
 

  
 
 
 
Open Core Protocol  
Debug Interface Specification  
Revision 1.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Addendum to the  
OCP Specification 2.2



 

 
 
 
 
 

Open Core Protocol Debug Interface Specification Document Revision – 1.0 
 

© 2013 Accellera Systems Initiative Inc., All Rights Reserved. 
  
This document, including all software described in it, is furnished under the terms of the Open Core Protocol 
Specification License Agreement (the “License”) and may only be used or copied in accordance with the terms of the 
License. The information in this document is a work in progress, jointly developed by the members of OCP-IP 
Association (“OCP-IP”) and is furnished for informational use only. 
 
In September 2013, Accellera Systems Initiative (Accellera) acquired certain assets of OCP-IP. These assets include 
the current OCP 3.0 standard and the supporting infrastructure. OCP 3.0 was released by Accellera in October 2013.  

Notice 

Attention is called to the possibility that implementation of this standard may require use of subject 
matter covered by patent rights. By publication of this standard, no position is taken with respect to the 
existence or validity of any patent rights in connection therewith. Accellera Systems Initiative is not 
responsible for identifying Essential Patent Claims for which a license may be required, for conducting 
inquiries into the legal validity or scope of Patent Claims or determining whether any licensing terms or 
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing 
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that 
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely 
their own responsibility. Further information may be obtained from the Accellera Systems Initiative IP 
Rights Committee. 

  
The trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of 
Accellera, its members and its licensors. The following trademarks of Sonics, Inc. have been licensed to OCP-IP and 
subsequently to Accellera: FastForward, CoreCreator, SiliconBackplane, SiliconBackplane Agent, InitiatorAgent 
Module, TargetAgent Module, ServiceAgent Module, SOCCreator, and Open Core Protocol. 
 
The copyright and trademarks owned by Accellera, whether registered or unregistered, may not be used in connection 
with any product or service that is not owned, approved or distributed by Accellera, and may not be used in any 
manner that is likely to cause customer confusion or that disparages Accellera. Nothing contained in this document 
should be construed as granting by implication, estoppel, or otherwise, any license or right to use any copyright 
without the express written consent of Accellera, its licensors or a third party owner of any such trademark. 
 

 
EXCEPT  AS OTHERWISE  EXPRESSLY  PROVIDED,   THE OPEN CORE PROTOCOL (OCP) 
SPECIFICATION  IS PROVIDED BY ACCELLERA TO MEMBERS "AS IS" WITHOUT WARRANTY  OF ANY 
KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED 
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT OF THIRD PARTY RIGHTS. 

ACCELLERA SHALL NOT  BE LIABLE FOR ANY DIRECT, INDIRECT,  INCIDENTAL,  SPECIAL OR 
CONSEQUENTIAL DAMAGES  OF  ANY  KIND  OR  NATURE WHATSOEVER   (INCLUDING, WITHOUT   
LIMITATION,   ANY DAMAGES ARISING FROM LOSS OF USE  OR LOST BUSINESS, REVENUE,  PROFITS,  
DATA  OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD 
PARTIES OR THE SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY,  
NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH  DAMAGES. 

 
2 of 62                                                                 © 2013 Accellera Systems Initiative, All Rights Reserved. 



OCP-IP Confidential 

 

 

     3�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

Table of Contents 
 

Table of Contents................................................................................................................................. 3 

1. OCP Debug specification overview ........................................................................................................ 5 

1.1 OCP statement of need for debug standardization .................................................................................. 5 

1.1.1 Other ongoing Debug activities....................................................................................................... 6 

1.2 OCP Debug strategy................................................................................................................................ 7 

1.3 Common guidelines and infrastructure ................................................................................................... 7 

1.4 Scalability and configurability of debug resources ................................................................................. 7 

1.5 Comprehensive set of debug features...................................................................................................... 8 

1.6 OCP debug Business Model.................................................................................................................... 8 

2. Technical approach ................................................................................................................................. 9 

2.1 Three Views of Debugging ..................................................................................................................... 9 

2.2 Technical scope of OCP Debug Interface ............................................................................................. 11 

3. Debug Components and IP Interfaces................................................................................................... 11 

3.1 Debug interface definitions ................................................................................................................... 12 

3.2 Basic Socket Level Debug interfaces.................................................................................................... 12 

3.3 Core Debug Socket Interfaces............................................................................................................... 13 

3.4 Cross Triggering Socket Interfaces ....................................................................................................... 15 

3.4.1 OCP Cross Triggering – General Requirements ........................................................................... 16 

3.4.2 OCP Cross Triggering – General Configurations ......................................................................... 17 

3.4.3 Fundamental Trigger Limitations.................................................................................................. 17 

3.4.4 Cycle-exact Trigger and Feedback................................................................................................ 18 

3.4.5 Cycle-exact Trigger with Relaxed Feedback ................................................................................ 18 

3.4.6 Exact triggering in a star configuration......................................................................................... 19 

3.5 OCP Synchronized Run Control ........................................................................................................... 19 

3.6 OCP Trace Interfaces ............................................................................................................................ 19 

4. Extended (Optional) Debug interfaces .................................................................................................. 20 

4.1 Performance Monitoring ....................................................................................................................... 21 

4.2 System Time-stamping ......................................................................................................................... 22 

4.2.1 Synchronous start of local time stamp counters ............................................................................ 22 

4.3 Power Management Monitoring ........................................................................................................... 23 

4.4 Security Debug Interface ...................................................................................................................... 24 

5. Single Stepping and Virtual Single Stepping with Multi-core Chips.................................................... 24 

6. EDA and SW Tools Support ................................................................................................................. 25 

6.1 ESL Design and Design Checkers Support........................................................................................... 25 

6.2 Programmers Model.............................................................................................................................. 25 

Appendix    Implementation Examples ................................................................................ 27 

A.   MCDS  Example of OCP Debug Interface Implementation and Protocol ............................................. 27 

A.1  Trace Ports and Protocol, Complete Example with MCDS .................................................................. 27 

A.2 The 12 MCDS Trace Ports and corresponding OCP Debug Socket Signal s......................................... 32 

A.3 Debug Transactor – RUN Control Bus Master ...................................................................................... 36 

A.4 OCDS/MCDS Complete Example of Run Control: On-Chip Debug Support ....................................... 37 



OCP-IP Confidential 

 

 

