
Contents
•	Time domain, small-signal frequency-domain, and	
	 small-signal frequency-domain noise analysis
•	TDF modules for user-defined primitives
•	Predefined LSF modules for signal flow primitives
•	Predefined ELN modules for electrical primitives
•	Ports/signals for intermodule communication

More and more voices in the Semiconductor industry
are calling for a renewed methodology for analog/

mixed-signal (AMS) design, addressing the importance of having
a solid system-level design approach that allows making early
trade-offs between analog and digital functionality in hardware and
software.

In December 2008, the Open SystemC Initiative (OSCI) revealed
their first draft standard of the SystemC AMS extensions. The
standardization of the AMS language extensions for SystemC is a
first step towards bringing AMS into the digitally-oriented ESL world.

Who is driving this AMS initiative?
The OSCI AMS working group was formed in 2006 with the aim
of standardizing AMS extensions for SystemC. The formation was
strongly driven by the European Semiconductor industry including
STMicroelectronics, NXP Semiconductors and Infineon. Full support
has been given by research institutes and universities such as
Fraunhofer Institute for Integrated Circuits (IIS), Ecole Polytechnique
Fédérale de Lausanne (EPFL) and Vienna University of Technology.

Before the formation of the AMS working group, these research
institutes and universities were already active in a
study group defining the first concepts for extending
SystemC with AMS features, as well as working on a
prototype implementation known in the industry as
“SystemC-AMS.” The standardization of the SystemC
AMS extensions is based on the knowledge gained
from this work and has been enhanced to support
an AMS design refinement methodology and to fulfill
the latest requirements from the industry.

Yet another AMS standard?
The AMS draft 1 standard focuses on the system-
level and architecture modeling aspects of designing
and verifying complex AMS systems. By having
AMS extensions for SystemC, users can build an
executable description of the AMS system in a C++
based manner, enabling seamless integration with
HW/SW architectures in SystemC and functional
models or software developed in C and C++. As
such, the AMS extensions should not be considered
as a replacement of existing hardware description
languages, but should be seen as a valuable addition
to ESL design methodologies.

Design refinement methodology
The proposed AMS draft 1 standard facilitates a design refinement
methodology for analog/mixed-signal systems supporting
functional modeling for creating an executable specification, virtual
prototyping, architecture exploration, integration validation, and
other use cases. Similar to digitally-oriented ESL methodologies,

different levels of design abstraction are defined, each with its own
modeling formalism and associated AMS modeling behavior and
accuracy. A unified modeling style allows easy “mix-and-match”
of these different levels of abstraction, introducing an open and
transparent modeling approach using the SystemC AMS extensions.
This is essential to support a top-down design flow for analog/
mixed-signal systems, where the design abstraction of the model is
well defined and the interaction between models – even at different
levels of abstraction – is well supported using the same simulation
framework.

Model abstractions
The model abstractions supported by the AMS extensions are based
on well-known methods for abstracting analog and mixed-signal
behavior. The abstraction levels distinguish discrete-time from
continuous-time behavior and non-conservative from conservative

Viewpoint: Analog/Mixed-Signal
(AMS) Extensions for SystemC
Martin Barnasconi, AMS Working Group Chairman, Open SystemC Initiative (OSCI)

Use Cases, Model Abstractions and Modeling Formalism

Use Cases

Model Abstractions

Executable
specification

Virtual
prototyping

Architecture
exploration

Discrete-time
 static non-linear

Integration
validation

Modeling Formalism

Timed Data Flow (TDF)
Electrical Linear
Networks (ELN)

Linear Signal Flow (LSF)

Continuous-time
dynamic linear

Non-conservative behavior Conservative behavior

SystemC AMS Extensions
Analog/mixed-signal system-level modeling
and design refinement methodology

www.SystemC.org

descriptions. Discrete-time modeling is particularly suited for signal-
processing-dominated applications for which signals are naturally
(over) sampled. If signals cannot be sampled, the analog behavior
should be described as a continuous-time function, such as by
describing the system as a set of differential and algebraic equations
(DAEs).

Non-conservative system descriptions abstract physical quantities
(e.g., voltages and currents) as independent real-valued signals. For
a conservative description, the relation between these voltages and
currents at the nodes is preserved and should satisfy Kirchhoff’s
laws.

