wite( 0.0, i );
}
}
private:

unsigned |long rate;

}i

If parameters are used which are computed elsewhere, it is always a good idea to make plausibility checks.
Therefore, the mixers’ constructor contains the line sc_assert(rate > 0) to check if the rate parameter is at
least 1.

Using this mixer, and the parameterized sinusoidal source already used in Section 7.1.1, a parameterized BASK
modulator can be implemented as follows:

Example 8.15: Parameterized TDF module of the BASK modulator

SC_MODULE( bask_nnd)

{
sca_tdf::sca_i n<bool > in;
sca_t df::sca_out <doubl e> out;

sin_src sine;
m xer m Xx;

bask_mpd( sc_core::sc_nodul e_nane nm
doubl e baseband_freq,
doubl e carrier_freq,

doubl e carrier_anpl = 1.0,
unsi gned | ong sanpl es_per_period = 20 )
in("in"), out("out"),

si ne("sine",
carrier_anpl,
carrier_freq,
sca_core::sca_time( (1.0 / (sanples_per_period * carrier_freq) ), sc_core::SC SEC) ),
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mx("mx", (int)std::ceil ( static_cast<doubl e>(sanples_per_period) * carrier_freq/ baseband_freq) ),
carrier("carrier")
{

usi ng nanmespace sc_core;

/1 Plausibility checks

sc_assert(carrier_freq > baseband_freq); // wouldn't nmake sense otherwise!
sc_assert (sanpl es_per_period > 2); /1 Nyquist criterion satisfied?
sc_assert(carrier_anmpl > 0.0); /1 Otherw se the output is 0 all the way!

sine.out(carrier);
m X.in_wav(carrier);
m x.in_bin(in);

m x. out (out);

}

private:
sca_tdf::sca_signal <doubl e> carrier;

}i

The BASK modulator above can be configured with the following parameters:
— baseband_freq is the frequency of the binary signal.
— carrier_freq is the frequency of the carrier signal.
— carrier_anpl is the amplitude of the carrier signal, which defaults to 1.

— sanpl es_per _peri od is the number of samples used for one period of the sinusoidal carrier signal. The
default of 20 ensures sufficient sampling.

From these parameters, the appropriate parameters for the constructors of si n_sr ¢ and ni xer are computed.
Again, the constructor contains some plausibility checks using sc_assert. The time step of sin_src is the
reverse of the product of the carrier frequency and the samples per sinus period used. For example, if the carrier
frequency is 10 MHz, and 20 samples per period are used, the overall sampling frequency becomes 200 MHz,
which results in a time step of 5 ns. The rate of the porti n_wav of the mixer has to be the ratio of the product of
samples per period and carrier frequency to the baseband frequency. Assuming the latter to be 2 MHz, and again
a 10 MHz carrier frequency with 20 samples per period, this would result in a data rate of 100. Note that the
ceiling operation in the modulator code might result in a slightly higher samples per period rate than intended.

8.4.4 Separation of module definition and implementation

The condensed examples shown so far have implemented the behavior or structural composition directly inside
the class definition. It is recommended to separate the module definition from the actual implementation, into
a header file (with .h or .hpp extension) and an implementation file (with .cpp extension), as it is common C++
coding practice. Thus, only the information necessary to use the module is exposed to other files including the
header and not its implementation details. Duplicated code generation is avoided reducing overall compilation
time. Only for template classes declaration and implementation need to be both kept in the header files, as the
C++ compiler needs to be able to specialize the implementation to the passed template parameters.

Example 8.16 and Example 8.17 show the BASK demodulator example from Section 7.1.2, where the structural
composition is implemented in a separate implementation file, as part of the module constructor. The class
definition is put in a header file, which allows inclusion in other files. Note: if this separation is applied in
the case of a module which is created using a class template, the implementation file must be included into
the header file.

Example 8.16: BASK modulator header definition
/1 bask_denod. h

#i f ndef BASK_DEMOD_H_
#def i ne BASK_DEMOD_H_

#i ncl ude <systent-ans>
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#include "rectifier.h"
#include "Itf_nd_filter.h"
#i ncl ude "sanpl er. h"

SC_MODULE( bask_denod)
{

sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out <bool > out;

rectifier* rc;
Itf_nd_filter* Ip;
sanpl er * sp;

bask_denod( sc_core::sc_nodul e_name nm);

private:
sca_tdf::sca_signal <doubl e> rc_out, |p_out;

}i

#endi f // BASK_DEMOD H_

The class implementation containing the actual structural composition is stored in a separate file:

Example 8.17: BASK modulator implementation
/1 bask_denod. cpp
#i ncl ude "bask_denod. h"

bask_dennd: : bask_denmpd(sc_core:: sc_npdul e_nanme nm
in("in"), out("out"), rc_out("rc_out"), Ip_out("lp_out")
{
rc = newrectifier("rc");
rc->in(in);
rc->out(rc_out);

Ip =new ltf_nd_filter("lp", 3.3e6);
I p->in(rc_out);
| p->out (I p_out);

sp = new sanpler("sp");
sp->in(l p_out);
sp->out (out);

8.4.5 Class templates

C++ class templates can be used in the case of multiple instances using different data types or sizes are
needed in a design. For example, if a parallel data stream of width N has to be serialized, this can be modeled
very naturally with a TDF module having an input data rate of 1 and an output data rate of N. Figure 8.11
and Example 8.18 show the definition of a serializer, implemented as template class with parameter N. For
serialization of a 3 bit vector, the template parameter N is set to 3.

in |serializer<3>| out

in out

011 0101110

t/ps t/ps
0 30 60 0 30 60

Figure 8.11—Serialization of a 3-bit vector

131
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

Example 8.18: Class template

tenpl ate <int N>

SCA_TDF_MODULE( seri al i zer)

{
sca_tdf::sca_in<sc_dt::sc_bv<N> > in; // input port
sca_tdf::sca_out<bool > out; // output port

SCA CTOR(serializer) : in("in"), out("out") {}

void set_attributes()

{

out.set_rate(N);

}

voi d processing()
{for(int i =0; I <N i++)
{ out.wite( in.read().get_bit(i), i );
: }
Iy

Example 8.19 shows how such a template class can be used within a structural module.

Example 8.19: Using a template class in a structural SystemC module

SC_MODULE( nodul at or)
{

sca_tdf::sca_in<sc_dt::sc_bv<3> > in;
sca_tdf::sca_out <doubl e> out;

serializer<3> ser;
bask_nod nod;

SC CTOR(nodul ator) : in("in"), out("out"), ser("ser"), nod("nmod"), bits("bits")
{

ser.in(in);
ser.out(bits);

nmod. i n(bits);
nod. out (out ) ;

}

private:
sca_tdf::sca_signal <bool > bits;

}i

8.4.6 Public and private class members

When creating a module using the macro SC_MODULE or SCA_TDF_MODULE, a class is defined by
using the C++ keyword st r uct . In this case, all class members, such as functions and data variables, are public
by default. These members can be accessed from outside the class, for example from a function, e.g., the main
program sc_main, or from another class, e.g., a parent module. Modules which are defined with the keyword
cl ass have private members by default.

In order to be able to instantiate a module, and connect it with other modules, the constructor and ports have to
be declared as public. It is recommended to declare internal signals, nodes, variables, functions and primitive
modules as private, unless there is a good reason to access them from outside the scope of the class. For
example, signals and nodes could be made public to facilitate debugging.