     4�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

B. Cross-Triggering Subsystem Example ..................................................................................................... 46 
B.1 Functionality of Cross-Triggering in DSP Like Multichip Systems.............................................................. 46 
B.2  Trigger Control Register............................................................................................................................... 46 
B.3  Emulation Trigger Functionality .................................................................................................................. 46 
B.4  SOC Integration............................................................................................................................................ 51 
B.4.1  Device Pin Triggers................................................................................................................................... 52 
B.4.2  Module Triggers ........................................................................................................................................ 52 
B.4.3  Trigger Generation .................................................................................................................................... 54 

C.   Nexus  Example for OCP Debug Interface Implementation and Protocol ............................................. 56 

C.1   Nexus  Debug Signal Interface............................................................................................................. 57 

C.2   Nexus Message Format ........................................................................................................................ 59 

C.3   Nexus Debug Registers ........................................................................................................................ 59 

C.4   Nexus Multi-core Debug Example ....................................................................................................... 60 



OCP-IP Confidential 

 

 

     5�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

1. OCP Debug specification overview  

 

The OCP-IP Debug Working Group was formed in 2005 to address the definition of debug 

resources and integration to enable comprehensive debug of OCP based systems. Membership 

has included several OCP-IP companies (IP vendors, systems integrators, end customers) with 

interest in contribution to and need for debug solutions and/or debug of the OCP Infrastructure. 

The initial focus is on  

a. Definition of debug signals for the OCP Socket and fabric levels, but leaves their 

specific implementation open to IP and tools vendors.  

b. System level interfaces, in particular the overall between ESL and Debug tools and 

software. 

The scope does not address in detail external debug interfaces between an OCP on chip Debug 

environment and external components (probes, debuggers, etc), which can be considered 

separate from the OCP Debug System and which are being addressed by other industry 

working groups (Nexus, MIPI, IJTAG, Multicore Association Debug Working Group, etc). The 

OCP Debug Infrastructure defines requirements for interfaces between the Debug and EDA 

infrastructure and features, but not do address specific debug to EDA interfaces and 

implementations. 

 

1.1   OCP statement of need for debug standardization  

With the evolution of heterogeneous MC-SoC (Multi-Core Systems On the Chip) the debug 

interconnection deserves special attention. A set of standardized signaling and definitions make 

the debug wiring core-independent to match the aim of the OCP standard. By doing so we 

stimulate development of predefined and verified debug IP blocks for quick and successful 

assembly of large MC-SoC including debug functionality like multi-core cross-triggering, MC 

tracing, bus event observation, debug bus masters, … that communicate with the next defined 

debug interface on the software side, the DAS API (Device Access Server). The existing core-

specific debuggers for the hardware level debug and for the software level debug connect 

seamlessly and transparently to their hardware cores using this software DAS-API interface. 

 

OCP compatible IP blocks typically need debug interfaces that are not comprehended in OCP 

Socket specification. Additional debug signal interface definitions make OCP an “Even More 

Complete Socket” by addressing the visibility and control needed to better analyze the 

operation of OCP architectures and their design flows and providing a common set of debug 

options and consistent signal interfaces. These signal interfaces are not currently being 

addressed by the OCP 2.2 specification. Enabling a robust on-chip debug capability is being 

recognized as an important Design for Debug (DFD) capability for complex SoC and having 

DFD standardization makes OCP more attractive as a SoC platform. 

The OCP Debug definitions addressed are defined using a common set of interfaces to allow 

improved incremental support from debug probe and tool vendors and EDA tool vendors to 

allow debug and verification convergence. In most cases, the interfaces and requirements are 

discussed, while the specifics and detailed design itself are treated as a black box which may be 

implemented in different ways by IP companies and other OCP members.  

 



OCP-IP Confidential 

 

 

     6�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

The ESL (Electronic System Level) abstraction of MC-SoC is often used to simplify chip 

system exploration complexity and reflects all hardware interfaces by SystemC and C++ 

models with signal true and port true realizations. The debug interfaces, on the hardware side 

OCP and on the software side DAS-API, are excellent candidates for this abstraction and offer 

unprecedented debug experience in the SLD (System Level Design) project phase equal to the 

final hardware without any changes.  

 

1.1.1 Other ongoing Debug activities 

There are several working groups that are addressing aspects of DFD and related on chip debug 

problems. The work addressed by the OCP Debug Group complements these other efforts.  

Most notably, the Nexus (IEEE 5001) Forum has been focused on high performance trace 

related interfaces based on the IEEE 5001 standard and the MIPI Consortium has a debug 

working group effort that has focused on low pin count debug interfaces. The OCP Debug 

working group focus differs from Nexus and MIPI activities by focusing on debug interfaces 

and operation standardization at the socket level, i.e. at the core and bus interface level, to 

address OCP compliant IP or subsystem debug control and visibility. These interfaces are 

interoperable with and do not overlap the IO level definitions that are the primary focus for 

other organizations such as Nexus and MIPI. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 – Debug Infrastructure landscape 

 

IO Level of Integration 
•  JTAG – different flavors 
•  Nexus 

Protocol Level of Integration 
•  Nexus 5001 
•  Multicore IP & ABIs 
•  Other Proprietary 
 

Instrument Level 
Vender/IP solutions 
•  EJTAG 
•  ETM 
•  OCP Bus Trace 

Bus Analyzers 

Core A Core B 

Core Analyzers 

Multicore  
Trace  
Formats 

System Level Debug  
Communications 

(SoC level run control, 
 Cross-triggers, etc.) 

OCP Fabric 

TAP 

Probe 

Nexus   

Tool Level of 
Integration 
•  Tool APIs 

Debug Software 

MIPI  

OCP  

SPIRIT  



OCP-IP Confidential 

 

 

     7�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

1.2  OCP Debug strategy 

 

The initial goal of the working group is to document a common set of Debug Guidelines and 

signal models that address the range of simple to more complex debug of OCP based systems. 

Many approaches are based on contributed prior art. Others identify new capabilities that are 

needed for debug configurations and strategies that that incorporate embedded analysis that 

comprehends multiple clock domains, power management domains, security domains, etc. 

required in modern SoC and embedded systems design. 

 

Where possible we leverage signals and interfaces defined in other OCP specifications. As an 

example, JTAG signals as defined in OCP2.0 are initial primary debug interface. Due to 

(largely bandwidth) limitations of JTAG for SoC debug, other options are presented where 

possible, to enable alternatives. As example, for debug control interface, we discuss memory 

mapped debug control options that use one of the embedded processors for debug configuration 

and control as alternative to JTAG. Similarly, we discuss trace port interfaces (in the general 

case, compatible with Nexus Interfaces as defined by IEEE 5001) as higher bandwidth parallel 

trace port alternatives to JTAG serial interfaces.  