Another method is to abstract dynamic non-linear behavior by static
non-linear or dynamic linear behavior. For discrete-time models, the
static non-linear behavior can be defined as an algorithm (e.g., using
a polynomial function). For continuous-time models, the equations
are computed using a linear DAE solver to keep the equations
simple, resulting in efficient calculations.

By introducing these modeling methods, the AMS extensions will
enrich SystemC to enable the creation of AMS behavioral models at
different levels of abstraction.

Modeling formalisms
The SystemC AMS extensions define the essential modeling
formalisms required to support AMS behavioral modeling at
different levels of abstraction, consistent with the design refinement
methodology. Established modeling formalisms are being
standardized, introducing Timed Data Flow (TDF), Linear Signal Flow
(LSF) and Electrical Linear Networks (ELN) modeling styles, which
can be used in combination with SystemC descriptions.

Execution semantics based on TDF introduce discrete-time
simulation without the overhead of the dynamic scheduling
imposed by the discrete-event kernel of SystemC. Simulation is
accelerated by defining a static schedule that is computed before
simulation starts. To model continuous-time behavior, LSF or
ELN descriptions can be used, for which simulations only require
a simple linear DAE solver. Interactions with discrete-time TDF
models then consider discrete-time data samples as continuous in
time through interpolation techniques. With these methods, the
continuous-time and discrete-event computations become “loosely
coupled,” reducing the simulation overhead.

The integration of this dataflow procedural processing and a linear
DAE solver, combined with the existing event-based engine in
SystemC, makes this approach a very flexible and efficient simulation
solution that covers both mixed-signal and mixed-level aspects,
facilitating analog/digital co-design for architecture studies and
software development for embedded AMS systems.

Which applications can benefit from using the
SystemC AMS extensions?
Not only has the trend towards having a System-on-a-Chip resulted
in sophisticated digital computational engines on these chips, but
the need to communicate and interface to the outside (analog)
world has led to more and more mixed-signal content on these
chips.

These embedded analog/mixed-signal systems are characterized
by 1) having digital HW/SW interwoven with AMS functionality due
to the need for calibration and control algorithms, and 2) mixed-
signal processing including a dynamic model of the physical layer

(PHY) in the modeling of the complete
communication protocol (software) stack.

Examples of such embedded analog/
mixed-signal applications include
telecommunication systems for wireless
connectivity (e.g., WLAN, WiMAX) and
cellular infrastructure (e.g., W-CDMA,
HSDPA). Also, wired interconnect
(e.g., HDMI, LVDS drivers) and wired
telecommunication systems (e.g., ADSL,
VDSL) have analog functionalities deeply
intertwined with digital functions. In
the automotive domain, examples
include in-vehicle networking (e.g.,
CAN, FlexRay), wireless sensor networks
(e.g., to monitor tire pressure) and
true heterogeneous systems (e.g., to
model electronics as part of a gearbox
or kludge). An additional application
domain consists of imaging sensors to model charge-coupled
devices (CCD).

As the AMS extensions are developed as an additional layer on
top of SystemC, the calibration and control algorithms, software
protocol and analog parts of the physical layer can be ultimately
modeled together.

Collaboration and standardization
The need for an AMS design refinement methodology starting at
the system level has propelled the semiconductor industry, research
institutes, universities and EDA/ESL vendors to collaborate in order
to define a uniform and standardized modeling language based on
SystemC.

Within the OSCI AMS working group, a consolidated view on
the requirements for such a standard has been defined and the
team successfully released the first draft standard of the SystemC
AMS extensions at the end of 2008. The AMS working group will
continue to advance and enhance the AMS standard based on
input it receives during the public review period. The SystemC
AMS extensions are a topic of discussion in upcoming user group
meetings, tutorials and workshops at EDA conferences and events.

The SystemC community is encouraged to review the AMS draft 1
standard and provide feedback by joining the AMS discussion forum
on www.systemc.org. In addition, members of OSCI can participate
in the AMS working group, which will continue to steer the direction
of the AMS standard.

Join now! Sign up at www.systemc.org.

Martin Barnasconi,
AMS Working Group
Chairman, OSCI, and
Product Manager AMS/RF
System Design Methods,
NXP Semiconductors, The
Netherlands

Open SystemC In i t iat ive
Defining and Advancing SystemC Standards

February 2009