To facilitate tracing of signals or nodes which are declared private, a helper function t r ace_i nt er nal s can be
defined as public member, which will write the signals to a trace file defined by the argument. Example 8.20
extends the BASK demodulator from Section 7.1.2 with tracing of local signals which are declared as private
members. In this case, there is no need to declare the signals itself as public.
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Example 8.20: Helper function to trace local signals declared as private members

SC_MODULE( bask_dennd)

{
sca_tdf::sca_i n<doubl e> in;
sca_tdf::sca_out<bool > out;

rectifier rc;
Itf_nd_filter Ip;
sanpl er sp;

SC_CTOR( bask_dennd)

in("in"), out("out"), rc("rc"), Ip("lp", 3.3e6), sp("sp"), rc_out("rc_out"), Ip_out("lp_out")
{

rc.in(in);

rc.out(rc_out);

Ip.in(rc_out);
I p.out (I p_out);

sp.in(lp_out);
sp. out (out);

}

void trace_internal s( sca_util::sca_trace_file* tf )

{
sca_util::sca_trace(tf, rc_out, rc_out.name() );
sca_util::sca_trace(tf, Ip_out, |p_out.name() );

}

private:

sca_tdf::sca_signal <doubl e> rc_out, |p_out;

b
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Annex A

Language reference

Note: This appendix gives only a list of the basic language definitions for TDF, LSF or ELN primitive modules.
The complete list of definitions can be found in the Language Reference Manual of the SystemC AMS
extensions as defined in IEEE Std. 1666.1-2016.

If the default value for a parameter is not given in the tables below, then the value has to be provided by the
user and cannot be omitted during construction.

A.1 TDF modules

/1 Nane Type Descri ption

R e e e
11 T Arbitrary data type (e.g double, sca_util::sca_vector,

Il tstep sca_core::sca_tine Time step as object

I/ abstime sca_core::sca_tinme Time step as object

/1 tstepd doubl e Time step in seconds

/1 tunit sc_core::sc_tinme_unit Time unit (e.g., sc_core::SC US, sc_core::SC M, ...)

/1 nane const char* Mbdul e nanme as string

/1 nm sc_core::sc_nodul e_nane Mdul e nane as obj ect

R e e e

SCA_TDF_MODULE( nane )

{
I/ port declarations
sca_tdf::sca_in<T> in; // input port
sca_tdf::sca_out<T> out; // output port

I/ Converter ports
sca_tdf::sca_de::sca_in<T> inp; [// converter port fromdiscrete-event domain
sca_tdf::sca_de::sca_out<T> outp; // converter port to discrete-event domain

/1 Cluster decoupling ports
sca_tdf::sca_out<T, sca_tdf::SCA CT_CUT> out_ct; // decouple using continuous-tinme semantics
sca_tdf::sca_out<T, sca_tdf::SCA DI_CUT> out_dt; // decouple using discrete-tinme semantics

/1 TDF methods, called automatically by the schedul er:
void set_attributes()

{
// initial definition of nodule and port attributes (optional)
}
voi d change_attributes()
{
/'l redefine nodule and port attributes (optional)
}
void initialize()
{
// initial values of ports with a delay (optional)
}
void reinitialize()
{
I/ reinitialize values of ports with a delay (optional)
}
voi d processing()
{
/1 tinme-domain signal processing behavior or algorithm (mandatory)
}
voi d ac_processing()
{
/1 small-signal frequency-donmain behavior (optional)
}
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/1 rmodul e constructor (nmandatory)
SCA_CTOR( nane ) {} /'l macro, or
name( sc_core::sc_nodul e_name nm) {} // full constructor, can also be used to pass paraneters

A.2 TDF ports

Nane Type Descri ption

val ue T Value with arbitrary type (double, sca_util::sca_vector, ...)
sanple_id unsi gned | ong Sanple ID: 0 for single-rate, 0...(rate-1) for nmultirate
nsanpl es unsi gned | ong Nurmber of sanpl es

rate unsi gned | ong Rate of the port

tstep sca_core::sca_tine Time step as tine object

t st epd doubl e Time step in seconds

ctdel ay sca_core::sca_tine Continuous-tinme delay as tinme object

ctdel ayd doubl e Conti nuous-tinme delay in seconds

tunit sc_core::sc_time_unit Time unit (e.g., sc_core::SCUS, sc_core::SC M, ...)
changed bool Detect if there was an attribute change

sca_tdf::sca_in<T> in;

sca_tdf::sca_out<T> out;

sca_tdf::sca_out<T, sca_tdf::SCA CT_CUT> out_ct;
sca_tdf::sca_out<T, sca_tdf::SCA DT_CUT> out_dt;
sca_tdf::sca_de::sca_in<T> inp;
sca_tdf::sca_de::sca_out <T> outp;

out.set_del ay( nsanples );
out.set_rate( rate );

out.set_tinmestep( tstep );
out.set_tinmestep( tstepd, tunit );
out.set_max_tinmestep( tstep );
out.set_max_tinmestep( tstepd, tunit );
out _ct.set_ct_delay( ctdelayd, tunit );

nsanpl es = out.get_del ay();

ctdelay = out_ct.get_ct_delay();

rate = out.get_rate();

abstime = out.get_tinme();

abstime = out.get_tinme( sanple_id );

tstep = out.get_tinmestep();

tstep = out.get_tinmestep( sanple_id );

tstepd = out.get_tinmestep().to_seconds();
tstep = out.get_last_tinmestep();

tstep = out.get_last_timestep( sanple_id );
tstepd = out.get_last_tinmestep().to_seconds();
tstep = out.get_max_tinmestep();

tstepd = out.get_max_tinmestep().to_seconds();
val ue = out.read_del ayed_val ue();

val ue = out.read_del ayed_val ue( sanple_id );
changed = out.is_tinmestep_changed();

changed = out.is_tinmestep_changed( sanple_id );
changed = out.is_rate_changed();

changed = out.is_del ay_changed();

out.initialize( value, sanple_id );

val ue
val ue

in. read();
in.read( sanple_id );

out.wite( value );
out.wite( value, sanple_id );
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A.3 TDF signals

/Il type T
sca_tdf::sca_signal <T> // TDF signal

A.4 Embedded Laplace transfer functions
A.4.1 sca_tdf::sca_Itf nd

Description

Scaled Laplace transfer function in the time-domain in the numerator-denominator form.

Definition

sca_tdf::sca_ltf_nd( num den, delay, state, input, k, tstep );

(A1)

Equation
M-1 .
0 num;: st
H(s)= kl;\/? -e(—s-delay)
0 den;:si
Parameters
Name | Type Default Description
num sca_util::sca_vector<double> Numerator coefficients
den sca_util::sca_vector<double> Denominator coefficients
delay sca_core::sca_time sc_core::SC_ZERO_TIME | Time continuous delay
(optional)
state sca_util::sca_vector<double> State vector (optional)
input double, sca_tdf::sca_in<double>, Input value, or signal
sca_tdf::sca_de::sca_in<double>, from port
sca_util::sca_vector<double>
k double 1.0 Gain coefficient (optional)
tstep sca_core::sca_time sc_core::SC_ZEROQO_TIME | Time step

Constraint of usage

The delay shall be greater than or equal to zero.

A.4.2 sca_tdf::sca_Itf_zp

Description

Scaled Laplace transfer function in the time-domain in the zero-pole form.