 

1.3  Common guidelines and infrastructure 

 

There are 2 preferred methods of mapping the registers of the debug IP-blocks - such that all 

debug registers should be memory mapped to fit well into the usual programmer’s models and 

allow for standard and extended testability concepts in manufacturing: 

  a. memory space mapping. – On-chip processor core can operate the debug blocks  

  b. JTAG mapped register access - controlled by external software debuggers over JTAG can  

      operate all debug IP-blocks 

Comparative two-channel debugging with true time display of events is similar to the Logic 

Analyzer philosophy. The time aligned display of system bus traces of data events from 

different initiators on different buses is the main source of information. Setting of triggers on 

any signals or combination of events from different cores, IP-blocks and firing assertions is 

also basic to this idea. That is accomplished by the cross-trigger debug hardware block.  

 

1.4  Scalability and configurability of debug resources 
  

The OCP Debug Interface is following the general concept of master-slave request-response 

philosophy to assure easy mapping of existing signaling schemes in the contemporary debug 

interfaces to various cores and IP-blocks including assertions.  

In general there will be two signal wrappers required on the hardware side: Between the core 

and the debug interface to the OCP interconnect and between the OCP interconnect and any 

existing debug infrastructure. Gradually debug infrastructures will be developed that connect 

natively to the OCP Debug Interface. 

 

The main idea of presenting it as a Debug Socket to the SoC designers is a structural 

regularization to minimize errors in understanding of its functionality and to allow the 

development of automatic checkers for this well defined debug interface. 



OCP-IP Confidential 

 

 

     8�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

The OCP Debug Interface is part of the OCP Sideband signaling scheme. It is partitioned into 

Basic Signals and Extended Optional Signal groups as found similarly in the OCP data socket 

definitions. The Basic Signals assure run control for debuggers and Extended Signals deal with 

special situations like voltage islands, security islands and power down modes.  Performance 

metering and assertions are also part of the optional signals in the Debug Socket. 

 

1.5 Comprehensive set of debug features 

• Debugging in the real target system: No mechanical or electrical constraints  

• Full visibility: Cycle-accurate trace of multi-processor, multi-bus SoCs  

• No limitation for low-pin-count, high-frequency devices  

• Complex triggering modes—for example, triggering on an event not happening—

allowing you to minimize the amount of trace data you collect  

• Support for code profiling and performance analysis through programmable event 

counters  

• Portability: OCP Debug Interface is adaptable to any processor or bus architecture; 

software developers continue to use tools they are familiar with  

• Low cost: No expensive hardware needed to access OCP Debug Systems  

• Proven implementation: OCP Debug System prototype was executed successfully 

• Non-intrusive debugging of embedded multi-processor systems  

• Target system runs at full speed in application environment  

• Access to internal buses  

• Real-time, cycle-accurate tracing  

• Trace capabilities for:  

o Processors: Process ID, program, data, status, watch point  

o Buses: Data, status, watch point  

o Signals: Status  

• Complex trigger system including cross-target triggers  

• Translates raw data into meaningful messages  

• Compresses trace messages to save memory  

• Trace memory can be configured as a circular buffer to collect trace messages either 

continuously or before and/or after a watch point occurs  

• Implementation partitioned for easy adaptation to new cores  

• Independent of physical interface between chip and debug host (DAS)  

• Security: OCP Debug System is locked by default and can only be unlocked by system 

hardware  

 

1.6  OCP debug Business Model 

 

This Debug Specification is assumed to be openly available to all OCP-IP member companies. 

All implementations as discussed remain the properties of the contributing parties. The goal is 



OCP-IP Confidential 

 

 

     9�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

to facilitate development of debug IP and tools for sale to the OCP community and this 

document shall in all cases, attempt to place no limitations on specific OCP debug 

architectures, either for internal use or for sale. 

 

2. Technical approach 

 

In this section, an overall debugging framework is described as a base of the OCP debug 

interface. In the same way like the OCP data socket was a superset for the different bus 

interfaces and data structures we seek to define an OCP debug socket that can be a superset of 

the debug solutions. Most concepts discussed are based on common denominators for the past 

and present debug concepts. The strategic goal of this document is to enable OCP members to 

develop standardized libraries of debug IP blocks for debug situations and purposes, including 

-     Signal level observation (bus and system trace) and control (triggering) 

- Consistent (multiple) processor software debugger and bus traffic observation interfaces 

(GUI) 

- Special debug features for security islands, voltage islands, gated clock islands etc. 

- New classes of debug errors (which are different from system errors) analysis 

 

The debug concepts addressed can be applied to single core debugging (without cross-triggers, 

trace, or time stamping) and it can be extended to more core and channels of debug for more 

complex systems. 

For multi-core chips, there is implicit debugging requirement to observe activity of (at least) 

two cores out of many in order to enable comparative analysis of operations and 

communications. As a default, OCP debug interfaces should support multiple cores. We use a 

dual channel synchronous debug socket as an example. Dual channel debug is a minimum to 

enable comparison, and synchronous means that instructions and events must be displayed in 

correct temporal relation what is accomplished by time stamping during collection of trace 

information. The idea is similar to a dual channel logic analyser and when cores are not in 

debug mode then any two IP blocks can be observed or traced in temporal comparison with a 

common and extensible set of signal interfaces. 

We must recognize that the purpose to debug in a chip can be very different and at least three 

variants want to be satisfied by a standard: 

• Pure software debugging concentrates on minimum additions to proven hardware still 

providing a rich debug environment for development of software.  

• Pure hardware debugging concentrates on simplest additions in hardware to expose chip 

internal signals on the pins (JTAG) to be used to prove correct functionality and correct 

design.  

• System debugging concentrates on software debug and hardware observation.  We 

avoid defining a separate debug bus to keep a simple modular IP structure on the chip. 

2.1  Three Views of Debugging 

 

Debug as a process can differ between companies, projects, and points in the design cycle. 



OCP-IP Confidential 

 

 

     10�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

Pure Software Debugging 

Pure software debugging concentrates on minimum additions for instrumentation to proven 

hardware and IP while still providing a rich debug environment for software. The debugger 

connects to the processor that programs all debug-hardware over the system bus. Target system 

hardware is fully utilized for debugging. Assumption is that all hardware is correct. Special 

instructions and signals to let the processor prevail in locked situations are desirable and 

included in the basic OCP Debug Interface signals. This style of debugging is well documented 

on several chip architectures. Systems are built by connecting several proven chips together, 

therefore debugging with inter-chip cross-trigger is a second special requirement. To simplify a 

dual trace memory one trace buffer can be used in connection with “synchronous run” from 

optional debug signals. That will make the ordering of events in the trace buffer in correct 

temporal relation possible without timestamping. 

 

Pure Hardware Debugging 

Pure hardware debugging concentrates on simplest additions in hardware to expose chip 

internal signals on the pins (JTAG or other) or in registers to be used to prove correct internal 

functionality or correct design parameters in mission critical applications and warranty cases. 

Most important for this concept is an independent clock from outside that is reliable even if the 

system clock is stopped. Also triggering precise to one system-clock cycle, or local-clock 

cycle, is essential to let this debug hardware react exactly like assertions in a simulation. Often 

signals inside IP blocks are observed. No software debuggers need to be involved in the display 

of this information, however we believe there are analysis advantages to including the display 

of such extra information.  

 

System on Chip Debugging 

System on Chip debugging concentrates on software tracing and hardware observation 

requirements common in initial SoC. Observation of the on chip hardware interaction is 

essential to complete the software application and verification. Comparative debugging of any 

two cores is equally important for multicore systems.  The debug-system is independent of the 

target hardware and captures both “pre-reset” and “post-crash” events as well as bus traffic 

bottlenecks. Debugging must proceed even if the major parts of the system are in power down 

or a core is in sleep mode. The debug hardware may be shut down during normal chip 

operation, for security or power improvement. Another security demand is to make parts of the 

debug hardware inoperable in production chips by burning fuses. Such a concept of debugging 

is best suited to support ASIC designs. To simplify a dual trace memory one physical buffer 

can be used that holds two compressed trace streams with origin tags and time stamps. 

Debug features need to support the system level verification and analysis of OCP based 

systems. Where possible, RTL or other (System-C) blocks should be available for EDA 

analysis for JTAG and DFT, BIST, and other debug structures, even when these are 

implemented as physical (post synthesis gate level insertion) macros. From a system point of 

view, debug blocks should support the same level of model abstractions used in other areas of a 

design, in order to support it with miscellaneous simulators and software debuggers and 

simplify hardware and software personnel being involved in the debug process.  

 



OCP-IP Confidential 

 

 

     11�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

M

CORE

S DEBUG DEBUG

T
R
A
C
E

JTAG

DEBUG

JTAG

DFT

TRACE

PORT

D
E
B
U
G

OCP CHIP INTERCONNECT NETWORK

Figu re  1 - A On e -Core  De bu g  S it u a t ion

2.2  Technical scope of OCP Debug Interface  

 

In the next section we define 4 groups of signals that are basic to an OCP dual channel 

synchronous debug interface (debug control, JTAG, debugger interface, cross-triggering 

interface) and additional (extended) groups that are optional based on specific debug and 

analysis requirements.  The optional Extended Debug Signals in this interface are defined for 

optional debug features such as time stamps and performance analysis and to simplify 

definition of special “debugging aware” functionality in designs that have security domains or 

power management with voltage islands.  

 

3. Debug Components and IP Interfaces 

 

This section covers the basic signals and definitions for an OCP Debug Interface Socket. An 

optional OCP port, known as the Debug Interface port, is added to all cores and IP blocks that 

support or need debugging access. The OCP debug port may be implemented as an addition to 

the OCP Data (master and/or slave) port (in cases where debug blocks are memory mapped 

they may be controlled through the OCP data socket) or as an independent OCP port 

configuration. 

 

Figure 1 shows a simple system where debug IP blocks deal with standardized signals 

integrated into a interconnect structure that is implemented as a modular OCP system created 

from library IP blocks around a bus fabric (as described in the SPIRIT XML conceptual 

framework). All debug wiring goes through the system bus and is contacted through the OCP 

debug port. OCP debug ports may be implemented at points in the OCP system where a Data 

port may not exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure  3.1 – Single Core Debug solution 

 

 



OCP-IP Confidential 

 

 

     12�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

3.1 Debug interface definitions  

 

The programming of registers that contain either configuration or status information in the 

debug IP blocks may be JTAG-mapped or Memory-mapped. Either or both modes of control 

and access are acceptable, based on specific system requirements. 

 

In the Memory-mapped case the master port of the main debug core provides the programming 

of the debug block registers that have an address in the main memory space. The master OCP 

data port is not part of the OCP debug port. This allows one core to be the main debug agent. 

The debugger sends instructions over JTAG to this core and the core accomplishes all actions 

through the main system bus. Then this one core needs special priority access to unlock stuck 

interfaces and locked transactions. Signals for this purpose like “Abort” and “Force” are part of 

the debug control interface. 

 

In the more general and system independent JTAG-mapped register variant the JTAG is part of 

the OCP Debug Interface. Debugger sends instructions to the cores over JTAG and the debug 

registers are part of a JTAG-TAP controller. Optional “Abort” and “Force” signals are also 

JTAG controlled. (Time stamp in 4.6 and trace compression A.2 is explained later.)    
 

For simplicity, debug ports discussed are limited to 1149.1 JTAG interfaces, as defined in OCP 

2.0 specification (and many other documents). This restriction is initially done to simplify the 

interfaces initially addressed. The intent is not that implementation be necessarily limited to 

1149.1 JTAG. With a separate interface layer debug interfaces discussed can be compatible 

with Nexus TAP and protocol and other debug interfaces – CJTAG, SerDes (Aurora), 

single/dual wire, etc, which are not discussed in this release of this document. 
 

S

CORE

M DEBUG DEBUG

D
E
B
U
G

CHIP INTERCONNECT NETWORK

Dual Channel Synchronous Debug with Debug IP-Blocks

C
o
m
p
re
ss

T
R
IG
G
E
R

DEBUG

CORE

DEBUG

D
E
B
U
G

C
o
m
p
re
ss

T
R
IG
G
E
R

DEBUG

CORE

D
E
B
U
G

C
o
m
p
re
ss

T
R
IG
G
E
R

C
o
m
p
re
ss

T
R
IG
G
E
R

BUS

OBSERVER

Extra Trace Bus

JTAG

PORT
JTAG DFT

TRACE  BUFFER Ch1,2

H
y
p
e
r 
D
e
b
u
g

D
E
B
U
G

D
E
B
U
G
 C
n
tr
l

S
T
A
M
P

c
o
u
n
te
r

TRACE

PORT

S
T
A
M
P

c
o
u
n
te
r

S
T
A
M
P

c
o
u
n
te
r

S
T
A
M
P

c
o
u
n
te
r

1/3 system clock

TRACE

CNTRL

Nexus

Nexus

Debug Blocks with both JTAG and Memory Mapped interface

SS M S M S M

Voltage 

Island Separate

Clock

Domain

 
Figure 3.2 –Multi core Synchronous Debug Implementation 

 

3.2 Basic Socket Level Debug interfaces 

 

Processor run control interfaces are typically implemented via the JTAG interface and by 

debug mode signals in the IP. The use of JTAG debug interfaces is supported via the OCP2.0 

specification and is it is assumed that any JTAG signals are decoded at the core level JTAG 

TAP (Test Access Point) and are not addressed in this document. A JTAG only debug interface 



OCP-IP Confidential 

 

 

     13�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

does place limitations on the ability to interface debug components on different cores and to set 

up and synchronize an OCP system into a debug mode.  