Definition

sca_tdf::sca_ltf_zp( zeros, poles, delay, state, input, k, tstep );
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Equation

H(s)= kll\;—l— -e(=s - delay) (A2)
Hi= 0 (s— polesi)

Parameters
Name | Type Default Description
Zeros sca_util::sca_vector< Numerator coefficients
sca_util::sca_complex >
poles sca_util::sca_vector< Denominator coefficients
sca_util::sca_complex >
delay sca_core::sca_time sc_core::SC_ZERO_TIME | Time continuous delay
(optional)
state sca_util::sca_vector<double> State vector (optional)
input double, sca_tdf::sca_in<double>, Input value, or signal
sca_tdf::sca_de::sca_in<double>, from port
sca_util::sca_vector<double>
k double 1.0 Gain coefficient (optional)
tstep sca_core::sca_time sc_core::SC_ZERO_TIME | Time step
Constraint of usage
The delay shall be greater than or equal to zero.
A.4.3 sca_tdf::sca_ss
Description
Single-input single-output state-space equation.
Definition
sca_tdf::sca_ss( a, b, ¢, d, delay, s, x, tstep );
Equation
ds(t)
= = As(t)+B-x(t — delay) (A3)
y(t) =C-s(t)+ D-x(¢t — delay)
Parameters
Name Type Default Description
a sca_util::sca_matrix<double> Matrix A of size n-by-n (n
= number of states)
b sca_util::sca_matrix<double> Matrix B of size n-by-m
(m = number of inputs)
c sca_util::sca_matrix<double> Matrix C of size r-by-n (r
= number of outputs)
d sca_util::sca_matrix<double> Matrix D of size r-by-m
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sca_util::sca_matrix<double>,
sca_tdf::sca_in<double>,
sca_tdf::sca_in<
sca_util::sca_vector><double>,
sca_tdf::sca_de::sca_in<
sca_util::sca_vector<double>

Name Type Default Description

delay sca_core::sca_time sc_core::SC_ZERO_TIME | Time continuous delay
(optional)

s sca_util::sca_vector<double> State vector (optional)

X sca_util::sca_vector<double>, Input vector, matrix or

signal from port

tstep sca_core::sca_time sc_core::SC_ZERO_TIME

Time step

Constraint of usage

The delay shall be greater than or equal to zero.

A.5 LSF primitive modules
A.5.1 sca_Isf::sca_add
Description

Weighted addition of two LSF signals.
Definition

sca_| sf::sca_add( nm k1, k2 );

(A.4)

Symbol
K,
X(t) ()
k2
x,(t)
Equation
YO =k x () +ky x,(1)
Parameters
Name Type Default | Description
nm sc_core::sc_module_name Module name
k1 double 1.0 Weighting coefficient for LSF signal at port x1
k2 double 1.0 Weighting coefficient for LSF signal at port x2
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(A.5)

Ports

Name Interface Type/Nature Description
x1 sca_lsf::sca_in Signal flow LSF input 1
x2 sca_lsf::sca_in Signal flow LSF input 2
y sca_lsf::sca_out Signal flow LSF output
A.5.2 sca_lsf::sca_sub

Description
Weighted subtraction of two LSF signals.
Definition
sca_l sf::sca_sub( nm ki1, k2 );
Symbol
k1
x(t) ()
=¥,
x(1)
Equation
V(O =k x (1) = kyx(t)

Parameters

Name | Type Default | Description

nm sc_core::sc_module _name Module name

k1 double 1.0 Weighting coefficient for LSF signal at port x1
k2 double 1.0 Weighting coefficient for LSF signal at port x2
Ports

Name Interface Type/Nature Description
x1 sca_lsf::sca_in Signal flow LSF input 1
x2 sca_lsf::sca_in Signal flow LSF input 2
y sca_lsf::sca_out Signal flow LSF output

A.5.3 sca_lsf::sca_gain

Description

Multiplication of an LSF signal by a constant gain.

Definition

sca_l sf::sca_gain( nm k );
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Symbol
xt)=> k()
Equation
() = k-x(1) (A.6)

Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

k double 1.0 Gain coefficient
Ports

Name Interface Type/Nature | Description

X sca_lsf::sca_in Signal flow LSF input

y sca_lsf::sca_out Signal flow LSF output
A.5.4 sca_lsf::sca_dot

Description

Scaled first-order time derivative of an LSF signal.

Definition
sca_|l sf::sca_dot( nm k );
Symbol

xt)— kL Py
dt
Equation
dx(t
v =k ZE ) (A7)

Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

k double 1.0 Scale coefficient
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Ports

Name Interface Type/Nature Description
X sca_lsf::sca_in Signal flow LSF input

y sca_lsf::sca_out Signal flow LSF output

A.5.5 sca_lsf::sca_integ

Description

Scaled time-domain integration of an LSF signal.
Definition

sca_l sf::sca_integ( nm k, y0 );

Symbol
xO— k[ ey
Equation
t
W)= kJ. x(t)dt+y0 (A.8)
Istart
Parameters
Name Type Default | Description
nm sc_core::sc_module_name Module name
k double 1.0 Scale coefficient
y0 double 0.0 Initial condition at t=0
Ports
Name Interface Type/Nature | Description
X sca_lsf::sca_in Signal flow LSF input
y sca_lsf::sca_out Signal flow LSF output

Constraint of usage

If yp is set to sca_util::SCA_UNDEFINED, the primitive contributes the equation y = k - x for the first
calculation instead of Equation (A.8). In this case, yy is set to the resulting y value of the first calculation.

A.5.6 sca_lsf::sca_delay
Description

Scaled time-delayed version of an LSF signal.
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Definition

sca_|l sf::sca_delay( nm delay, k, y0 );

Symbol
X(t) == x(t — A) = y(t)
Equation
y t <delay
= 0 (A.9)

k-x(t—delay) t>delay

Parameters

Name Type Default Description

nm sc_core::sc_module name Module name

delay sca_core::sca_time sc_core::SC_ZERO_TIME | Time continuous delay
k double 1.0 Scale coefficient
y0 double 0.0 Output value before delay
is in effect

Ports

Name | Interface Type/Nature | Description

X sca_lsf::sca_in Signal flow LSF input

y sca_lsf::sca_out Signal flow LSF output

Constraint of usage

The delay shall be greater than or equal to zero.
A.5.7 sca_lsf::sca_source

Description

LSF source.

Definition

sca_| sf::sca_source( nm init_value, offset, anplitude, frequency, phase, delay,
ac_anpl i tude, ac_phase, ac_noi se_anplitude );
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Symbol

Equation
For time-domain simulation:

init_value

t <delay

(A.10)

(A.11)

(A.12)

n0= offset + amplitude-sin(2z - frequency-(t — delay)+ phase) t>delay
For small-signal frequency-domain simulation:

y(f)=ac_ampl itude'{cos(ac -~ phase)+ j-sin(ac _phase)}
For small-signal frequency-domain noise simulation:

W)= ac_noise_amplitude
Parameters
Name Type Default Description
nm sc_core:: sc_module_name Module name
init_value double 0.0 Initial value
offset double 0.0 Offset value
amplitude double 0.0 Source amplitude
frequency double 0.0 Source frequency in hertz
phase double 0.0 Source phase in radian
delay sca_core::sca_time sc_core::SC_ZERO_TIME | Time continuous delay
ac_amplitude | double 0.0 Small-signal amplitude *)
ac_phase double 0.0 Small-signal phase in

radian *)

ac_noise double 0.0 Small-signal noise
amplitude amplitude **)

*) for small-signal frequency-domain simulation only.