 

Table 3.1 OCP Debug Clock, Reset Interface Socket 

 

 Debug   
Interfaces Description Comment 

Debug_reset_n  

Debug Clock source for 
instrumentation operation 
and Optional debug 
system reset  

defined to be separate from system clk, 
reset so that debug can occur during 
systems reset operations 

Debug_en 
 General enable for debug 
modes system input  

 

Ideally debug control signals are independent of the target system and have to duplicate many 

basic controls. The basic debug signals include an independent reset and independent clock 

signals for the debug system synchronized to the debugger interface. The reset and clock 

signals for time stamping counters are also part of this debug control interface. Often debug 

reset, debug clock, time stamping reset, as examples, may be common with system clk or reset.  

 

Table 3.2 OCP Debug JTAG Interface Socket 

 

JTAG  Interfaces Description Comment 

Tck, Trst (optional) JTAG TCK , JTAG Reset JTAG input  

tms  JTAG TMS  JTAG input  

tdi  
TDI from previous node in JTAG 
loop JTAG input  

tdo  TDO to next node in JTAG loop JTAG output  

 

The programming from debugger happens over JTAG so the 5 JTAG signals are included here.  

Even in the case of “memory mapped” debug blocks the processor control typically goes over 

this JTAG port.   

 

3.3  Core Debug Socket Interfaces 

 

Table 3.3 defines a set of debug interfaces that address system level debug of run control and 

debugger tools interfaces. Debugger accesses can therefore be consistently controlled via the 

debug interface signals. Not all signals may be required for all cores or systems.  

 

• Special signals that support unlocking of stuck situations and forcing completion of 

locked actions (NoSResp, ForceResp, ForceAbort, ForceAbortAck) are here.  

• Debugger accesses are qualified through MReqDebug 

• Processor acknowledges debug state entry through MSuspend 

• An OCP target can be configured to be sensitive to MSuspend line 



OCP-IP Confidential 

 

 

     14�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

• A debug component is informed that Debugger is connected through the DebugCon 

signal 

• A subsystem is informed that its TAP has been enabled by the application security 

software through the TAPenable signal. (Security is explained in chapter 4.4.) 

• Depending on DebugMode[1:0] the debugger can initiate OCP transactions qualified as 

MReqSecure.  (Security is explained in chapter 4.4.) 

 

Table 3.3 OCP Debugger Interface Socket 

 

Signal name Signal definition Comment 

Minimum OCP debug signals set   

MReqDebug 

Qualifies an OCP request 

initiated by the Debugger. 

MReqDebug may be a 

processor native feature. 

If MReqDebug is derived from processor 

debug acknowledge, the OCP interface shall 

insure there is no outstanding application 

transactions when debug state is 

acknowledged. Write buffer shall be drained 

Msuspend 

Processor acknowledges the 

OCP initiator agent that is 

entering the debug state.  

The OCP Initiator debug state acknowledge is 

routed to the OCP target – A debugger aware 

peripheral may (optionally) freeze a local HW 

process when the host enters the debug state. 

DebugSerror Out of band error   originated by debugger 

DebugCon Debugger is connected 
Enables the on-chip debug hardware being 

active 

NoSResp Target not responding 

Debugger status shall be managed for cases 

such as Sresp = FAIL, SCmdAccept failing. 

(Request phase or Response phase) and 

provide an indication that current transaction 

doesn't complete regardless of the root cause:  

ForceResp 

Debugger has programmed 

the subsystem to force a data 

independent response 

No side effect to other threads 

ForceAbort 

Debugger has programmed 

the subsystem to solve the 

hang scenario 

ForceAbortAck 
Acknowledge sent to 

subsystem (or debugger?) 

OCP interconnect handle abort without 

debugger intervention even in the case where 

the application SW has not enabled a time-out. 

The key requirement there is to complete the 

transaction in order to allow the processor 

entering the debug-state. This requires a 

Mabort input support in the OCP fabric to 

propagate the abort originated by the debugger 

to the initiator and OCP interconnect. 

 



OCP-IP Confidential 

 

 

     15�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

Control signals in case of gated clock domains and voltage domains in that the continuity and 

functionality is not interrupted if any IP block on the bus switches off clocks or voltages. By 

proper definition of the idle levels a blocking of the debug system shall not happen if one core 

or IP block goes into sleep mode. 

 

3.4 Cross Triggering Socket Interfaces 
 

Information in MultiCore SoCs is complex and distributed such that global event cross 

triggering and system level control for multi-core debug and triggering is often needed to 

identify and isolate events occurring throughout the system. Event recognition and triggering is 

widely used in conjunction with trace to capture information on events and operations in the 

SoC. Conditions are monitored and compared to generate real time triggers in a Cross-trigger 

Manager. These triggers in turn can be used to control event actions such as configuration, 

breakpoints and trace collection. More complex implementations can be programmed to trigger 

on specific values or sequences such as address regions and data read or write cycle types.  

 

The cross-trigger block may be distributed to all IP connections to the OCP bus.  If wiring is in 

the OCP fabric then some pre-processing or wrappers (condition/action nodes) at each OCP 

interface can be used to simplify the cross-trigger information. Wrappers can be programmed 

via JTAG debugger (or native to a processor). Any block can send a trigger (edge or level) and 

receive a trigger. Debugger or processor can configure specific trigger lines for each IP to send 

a condition signal and from which trigger line it can receive a trigger/action). 

 

 

Figure 3.3: Cross-Trigger Block Diagram  

 

Each trigger line consists of two uni-directional signals and one (optional) enable signal.  A 

minimum dual channel concept consists of two independent trigger lines, but as there is no 

upper limit on number of cross-triggers realized in a design. The trigger line in, out, enable 

may the result of logic combination of several signals for a given core. Trigger lines can be 

connected directly to drive a bidirectional pin on the package and enable cross-triggering to 

continue between several chips. External (off chip) triggers will be supported with pulse width 

logic to interface external IO to the cross trigger manager. 

IP Core Bus 

Monitor 
Trigger 

Wrappers 

(in  OCP 

Socket) 

Cross-Trigger signals in OCP fabric 

Cross-

trigger 

Manager 

JTAG trace IF 

(bus trace) 
JTAG IF 

(x-trigger) 
JTAG Trace IF 

 (block trace) 
JTAG Debug IF 

(core run ctrl) 

JTAG 

Port  

TAP 

Trigger_in_ condition[n:0]  

Trigger_out_Action[n:0]  

Config/Crtl lines 

Trigger_out_enable[n:0]  

Ext Trigger 

CONCEPTUAL PICTURE  (with two “trigger lines”) 



OCP-IP Confidential 

 

 

     16�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 

Each debug channels needs one trigger line. The trigger logic grows linear with the number of 

cores or IP blocks that are debugged. No quadratic cross-trigger matrix is assumed necessary. 

 
 

Table 3.4 OCP Debug Trigger Interface Socket 

 

Cross Trigger  
Interfaces Description Comment 

Trigger_in_ 
condition[n:0] 

Trigger input from other 
OCP subsystems  

 X-trigger input – shall support either 
High to low edge detection or level 
detection – during power down of 
subsystem, trigger_ in will not contribute 
to system cross trigger 

Trigger_out_ 
Action[n:0] 

Trigger output to other 
OCP subsystems  

 X-trigger output of either - Active low 
pulse or level–supports trace control or 
processor debug or interrupt request. 

Trigger_out_enable
[n:0] 

Optional Trigger output 
enable to other OCP 
subsystems  

 X-trigger output 

Ext_trig _clk 

Optional  Ext clock used 
for synchronizing trigger 
action Ext. off chip  input  

Ext _condition[n:0] 

Optional Ext condition 
(e.g. debug status, 
tracepoint) Ext off chip  input  

Ext _action[n:0] 
Options Ext action (e.g. 
debug request) Ext output  

 

3.4.1 OCP Cross Triggering – General Requirements 

 

• Cross Triggering configuration shall be handled at subsystem level 

• Subsystem can be programmed to: 

o Drive an OCP debug-trigger-out line 

o Be sensitive to an OCP debug-trigger-in line 

• The OCP interconnect shall take care of the debug event triggers routing 

o Point to point [1 trigger-out and trigger-in ] 

o Broadcast [ 1 x trigger-out, n  trigger-in ]  

o Sharing [  n  trigger-out, 1 trigger-in ] 

• The OCP-debug interconnect shall mimic a “tri-state” bus behavior through distributed 

combinatorial logic.  

• An external device shall be able to contribute to cross-triggering 



OCP-IP Confidential 

 

 

     17�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

Figure 3.4 - Cross triggering interface over separate Voltage domain and Clock domain 

 

 

3.4.2 OCP Cross Triggering – General Configurations 

 

• Trigger-out (action) & Trigger-in (condition) routing for smaller implementations can be 

handled as sideband signals by the OCP interconnect.  

• Trigger event may also be routed to Trace components  

• Trigger event shall generate a user defined request. This is typically classified as either a 

debug request or interrupt request. These differ for different cores. 

• The OCP cross-triggering shall be operational for any platform subsystems frequency 

operating point supported by the cross triggering configuration via level or pulse triggers  

• The OCP cross-triggering supports independent clock domains for trigger-out and trigger-in 

pulse conversion. Level triggering is recommended for widely varing clock domains 

• The OCP cross-triggering shall support external triggers. Triggers can connect to IO. Level 

or pulse triggers are supported with trigger pulse width  modifiable to compatible with 

device I/O performance.   

A subsystem in power down or where debug has not been enabled shall be configured not to 

contribute to cross triggering. 

 

 

3.4.3 Fundamental Trigger Limitations 

 

We must recognize that system observation using trace buffers and triggering on simultaneous 

events system-wide including cross-triggering between chips are concepts with limitations in 

time resolution and that translates into distance limitation as described in the first approach. To 

M 

CORE 

S DEBUG 

D

E
B
U 

CHIP INTERCONNECT  
NETWORK 

Cross-Trigger Lines and Control              JTAG Mapped Variant 

T
RI

G
G 

C
N 

TRIGGER LINE 1 

TDI 

TDO 
JT
A
G  

T
A EJ

T
A 

EXTENSION 
SIGNALS 

TDO 

TRIGGER LINE 2 

JTAG 

TRIGGER LINE 1 
TRIGGER LINE 2 

IN 

A
N A

N C
N 

ENABLE OUT 

TRIGGER 

CHIP INTERCONNECT NETWORK 

INVERT 
LOGIC 
LEVEL  - 
EDGE 

STRETCH 
PULSE INVERT 

LOGIC 
LEVEL  - 
EDGE 

STRETCH 
PULSE R

E
GI

S
T 

derivative system clock 
Separate voltage domain 

derivative system clock 
Separate voltage domain 

C
O
R 



OCP-IP Confidential 

 

 

     18�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

overcome limitation in space we can give up the precision in the feedback of the result as 

described in the second approach. To mimic a logic analyzer trigger we need to have delay-

equalized star-configuration to the trigger controller that will behave the same like the second 

approach. Designers must decide which approach to take to create a consistent debug system. 

 

3.4.4 Cycle-exact Trigger and Feedback 

 

In this concept it is crucial that collection of all trigger conditions and distribution back to the 

origin happens within a fraction of the highest system clock cycle.  Advantage is that 

sequencing of trigger conditions that are one cycle apart is possible even at the trigger sources. 

Difficulty is to close timing in such a design since the trigger path becomes the biggest 

bottleneck on the critical timing path.   

The modern debug concept with assertions and assertion chains on-chip demands a cycle 

accurate trigger concept if the comfort in the simulation shall be synthesized into silicon with 

the same functionality.  Therefore, it has to deal with increased difficulties in timing closure. 

Or it has to flag certain chains of assertions as not synthesizable at high system clock rates. 

The proposed trigger logic in the OCP debug socket is based on a distributed model of a tri-

state wire. The trigger events are collected with a chain of distributed AND-gates and the result 

is sent back over a second wire in a half-loop arrangement. The trigger controller connects to 

“the last OCP debug socket” at the end of the AND-gates and loops back the result to the 

second wire.  

 

3.4.5 Cycle-exact Trigger with Relaxed Feedback 

 

This concept accepts the feedback signal on the second wire to arrive in a later cycle to help 

with timing closure. Means that detection of a trigger equation has to happen within one cycle 

but distribution back to origin, for example to stop a trace buffer can extend over several 

cycles. To chain this delayed trigger result with distributed consecutive trigger decisions in 

assertions will only work for events that are several cycles apart. 

Aligning debug information in the display to be cycle exact is by using local system-cycle-

exact time stamping during collection of trace information. Then stopping the trace buffers few 

cycles after a trigger condition will still allow for exact time alignment in the display. 