**) for small-signal frequency-domain noise simulation only.

Ports
Name Interface Type/Nature Description
y sca_lsf::sca_out Signal flow LSF output

Constraint of usage

The delay shall be greater than or equal to zero.
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A.5.8 sca_lIsf::sca_Itf nd

Description

Scaled Laplace transfer function in the time-domain in the numerator-denominator form.
Definition

sca_l sf::sca_ltf_nd( nm num den, delay, k );

(A.13)

Symbol
x(t)—»{ LY Ly v(h)
den
Equation
N1y dN 2y dy(t
denN,]Ty() +denN,ZTty() +oe +den]% +deny y(1)
- dM~Iy(—delay) dM=2x(—delay)
=ke\mumy g tumy g
dx(t—del
+-+ numjw + numg x(t — delay))
Parameters
Name Type Default Description
nm sc_core::sc_module_name Module name
num sca_util::sca_vector<double> Numerator coefficients
den sca_util::sca_vector<double> Denominator coefficients
delay sca_core::sca_time sc_core::SC_ZERO_TIME | Time continuous delay
k double 1.0 Gain coefficient
Ports
Name Interface Type/Nature | Description
X sca_lsf::sca_in Signal flow LSF output
y sca_lsf::sca_out Signal flow LSF output

Constraint of usage

The delay shall be greater than or equal to zero.
A.5.9 sca lsf::sca_lItf_zp

Description

Scaled Laplace transfer function in the time-domain in the zero-pole form.
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Definition

sca_l sf::sca_ltf_zp( nm zeros, poles,

Symbol

Equation

delay, k );

Zeros

X() =i
poles

—> y(f)

d d d d
(m - polesN_ Nai ~ poleSN_2)~ : '(E — poles 1)(5 - poles{))y(t)

= k{(% — zerosy,_ 1)(% — zerosy_ 2)' : (% — zeros 1)(% - zeroso)x(t —d elay)}

(A.14)

Parameters

Name Type Default Description

nm sc_core::sc_module name Module name

Zeros sca_util::sca_vector< Zeros
sca_util::sca_complex>

poles sca_util::sca_vector< Poles
sca_util::sca_complex>

delay sca_core::sca_time sc_core::SC_ZERO_TIME | Time continuous delay

k double 1.0 Gain coefficient

Ports

Name Interface Type/Nature Description

X sca_lsf::sca_in Signal flow LSF output

y sca_lsf::sca_out Signal flow LSF output

Constraint of usage

The expansion of the numerator and the denominator shall result in a real value, respectively. The delay shall
be greater than or equal to zero.

A.5.10 sca_lsf::sca_ss

Description

Single-input single-output state-space equation.

Definition

sca_l sf::sca_ss( nm a, b, ¢, d, delay );
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Symbol
A B
{) = —> J/(t
x(t) CD ()

Equation

d.

% =A-s(t)+ B-x(t —delay) (A.15)

()= C:-s(t)+D-x(t — delay) (A.16)
Parameters
Name Type Default Description
nm sc_core::sc_module name Module name
a sca_util::sca_matrix<double> Matrix A of size n-by-n
b sca_util::sca_matrix<double> Matrix B with one column of

size n
c sca_util::sca_matrix<double> Matrix C with one row of size
n

d sca_util::sca_matrix<double> Matrix D of size 1
delay sca_core::sca_time sc_core::SC_ZEROQO_TIME | Time continuous delay
Ports
Name | Interface Type/Nature | Description
X sca_lsf::sca_in Signal flow LSF output
y sca_lsf::sca_out Signal flow LSF output

Constraint of usage

The delay shall be greater than or equal to zero.

A.5.11 sca_lsf::sca_tdf::sca_gain, sca_lsf::sca_tdf_gain
Description

Scaled multiplication of a TDF input signal by an LSF input signal.
Definition

sca_|l sf::sca_tdf::sca_gain( nm scale );

sca_|l sf::sca_tdf _gain( nm scale );
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Symbol
inp
Equation
w(t)=scale-inp-x(t) (A.17)

Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

scale double 1.0 Scale coefficient
Ports

Name Interface Type/Nature | Description
inp sca_tdf::sca_in<T> double TDF input

X sca_lsf::sca_in Signal flow LSF output
y sca_lsf::sca_out Signal flow LSF output
A.5.12 sca_lsf::sca_tdf::sca_source, sca_lIsf::sca_tdf source
Description
Scaled conversion of a TDF input signal to an LSF output signal.
Definition
sca_|l sf::sca_tdf::sca_source( nm scale );
sca_|l sf::sca_tdf _source( nm scale );
Symbol

in —> y/(t
P ~ ¥t
Equation
W(t)=scale inp (A.18)

Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

147

Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

Name Type Default | Description

scale double 1.0 Scale coefficient
Ports

Name Interface Type/Nature Description
inp sca_tdf::sca_in<T> double TDF input

y sca_lsf::sca_out Signal flow LSF output

A.5.13 sca_lsf::sca_tdf::sca_sink, sca Isf::sca_tdf_sink
Description

Scaled conversion from an LSF input signal to a TDF output signal.
Definition

sca_l sf::sca_tdf::sca_sink( nm scale );

sca_l sf::sca_tdf _sink( nm scale );

Symbol

LSF
X( ) m—tp S outp

Equation

There is no equation contributed to the overall equation system for this module.

Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

scale double 1.0 Scale coefficient
Ports

Name Interface Type/Nature Description
X sca_lsf::sca_in Signal flow LSF input
outp sca_tdf::sca_out<T> double TDF output

A.5.14 sca_lsf::sca_tdf::sca_mux, sca_lIsf::sca_tdf _mux
Description

Selection of one of two LSF input signals by a TDF control signal (multiplexer).
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sca_l sf::sca_tdf::sca_mux( nm);

sca_l sf::sca_tdf _mux( nm);

(A.19)

Symbol

x(t)

e
(1)
ctrl
Equation
x[t) ctrl= false
= x5(t) ctrl=true
2

Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
Ports
Name | Interface Type/Nature | Description
x1 sca_lsf::sca_in Signal flow LSF input 1
x2 sca_lsf::sca_in Signal flow LSF input 2
ctrl sca_tdf::sca_in<T> bool TDF control input
y sca_lsf::sca_out Signal flow LSF output

A.5.15 sca_lIsf::sca_tdf::sca_demux, sca_lsf::sca_tdf demux

Description

Routing of an LSF input signal to either one of two LSF output signals controlled by a TDF signal
(demultiplexer).

Definition

sca_|l sf::sca_tdf::sca_denmux( nm);

sca_l sf::sca_tdf _demux( nm);

Symbol

- yz(t)

ctrl
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Equation
x(¢) ctrl= false
y (f)z{ ¥ ’ (A.20)
1 0 ctri=true
ctrl = false (A21)
v 0= x(t) ctrl=true '
Parameters
Name Type Default | Description
nm sc_core::sc_module_name Module name
Ports
Name Interface Type/Nature Description
X sca_lsf::sca_in Signal flow LSF input
ctrl sca_tdf::sca_in<T> bool TDF control input
yl sca_lsf::sca_out Signal flow LSF output 1
y2 sca_lIsf::sca_out Signal flow LSF output 2
A.5.16 sca_lsf::sca_de::sca_gain, sca_lsf::sca_de_gain
Description
Scaled multiplication of a discrete-event input signal by an LSF input signal.
Definition
sca_| sf::sca_de::sca_gain( nm scale );
sca_| sf::sca_de_gain( nm scale );
Symbol
x)=» X =)
f
inp
Equation
W(t)= scale-inp-x(t) (A.22)
Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
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Ports

Name Interface Type/Nature Description

inp sc_core::sc_in<T> double Discrete-event input
X sca_lsf::sca_in Signal flow LSF output

y sca_lsf::sca_out Signal flow LSF output

A.5.17 sca_lsf::sca_de::sca_source, sca _lIsf::sca_de_source
Description

Scaled conversion of a discrete-event input signal to an LSF output signal.
Definition

sca_l sf::sca_de::sca_source( nm scale );

sca_|l sf::sca_de_source( nm scale );

(A.23)

Symbol
DE
in = /(1
pr==pp{] 'Sk ¥
Equation
y(t)=scale-inp
Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient

Ports
Name Interface Type/Nature | Description
inp sc_core::sc_in<T> double Discrete-event input
y sca_lsf::sca_out Signal flow LSF output

A.5.18 sca_lsf::sca_de::sca_sink, sca_Isf::sca_de_sink
Description

Scaled conversion from an LSF input signal to a discrete-event output signal.
Definition

sca_| sf::sca_de::sca_sink( nm scale );
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sca_| sf::sca_de_sink( nm scale );

Symbol

LSF
X(£) = (= outp
DE

Equation

There is no equation contributed to the overall equation system for this module.

Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

scale double 1.0 Scale coefficient
Ports

Name Interface Type/Nature | Description

X sca_lsf::sca_in Signal flow LSF input

outp sc_core::sc_out<T> double Discrete-event output

A.5.19 sca_lIsf::sca_de::sca_mux, sca_lsf::sca_de_mux

Description

Selection of one of two LSF input signals by a discrete-event control signal (multiplexer).
Definition

sca_|l sf::sca_de::sca_mux( nm);

sca_l sf::sca_de_nmux( nm);

Symbol
X(t) ==>1 L 0
z(t)»:l::'_ g
ctrl
Equation
x[t) ctrl= false
= A24
) xy(t) ctrl=true ¢ )
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Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

Ports

Name Interface Type/Nature Description

x1 sca_lsf::sca_in Signal flow LSF input 1

x2 sca_lsf::sca_in Signal flow LSF input 2

ctrl sc_core::sc_in<T> bool Discrete-event control input
y sca_lsf::sca_out Signal flow LSF output

A.5.20 sca_Isf::sca_de::sca_demux, sca_lIsf::sca_de_demux

Description

Routing of an LSF input signal to either one of two LSF output signals controlled by a discrete-event control
signal (demultiplexer).

sca_| sf::sca_de::sca_demux( nm);

sca_| sf::sca_de_demux( nm);

Symbol
-
X(t) = _/— yAt)
- Yt)
ctrl
Equation
x(t) ctrl = false
= (A.25)
y1( ) {0 ctrl = true
0 ctrl= false (A26)
y 0= x(t) ctrl=true '
Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
Ports
Name Interface Type/Nature | Description
X sca_lsf::sca_in Signal flow LSF input
ctrl sc_core::sc_in<T> bool Discrete-event control input
yl sca_lsf::sca_out Signal flow LSF output 1
y2 sca_lsf::sca_out Signal flow LSF output 2
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A.6 ELN primitive modules
A.6.1sca_eln::sca_r
Description

Resistor.

Definition

sca_eln::sca_r( nm value );

(A.27)

Symbol
o —}o
p n
Equation
Vp.u(t) = ip,n(t) value
Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
value double 1.0 Resistance in ohms
Ports
Name | Interface Type/Nature | Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal

A.6.2 sca_eln::sca ¢
Description

Capacitor.

Definition

sca_eln::sca_c( nm value, g0 );

Symbol
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Equation
. d(value-vp,n(t)+q0) (A.28)
ipnl()= T

Parameters

Name Type Default | Description

nm sc_core::sc_module name Module name

value double 1.0 Capacitance in farads

q0 double 0.0 Initial charge in coulombs

Ports

Name Interface Type/Nature | Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

Constraints of usage

The parameter value shall not be numerically zero.

If the initial charge g is set to sca_util::SCA_UNDEFINED, the primitive contributes no equation to
the equation system for the first calculation. In this case, the initial charge ¢, is calculated as follows:
qo = value - v, .9, where v, , is the voltage across the capacitor after the first calculation.

A.6.3 sca_eln::sca_|

Description

Inductor.

Definition

sca_eln::sca_l ( nm value, psiO );

Symbol
oYY o
p n
Equation
d(value'ip,n(t)+psi0) (A29)
Vp,n(t) = dt
Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
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Name | Type

Default

Description

value double

1.0

Inductance in henrys

psi0 double 0.0 Initial linked flux in webers
Ports

Name Interface Type/Nature | Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

Constraints of usage

The parameter value shall not be numerically zero.

If the initial linked flux psij is set to sca_util::SCA_UNDEFINED, the primitive contributes to the equation
system the equation v, = 0 for the first calculation instead of Equation (A.29). In this case, the initial linked
flux psiy is calculated as follows: psiyp = value - iy, 59, where i, ;9 is the current flowing through the inductor

after the first calculation.

A.6.4 sca_eln::sca_vcvs
Description

Voltage controlled voltage source.
Definition

sca_el n::sca_vcvs( nm value );

(A.30)

Symbol
nepo—x  F9np
03
nen¢—=__=—om
Equation
Vnp,nn(t) = Vah/le' Vn(;p,n(;n(t)
Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
value double 1.0 Scale coefficient of the control voltage
Ports
Name | Interface Type/Nature | Description
ncp sca_eln::sca_terminal Electrical Positive control terminal
ncn sca_eln::sca_terminal Electrical Negative control terminal
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Name Interface Type/Nature Description
np sca_eln::sca_terminal Electrical Positive terminal of source
nn sca_eln::sca_terminal Electrical Negative terminal of source
A.6.5sca_eln::sca_vccs
Description
Voltage controlled current source.
Definition
sca_el n::sca_vccs( nm value );
Symbol
jmmmmm e ,
ncp ?—+ » Np
I I
| l
I - 1
ncn9— — © NN
Equation
inp,nn(t) = value:-vucp nen(t) (A31)
Parameters
Name | Type Default | Description
nm sc_core::sc_module_name Module name
value double 1.0 Scale coefficient in siemens of the control voltage
Ports
Name Interface Type/Nature | Description
ncp sca_eln::sca_terminal Electrical Positive control terminal
ncn sca_eln::sca_terminal Electrical Negative control terminal
np sca_eln::sca_terminal Electrical Positive terminal of source
nn sca_eln::sca_terminal Electrical Negative terminal of source
A.6.6 sca_eln::sca_ccvs
Description
Current controlled voltage source.
Definition
sca_el n::sca_ccvs( nm value );
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Symbol
R .
ncp ; & np
= !
i !
ncn9— — O NN
Equation
Vnp’nn(t) = Value . incp’;zcn(t) (A32)
Parameters
Name | Type Default | Description
nm sc_core::sc_module _name Module name
value double 1.0 Scale coefficient in ohms of the control current
Ports
Name Interface Type/Nature Description
ncp sca_eln::sca_terminal Electrical Positive control terminal
ncn sca_eln::sca_terminal Electrical Negative control terminal
np sca_eln::sca_terminal Electrical Positive terminal of source
nn sca_eln::sca_terminal Electrical Negative terminal of source
A.6.7 sca_eln::sca_cccs
Description
Current controlled current source.
Definition
sca_el n::sca_cccs( nm value );
Symbol
R —— )
ncp b np
I
! i
1<
ncny— ™ y nn
Equation
l'np’nn(t) = Value' incp,nc'n(t) (A33)
Parameters
Name Type Default | Description
nm sc_core::sc_module_name Module name
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Name Type Default | Description

value double 1.0 Scale coefficient of the control current
Ports

Name Interface Type/Nature Description

ncp sca_eln::sca_terminal Electrical Positive control terminal

ncn sca_eln::sca_terminal Electrical Negative control terminal

np sca_eln::sca_terminal Electrical Positive terminal of source

nn sca_eln::sca_terminal Electrical Negative terminal of source

A.6.8 sca_eln::sca_nullor

Description

Nullor (nullator - norator pair), ideal Opamp.

Definition

sca_eln::sca_nullor( nm);

Symbol
nipb—_ : nop
i |
nin .___________,I non
Equation
Vnip,nin(t) =0 (A.34)
inip,nin(t) =0 (A.35)
Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
Ports
Name | Interface Type/Nature | Description
nip sca_eln::sca_terminal Electrical Positive terminal of nullator
nin sca_eln::sca_terminal Electrical Negative terminal of nullator
nop sca_eln::sca_terminal Electrical Positive terminal of norator
non sca_eln::sca_terminal Electrical Negative terminal of norator
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A.6.9 sca_eln::sca_gyrator

Description

Gyrator.