The trick is to equalize the arrival time at the trigger controller from any trigger source by 

inserting delay buffers before entering the AND-gate trigger line.  Then it is possible to trigger 

on events that happened at the same time. Sequencing of triggers that happen one cycle apart is 

possible inside the trigger controller by using multiple arrival-time-equalized trigger lines.  

Same like a logic analyzer with delay-equalized cable-probes can trigger on the acquired 

signals but does not supply trigger information back to the device under test, the OCP debug 

system with a relaxed feedback concept, does not demand to have delay equalized feedback 

connections back to the trigger sources.  

For triggers coming from all corners of a big chip or for systems made of many chips this is a 

very good solution. It scales well to any size of a system and can have extra built-in arrival-

delay of “several clock cycles” to accommodate triggers coming over external pins. The 

proposed OCP-debug cross-trigger concept can be used for this configuration.  The fixed built-



OCP-IP Confidential 

 

 

     19�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

in target trigger arrival delay is independent of the highest clock in one chip or in multiple 

chips. 

 

3.4.6 Exact triggering in a star configuration 

 

Similar to a logic analyzer the cycle accurate trigger timing can be designed by delay-equalized 

trigger lines going to the trigger controller in a star configuration. This requires a separate 

trigger line from each possible trigger source. Then any sequence of trigger events can be 

realized cycle accurate inside the trigger controller. Yet, the feedback to the trigger sources, or 

to the assertion blocks, to allow them to do cycle accurate trigger sequencing is still not assured 

or possible.  Means the stopping of tracing buffers still happens few clock cycles later. 

This star topology concept can be made cycle accurate in any system at the expense of 

individual trigger lines with delay equalization. Clearly, this concept does not scale with large 

systems since wires grow proportionally to sources and not proportionally to trigger decisions. 

Star configuration is not part of this proposal because the arrival-time equalization with the 

proposed distributed AND-gate trigger line will work absolutely equally well. 
 

3.5  OCP Synchronized Run Control 

 

Sync Run Control allows a clock synchronized program execution of two cores that would run 

asynchronously in normal case. That makes it possible to time align the instruction streams to 

study interdependency.  This is a simplified method to avoid the hardware for time stamping. 
 

Table 3.5 OCP Debug Run Control Synchronization Interface Socket 

 

Synchronous  Description Comment 

SyncRun Synchronous run   

SyncRunAck 
Synchronous run 

acknowledge 
  

   

 

3.6  OCP Trace Interfaces 

 

A trace trigger is a trigger signals that provides trace enable and control for OCP Bus trace and 

other OCP IP trace and performance and analysis interfaces. In the case of real time tracing to 

outside pins this trigger signal is included in the trace part of the OCP Debug Interface socket.  

Trace trigger is extracted from the information on the cross-trigger lines. 

 

Table 3.6 OCP Debug Trace Interface Socket 

 

Trace Description Comment 

TraceTrigger[x] 
OCP system event generates 

a trace trigger   

 
OCP Traffic Monitoring and Trace – General Configuration 



OCP-IP Confidential 

 

 

     20�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

• The “OCP System monitoring” debug component shall allow monitoring the “OCP 

System” bus traffic 

o Focus on specific OCP transactions 

o User defined transactions filtering 

o Initiator, thread, address range, DMA logical channel  

• An emulator shall be able to configure the “OCP System monitoring” component from 

the external [JTAG] interface through the “OCP Debug” bus. 

 

The “OCP System monitoring” component shall have options to allow: 

• Align the OCP transactions requests & responses  

• Capture additional OCP transactions qualifiers 

• Export the captured traffic data through the “OCP Debug” to a “Trace Export” 

component 

• Support continuous System monitoring 

• Preserve the OCP System bus behavior 

• Be security aware 

 

The “Trace Export” component shall: 

• Implement an elastic buffer 

• Optionally build trace packets for different (MIPI/Nexus) protocols. 

• Support a trace export bandwidth compatible with OCP System traffic peaks 

• Allow SW instrumentation interleaving 

 

The “Trace Buffer” component shall: 

• Provide flexibility to disable capture around a trigger 

• Allow system trace data reads  

o From the JTAG-OCP component 

o From the application SW 

• Allow interleaving several trace flows 

• Allow multi-threaded data observation 
 

 

4. Extended (Optional) Debug interfaces 

 

Extended debug signals support application specific or optional functionality designed into the 

target system (Power Islands, Secure subsystems, others) or into the debug subsystem 

(Performance Monitoring, Timestamps, others). The extended signals support special 

functionality designed into the target system. In the OCP based case they follow the point-to-

point communication protocol and expose the OCP signaling to the debugger. 

RunControl allows a clock synchronized program execution of two cores that would run 

asynchronously in normal case. That makes it possible to time align the instruction streams to 

study interdependency.  This is a simplified method to avoid the hardware for time stamping. 



OCP-IP Confidential 

 

 

     21�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

Security concepts require enabling debug of sensitive locations only during chip validation and 

disabling it in the production chips. OCP security signaling is here extended to the debug 

socket so debug IP blocks can implement such concepts. 

Modern deep submicron processes overheat easily so power management by switching off 

clock and even switching off power supply to certain IP blocks is very popular. Debugger shall 

not get locked or interrupted when dealing with such IP blocks if addressed accidentally in a 

debug session. Power-management debug signals help to avoid any confusion. 

Performance monitoring enables observation of selected threads, initiators, and targets to 

identify data traffic and measure data bandwidth. In all cases, they follow the point-to-point 

communication protocol and expose the OCP signaling to the debugger via a JTAG controlled 

or memory mapped registers. 

 

4.1  Performance Monitoring  

 

Performance monitoring enables observation of selected threads, initiators, and targets to 

identify data traffic and measure data bandwidth. 

 

Table 4.1 OCP Debug Performance Monitoring Interface Socket 

 

Performance 

monitoring Description Comment 

MConnID 
Identifies the initiator. 

Routed to target 

MThread-ID shall not be used to track cycles 

consumed by a specific initiator 

MChannelID 
Identifies the DMA channel 

initiator. Routed to target 

MThread-ID shall not be used to track cycles 

consumed by a specific DMA channel 

initiator 

MReqWatch[x] Qualifies an OCP request  
 for which subsystem has detected a 

watchpoint hit 

PMSampling 
Periodic performance metrics 

sampling 

Initiates a transfer of the performance 

metrics computed by the system interconnect 

to the trace export component. Periodic 

sampling strobe can potentially be generated 

within the OCP fabric. 