Definition

sca_eln::sca_gyrator( nm gl, g2 );

Symbol
p1o— 91 — & p2
vk
i i
n1¢— G “—on2
Equation
ipnf1) =g, vp,nl) (A.36)
ipnA0) =g, Vp,mi0) (A37)
Parameters
Name Type Default | Description
nm sc_core::sc_module_name Module name
gl double 1.0 Gyration conductance in siemens
22 double 1.0 Gyration conductance in siemens
Ports
Name Interface Type/Nature | Description
pl sca_eln::sca_terminal Electrical Positive terminal of primary port
nl sca_eln::sca_terminal Electrical Negative terminal of primary port
p2 sca_eln::sca_terminal Electrical Positive terminal of secondary port
n2 sca_eln::sca_terminal Electrical Negative terminal of secondary port

A.6.10 sca_eln::sca_ideal_transformer

Description

Ideal transformer.

Definition

sca_eln::sca_ideal _transformer( nm ratio );
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Symbol
p1 o o[ OP2
| |
! i
n1 byl n2
Equation
vp n(t) = ratiovp nyf) (A.38)
ipz,nz(t) = l”atiO'ipI,n,(f) (A.39)
Parameters
Name | Type Default | Description
nm sc_core::sc_module name Module name
ratio double 1.0 Transformation ratio
Ports
Name Interface Type/Nature Description
pl sca_eln::sca_terminal Electrical Positive terminal of primary port
nl sca_eln::sca_terminal Electrical Negative terminal of primary port
p2 sca_eln::sca_terminal Electrical Positive terminal of secondary port
n2 sca_eln::sca_terminal Electrical Negative terminal of secondary port

A.6.11 sca_eln::sca_transmission_line
Description

Transmission line.

Definition

sca_eln::sca_transm ssion_line( nm z0, delay, delta0 );

Symbol
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Zg'ig, b (1) t<delay

V, )=
@b {edelmodelay(vaz’bz(t —delay)+zyig,pt - delay))+ 2y'la,b (1) 1Zdelay

Zg"la,,b 1) t<delay

(A.40)

(A.41)

Vay,b (1) =
@ 2( { eidelmo.delay(\’m,b 1(t —delay)+zyi, 1sb1(t ~delay )) tIy i”z’bz(t) t>delay

Parameters

Name Type Default Description

nm sc_core::sc_module name Module name

z0 double 100.0 Characteristic impedance of

the transmission line in ohms

delay sca_core::sca_time sc_core::SC_ZERQ_TIME | Transmission delay

delta0 double 0.0 Dissipation factor in 1/seconds.
Ports

Name Interface Type/Nature | Description

al sca_eln::sca_terminal Electrical Wire A at primary side

bl sca_eln::sca_terminal Electrical Wire B at primary side

a2 sca_eln::sca_terminal Electrical Wire A at secondary side

b2 sca_eln::sca_terminal Electrical Wire B at secondary side

Constraint of usage

The delay shall be greater than or equal to zero.
A.6.12 sca_eln::sca_vsource
Description

Independent voltage source.

Definition

sca_el n::sca_vsource( nm init_value, offset, anplitude, frequency, phase, delay,
ac_anpl i tude, ac_phase, ac_noise_anplitude );

Symbol

PP+
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Equation
For time-domain simulation:

B init_value t<delay (A42)
vpll) = offset + amplitude-sin(2r- frequency-(t — delay)+ phase) t>delay .

For small-signal frequency-domain simulation:
Vpu(f)=ac_amplitude-{cos(ac_phase)+ j-sin(ac_phase)} (A.43)

For small-signal frequency-domain noise simulation:

vp,n(f) = ac_noise_amplitude (A44)
Parameters
Name Type Default Description
nm sc_core:: sc_module_name Module name
init_value double 0.0 Initial value
offset double 0.0 Offset value
amplitude double 0.0 Source amplitude
frequency double 0.0 Source frequency in hertz
phase double 0.0 Source phase in radian
delay sca_core::sca_time sc_core::SC_ZEROQO_TIME | Time continuous delay
ac_amplitude | double 0.0 Small-signal amplitude *)
ac_phase double 0.0 Small-signal phase in

radian *)

ac_noise double 0.0 Small-signal noise
amplitude amplitude **)

*) for small-signal frequency-domain simulation only.

**) for small-signal frequency-domain noise simulation only.

Ports

Name Interface Type/Nature | Description

P sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal

Constraint of usage

The delay shall be greater than or equal to zero.
A.6.13 sca_eln::sca_isource
Description

Independent current source.
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Definition

sca_eln::sca_isource( nm init_value, offset, anplitude, frequency, phase, delay,
ac_anpl i tude, ac_phase, ac_noise_anplitude );

Symbol
p
n
Equation
For time-domain simulation:
init value t<delay
ip.n(t)= (A4

offset + amplitude - sin(2zn- frequency-(t — delay)+ phase) t>delay
For small-signal frequency-domain simulation:
ipa(f)=ac_amplitude-{cos(ac_phase)+ j-sin(ac_phase)} (A.46)

For small-signal frequency-domain noise simulation:

ipn(f)=ac_noise_amplitude (A.47)
Parameters
Name Type Default Description
nm sc_core:: sc_module_name Module name
init_value double 0.0 Initial value
offset double 0.0 Offset value
amplitude double 0.0 Source amplitude
frequency double 0.0 Source frequency in hertz
phase double 0.0 Source phase in radian
delay sca_core::sca_time sc_core::SC_ZEROQO_TIME | Time continuous delay
ac_amplitude | double 0.0 Small-signal amplitude *)
ac_phase double 0.0 Small-signal phase in

radian *)

ac_noise double 0.0 Small-signal noise
amplitude amplitude **)

*) for small-signal frequency-domain simulation only.

**) for small-signal frequency-domain noise simulation only.

Ports
Name | Interface Type/Nature | Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
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Constraint of usage

The delay shall be greater than or equal to zero.

A.6.14 sca_eln::sca_tdf::sca r, sca_eln::sca_tdf r
Description

Variable resistor controlled by a TDF input signal.
Definition

sca_eln::sca_tdf::sca_r( nm scale );

sca_eln::sca_tdf _r( nm scale );

(A.48)

Symbol
inp
Equation
Vp.u(t) = scale-inp-ip n(t)
Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports
Name Interface Type/Nature | Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
inp sca_tdf::sca_in<T> double TDF control input

A.6.15 sca_eln::sca_tdf::sca |, sca_eln::sca_tdf_|
Description

Variable inductor controlled by a TDF input signal.
Definition

sca_eln::sca_tdf::sca_|( nm scale, psiO);

sca_eln::sca_tdf _| ( nm scale, psiO );
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Symbol
inp
Equation
d(scale' inp-ipn(t)+ psio) (A.49)
Vp,n(t) = a7

Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

scale double 1.0 Scale coefficient

psi0 double 0.0 Initial linked flux in webers
Ports

Name Interface Type/Nature | Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sca_tdf::sca_in<T> double TDF control input

Constraints of usage

The TDF control input inp shall not be zero.

If the initial linked flux psiy is set to sca_util::SCA_UNDEFINED, the primitive contributes to the equation
system the equation v, , = 0 for the first calculation instead of Equation (A.49). In this case, the initial linked
flux psiy is calculated as follows: psip = value - iy, ,9, Where iy, ¢ is the current flowing through the inductor
after the first calculation.

A.6.16 sca_eln::sca_tdf::sca_c, sca_eln::sca_tdf c

Description

Variable capacitor controlled by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_c( nm scale, q0 );

sca_eln::sca_tdf _c( nm scale, q0 );

166
Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

(A.50)

Symbol
inp
Equation
d(scale' inp-vpn(t)+ qo)
ipn(t)= 7

Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

scale double 1.0 Scale coefficient

q0 double 0.0 Initial charge in coulombs
Ports

Name Interface Type/Nature | Description

p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal

inp sca_tdf::sca_in<T> double TDF control input

Constraints of usage

The TDF control input inp shall not be zero.

If the initial charge gy is set to sca_util::SCA_UNDEFINED, the primitive contributes no equation to
the equation system for the first calculation. In this case, the initial charge gy is calculated as follows:

qo = value - v, .9, where v, 9 is the voltage across the capacitor after the first calculation.

A.6.17 sca_eln::sca_tdf::sca_rswitch, sca_eln::sca_tdf rswitch

Description

Switch controlled by a TDF input signal.
Definition

sca_eln::sca_tdf::sca_rswitch( nm ron,

sca_eln::sca_tdf _rswitch( nm ron,
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Symbol
ctrl .— i
| I n__
Equation
Ton'ipn(t) ctrl # off state
Vp n(t): o . _ (AS])
’ Toff iplt) ctrl= off state
Parameters
Name Type Default Description
nm sc_core::sc_module name Module name
ron double 0.0 On resistance in ohms
roff double sca_util::SCA_INFINITY | Off resistance in ohms
off state | bool false Define which position is the
off-position
Ports
Name | Interface Type/Nature | Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
ctrl sca_tdf::sca_in<T> bool TDF control input
A.6.18 sca_eln::sca_tdf::sca_vsource, sca_eln::sca_tdf vsource
Description
Voltage source driven by a TDF input signal.
Definition
sca_eln::sca_tdf::sca_vsource( nm scale );
sca_el n::sca_tdf _vsource( nm scale );
Symbol
inp
Equation
vp,n(t) = scaleinp (A.52)
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Parameters

Name Type Default Description

nm sc_core::sc_module_name Module name
scale double 1.0 Scale coefficient
Ports

Name Interface Type/Nature | Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sca_tdf::sca_in<T> double TDF input

A.6.19 sca_eln::sca_tdf::sca _isource, sca_eln::sca_tdf isource

Description

Current source driven by a TDF input signal.

Definition

sca_eln::sca_tdf::sca_isource( nm scale );

sca_eln::sca_tdf _isource( nm scale );

(A.53)

Symbol
inp
Equation
ipn(t) = scale-inp

Parameters

Name Type Default Description

nm sc_core::sc_module_name Module name

scale double 1.0 Scale coefficient
Ports

Name | Interface Type/Nature | Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

inp sca_tdf::sca_in<T> double TDF input
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A.6.20 sca_eln::sca_tdf::sca_vsink, sca_eln::sca_tdf vsink
Description

Converts voltage to a TDF output signal.

Definition

sca_el n::sca_tdf::sca_vsink( nm scale );

sca_el n::sca_tdf _vsink( nm scale );

Symbol
| I
b=
i Vo i outp
o' |
Equation
No equation added to the equation system.
Parameters
Name | Type Default | Description
nm sc_core::sc_module_name Module name
scale double 1.0 Scale coefficient
Ports
Name Interface Type/Nature | Description
P sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
outp sca_tdf::sca_out<T> double TDF output

A.6.21 sca_eln::sca_tdf::sca_isink, sca_eln::sca_tdf isink
Description

Converts current to a TDF output signal.

Definition

sca_eln::sca_tdf::sca_isink( nm scale );

sca_eln::sca_tdf _isink( nm scale );
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Symbol
Po— !
i I
i iom I. outp
¢ ,i
Equation
Parameters
Name | Type Default | Description
nm sc_core::sc_module _name Module name
scale double 1.0 Scale coefficient
Ports
Name Interface Type/Nature Description
P sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
outp sca_tdf::sca_out<T> double TDF output
A.6.22 sca_eln::sca _de::sca r, sca_eln::sca_de_r
Description
Variable resistor controlled by a discrete-event input signal.
Definition
sca_eln::sca_de::sca_r( nm scale );
sca_eln::sca_de_r( nm scale );
Symbol
inp
Equation
Vp.u(t) = scale-inp-ip n(t) (A.55)
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Parameters
Name Type Default | Description
nm sc_core::sc_module_name Module name
scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature | Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
inp sc_core::sc_in<T> double Discrete-event control input

A.6.23 sca_eln::sca _de::sca |, sca _eln::sca _de |

Description

Variable inductor controlled by a discrete-event input signal.

Definition

sca_eln::sca_de::sca_|( nm scale, psiO);

sca_eln::sca_de_| ( nm scale, psiO);

(A.56)

Symbol
inp
Equation
d(scale' inp-ipu(t)+ psio)
val(t) = dt

Parameters

Name | Type Default | Description

nm sc_core::sc_module _name Module name

scale double 1.0 Scale coefficient

psi0 double 0.0 Initial linked flux in webers
Ports

Name Interface Type/Nature Description

p sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal
inp sc_core::sc_in<T> double Discrete-event control input

172

Copyright © 2020 Accellera Systems Initiative. All rights reserved.



SystemC Analog/Mixed-Signal User’'s Guide
User Perspective on |IEEE Std. 1666.1-2016

Constraints of usage

The discrete-event control input inp shall not be zero.

If the initial linked flux psij is set to sca_util::SCA_UNDEFINED, the primitive contributes to the equation
system the equation v, = 0 for the first calculation instead of Equation (A.56). In this case, the initial linked
flux psiy is calculated as follows: psiyp = value - iy, ,9, where i, ;9 is the current flowing through the inductor
after the first calculation.

A.6.24 sca_eln::sca_de::sca c, sca eln::sca de c

Description

Variable capacitor controlled by a discrete-event input signal.

Definition

sca_el n::sca_de::sca_c( nm scale, q0 );

sca_eln::sca_de_c( nm scale, q0);

Symbol
inp
Equation
. d(scale'inp'vp,n(t)-qu) (A.57)
lp ,n(t) = d t
Parameters
Name | Type Default | Description
nm sc_core::sc_module_name Module name
scale double 1.0 Scale coefficient
q0 double 0.0 Initial charge in coulombs
Ports
Name Interface Type/Nature Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
inp sc_core::sc_in<T> double Discrete-event control input

Constraints of usage

The discrete-event control input inp shall not be zero.
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If the initial charge g is set to sca_util::SCA_UNDEFINED, the primitive contributes no equation to
the equation system for the first calculation. In this case, the initial charge g is calculated as follows:
qo = value - vy, 9, Where v, 9 is the voltage across the capacitor after the first calculation.

A.6.25 sca_eln::sca_de::sca_rswitch, sca_eln::sca_de_rswitch

Description

Switch controlled by a discrete-event input signal.

Definition

sca_el n::sca_de::sca_rswitch( nm ron, roff, off_state );

sca_eln::sca_de_rswitch( nm ron, roff, off_state );

Symbol
___p__l
ctrl [':]—T E
e n__l
Equation

B Fon'ip,n(t) ctrl# off state (A58)
vplt)= Tofripn(t) ctrl = off state ’

Parameters

Name Type Default Description

nm sc_core::sc_module_name Module name

ron double 0.0 On resistance in ohms

roff double sca_util::SCA_INFINITY | Off resistance in ohms

off state | bool false Define which position is the
off-position

Ports

Name Interface Type/Nature | Description

P sca_eln::sca_terminal Electrical Positive terminal

n sca_eln::sca_terminal Electrical Negative terminal

ctrl sc_core::sc_in<T> bool Discrete-event control input

A.6.26 sca_eln::sca_de::sca_vsource, sca_eln::sca_de_vsource
Description

Voltage source driven by a discrete-event input signal.
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Definition

sca_el n::sca_de::sca_vsource( nm scale );

sca_el n::sca_de_vsource( nm scale );

(A.59)

Symbol
inp
Equation
Vp,u(t) = scale-inp
Parameters
Name Type Default | Description
nm sc_core::sc_module_name Module name
scale double 1.0 Scale coefficient
Ports
Name | Interface Type/Nature | Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
inp sc_core::sc_in<T> double Discrete-event input

A.6.27 sca_eln::sca_de::sca_isource, sca_eln::sca_de_isource
Description

Current source driven by a discrete-event input signal.

Definition

sca_el n::sca_de::sca_isource( nm scale );

sca_el n::sca_de_i source( nm scale );

Symbol

inp
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(A.60)

Equation
ipn(t)=scale-inp

Parameters

Name Type Default | Description

nm sc_core::sc_module_name Module name

scale double 1.0 Scale coefficient

Ports

Name Interface Type/Nature | Description

p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
inp sc_core::sc_in<T> double Discrete-event input

A.6.28 sca_eln::sca_de::sca_vsink, sca_eln::sca_de_vsink
Description

Converts voltage to a discrete-event output signal.

Definition

sca_el n::sca_de::sca_vsink( nm scale );

sca_el n::sca_de_vsink( nm scale );

Symbol
| I
P
i Von Ij outp
ot
Equation
No equation added to the equation system.
Parameters
Name Type Default | Description
nm sc_core::sc_module name Module name
scale double 1.0 Scale coefficient
Ports
Name | Interface Type/Nature | Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
outp sc_core::sc_out<T> double Discrete-event output
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A.6.29 sca_eln::sca_de::sca isink, sca_eln::sca_de_isink
Description

Converts current to a discrete-event output signal.

Definition

sca_el n::sca_de::sca_isink( nm scale );

sca_el n::sca_de_isink( nm scale );

(A.61)

Symbol
Po—m i
i i
i ion I.:I outp
¢ |
Equation
\% p7n(t) = 0
Parameters
Name Type Default | Description
nm sc_core::sc_module_name Module name
scale double 1.0 Scale coefficient
Ports
Name | Interface Type/Nature | Description
p sca_eln::sca_terminal Electrical Positive terminal
n sca_eln::sca_terminal Electrical Negative terminal
outp sc_core::sc_out<T> double Discrete-event output
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Annex B

Symbols and graphical representations

This annex gives an overview of the symbols and graphical representations used in this user’s guide. In the case
where block diagrams or electrical networks are extracted from this user’s guide, it is strongly recommended

to use these symbols and graphical representations in a consistent manner.

The symbols for the individual LSF and ELN primitives are given in Annex A.

TDF module
(with ports and signals)

sca_tdf::sca_module

[ ] TDF port sca_tdf::sca_in<T>
sca_tdf:isca_out<T>
o TDF converter port sca_tdf::sca_de::sca_in<T>
sca_tdf::sca_de::sca_out<T>
[ 1] Continuous-ti.me sca_tdf::sca_out<T, sca_tdf::SCA_CT_CUT>
TDF decoupling port
[ ] Discrete-time sca_tdf::sca_out<T, sca_tdf:SCA_DT_CUT >
TDF decoupling port
—l TDF signal sca_tdf::sca_signal<T>
discrete-event
-- =p  module (with sc_core::sc_module
ports and signals)
a discrete-event port sc_core::sc_in<T>
sC_core::sc_out<T>
- - discrete-event signal sc_core::sc_signal<T>
LSF module sca_lsf::sca_module
’ > (with ports and signals) (only available as predefined primitives)
sca_lsf:isca_in
(] LSF port - -
sca_lsf::sca_out
—_— LSF signal sca_lsf::sca_signal
ELN module sca_eln::sca_module
o o (with terminals) (only available as predefined primitives)
° ELN terminal sca_eln::sca_terminal
— ELN node sca_eln::sca_node

ELN reference node
(ground)

sca_eln::sca_node_ref

Figure B.1—Symbols and graphical representations
of TDF, LSF, ELN and discrete-event elements.
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Annex C

Glossary
This glossary contains brief descriptions for a number of terms used in this user’s guide.

application: A C++ program, written by an end user, that makes use of the classes, functions, macros, and so
forth provided by SystemC and the AMS extensions. An application may use as few or as many features of
C++ as is seen fit and as few or as many features of SystemC and the AMS extensions as is seen fit.

cluster: A cluster is a set of connected modules sharing the same model of computation.

continuous-time signal: A continuous-time signal is a piecewise contiguous and differentiable signal, which
may be represented in approximation by a set of samples at discrete time points. Values between the samples
can be estimated by different interpolation techniques.

discrete-time signal: A discrete-time signal is a signal that has been sampled from a continuous-time signal
resulting in a sequence of values at discrete time points. Each value in the sequence is called a sample.

electrical linear networks (ELN): A model of computation providing a formalism for satisfying the energy
conservation laws as defined by the Kirchhoff's laws for the electrical domain.

electrical primitive: A primitive module derived from class sca_eln::sca_module.

frequency-domain processing: Frequency-domain processing can be embedded in timed data flow
descriptions for analysis of small-signal frequency-domain behavior. The frequency-domain behavior of a
module instance derived from sca_tdf::sca_module has to be implemented either by overriding its member
function sca_tdf::sca_module::ac_processing or by registering an application-defined member function
using sca_tdf::sca_module::register_ac_processing.

hierarchical port: A port of a parent module.

implementation: A specific concrete implementation of the full SystemC AMS extensions, of which only the
public shell needs to be exposed to the application (i.e., parts may be pre-compiled and distributed as object
code by a tool vendor).

linear signal flow (LSF): A model of computation that uses the linear signal flow formalism for calculations
and signal processing.

model of computation (MoC): A model of computation implements a modeling formalism, which is a set of
rules defining the behavior (computation) and interaction (communication) between AMS primitive modules
instantiated within a module.

numerically singular: Numerically singular describes a situation, in which the solution of an equation system
cannot be calculated.

primitive module: A class that is derived from class sca_core::sca_module and complies to a particular model
of computation. A primitive module cannot be hierarchically decomposed and contains no child modules or

channels.

primitive port: A port of a primitive module.
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proxy class: A class, which only purpose is to extend the readability of certain statements that otherwise would
be restricted by the semantics of C++. An example is to use the proxy class to represent a continuous-time
signal and to map it to discrete-time signal. Proxy classes are only intended to be used for the temporary value
returned by a function. A proxy class constructor shall not be called explicitly by an application to create a
named object.

rate: The rate defines the number of samples that have to be read or written at a port of type sca_tdf::sca_in,
sca_tdf::sca_out, sca_tdf::sca_de::sca_in, and sca_tdf::sca_de::sca_out during each execution of the time-
domain and frequency-domain processing function of its parent module derived from sca_tdf::sca_module.
The rate of such a port shall have a positive, nonzero value.

sample: A sample refers to a value at a certain point in time or refers to a set of values with a certain start
and end time. sample_id denotes the index of the (data) sample, nsample denotes the number of samples in
a set of values.

solver: A solver computes the solution of an equation system (e.g., a set of differential and algebraic equations).

terminal: A terminal is a class derived from the class sca_core::sca_port and is associated with the electrical
linear networks model of computation. For electrical primitives with two terminals, the terminal names p and
n are defined. Multi-port primitives may use different terminal names.

timed data flow (TDF): A model of computation that uses the timed data flow formalism for scheduling and
signal processing.

time-domain processing: Time-domain processing is done through the repetitive activation of the time-
domain processing member functions as part of the timed data flow model of computation. The time-
domain processing member function can be either the member function sca_tdf::sca_module::processing
or an application-defined member function, which shall be registered using the member function
sca_tdf::sca_module::register_processing.

time step: The time interval between two samples.
untimed model of computation: In an untimed model of computation, the behavioral description

(computation) and interaction with other modules and processes (communication) does not have a notion of
time. Only the order of computations or events, and cause and effect of computations or events are relevant.
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