 

OCP Performance Monitoring – General Configuration 

 

• A built-in OCP debug component shall allow monitoring the OCP System bus bandwidth. 

• An emulator shall be able to configure the “OCP Performance monitoring” component 

from the external [JTAG] interface through the “OCP Debug” bus. 

• OCP Initiator's transactions to be monitored for a specific OCP target 

• Monitoring window [Start & Stop triggers] 

• System event latency 

 

The “OCP Performance monitoring” component shall: 



OCP-IP Confidential 

 

 

     22�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

• Count within the [start, stop] window defined by triggers 

• Effective cycles at the OCP target level 

• Waiting cycles at OCP initiator level [latency; arbitration; shared link…..] 

• Free cycles at the OCP target level 

• Support continuous Performance monitoring [statistics] 

• Export the computed performance statistics data through the “OCP Debug” to the “Trace 

Export” component 

• Preserve the OCP System bus behavior 

• Be DVFS aware  (D V F S) 

 

The “Trace Export” component shall: 

• Implement an elastic buffer 

• Optionally build trace packets for different (MIPI/Nexus) protocols  

• Allows SW instrumentation interleaving 

 

4.2 System Time-stamping 

 

For distributed systems, a timestamp provides the means of temporally correlating different 

events that may be occurring in different systems or domains. There are many timestamp 

implementations – the simplest is a gated clock and reset that can be used to run timestamp 

counters at different blocks. 

 

Table 4.2 OCP Debug Timestamp Interface Socket 

 

TimeStamp  
Interfaces Description Comment 

ts_clk  

Timestamp clock (gated version of 
clk) for global  on-chip 
timestamping global output  

ts_reset  Timestamp reset global output  

   

 

4.2.1 Synchronous start of local time stamp counters 

 

We rely on accurate distributed local time stamping to relax the trigger timing constraints. The 

synchronized start of all local time stamp counters is important for the correct display of debug 

events. Two simple concepts are proposed. 

a.  To make the counter reset arrive at the same time to all counters and the local clocks will 

increment them. If all the local clocks are time aligned and multiple of each other then this 

concept will work nicely. Else, this concept requires knowledge of the local clock frequencies 

and the skew between them at the time of reset-release to work properly. Alternatively, stamp 

counter reset can be de-asserted only at certain times when all clocks coincide with their rising 

edge. 

b.  To make the reset of stamp counters happen without tight temporal restrictions but one 

single clock goes to all counters at the same time (H-clock tree) and will be supplied only while 



OCP-IP Confidential 

 

 

     23�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

tracing is active. If this one clock can be synchronous to or multiple of all local clocks then this 

concept is great. Otherwise, this concept requires fair amount of over clocking to resolve even 

smallest possible phase relationships between the asynchronous clocks.  

Stamp clock and stamp reset signals are both part of the basic OCP debug interface and 

designers must decide which one shall be base for the global debug synchrony. 

 

4.3 Power Management Monitoring 

 

Modern deep submicron processes overheat easily so power management by switching off 

clock and even switching off power supply to certain IP blocks is very popular. Debugger shall 

not get locked or interrupted when dealing with such IP blocks if addressed accidentally in a 

debug session. Power management debug signals help to avoid any confusion 

 

Table 4.3 OCP Debug Power Monitoring Interface Socket 

 

Power 
Management Description Comment 

Sresp[2:0] 

Additional error response 

codes signal a target not 

powered or not clocked 

NULL, DVA, FAIL, ERR – new codes  

NOCLK, NOPWR 

PWRDomainStatus 
Indicates to target agent if 

Power Domain is active 

CLKDomainStatus 
Indicates to target agent if 

Clock Domain is active 

These status signals contribute to error 

response generation 

   

 

General Requirements 

 

The OCP platform Power Management module shall generate a trigger when: 

• Switching off a domain 

• Waking up a domain 

• Switching frequency 

• Switching operating voltage 

 

The JTAG-OCP initiator shall support DMA transfers 

• Separate thread 

The CJTAG-OCP DMA engine shall move Power Management status to the Trace Export 

component through the OCP Debug interconnect. 

• An emulator shall be able to configure the CJTAG-OCP component DMA engine 

• PM status registers bank 

• Trace export channel  

 



OCP-IP Confidential 

 

 

     24�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

The OCP Power Management monitoring shall: 

• Support continuous Power Management monitoring 

• Preserve the OCP System bus behavior 

• Not require SW instrumentation 

 

4.4 Security Debug Interface 

 

Security concepts require enabling debug of sensitive locations only during chip validation and 

disabling it in the production chips. OCP security signaling is here extended to the debug 

socket so debug IP blocks can implement such concepts. 

 

Table 4.4 OCP Debug Security Interface Socket 

 

Security Description Comment 

MReqSecure 
Qualifies an OCP request as 

secure transactions 

The application security setup [HW & SW] 

may allow qualifying a debugger access as 

secure 

DebugMode[1:0] Debug operating mode 

Debug can be disabled, restricted to public 

OCP transactions or allowed for both public 

& secure transactions. 

TraceMode[1:0] Trace operating mode 

Trace can be disabled, restricted to public 

OCP transactions or allowed for both public 

& secure transactions. 

TAPenable Subsystem Test Access Port   enabled by application security software 

   

   
 
 

5. Single Stepping and Virtual Single Stepping with Multi-core Chips 

 

When we debug 2 cores at a time out of 5 heterogeneous cores with different clock speeds 

single-step SS needs a new definition. 

  

This is not only a SS related problem, but also a problem of how to stop cores synchronously to 

events that are caused by a single core (e.g. breakpoint hit).  The debugger reaction depends on 

the core interaction scheme, e.g. cores that are virtualized using SMP should be stopped 

synchronously by hardware within a few clock cycles. This is not a problem, since SMP cores 

are driven by the same clock domain. In isolated/loosely coupled multicore environments the 

core's stop-timing is usually less critical, thus achieving the required synchronization latency 

through separately issued  TAP commands. Hardware synchronization would be also 

advantageous in case of higher latency requirements. 

 



OCP-IP Confidential 

 

 

     25�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

Restarting cores synchronously through the TAP is not difficult, since the TAP hardware has to 

be only slightly extended by a synchronization technique (e.g., run-test-idle pass can 

synchronize several cores in an ARM11 MP-Core). 

 

Hardly any multicore architecture on the market implements SS by means of fetching and 

executing exactly one instruction on every single core. Neither the heterogeneous (e.g. RISC + 

DSP) nor the homogenous system (MultiCore PPC or ARM11MPCore) have cross-core SS 

hardware-implementation as of today. 

 

����    One favorite solution for this problem is "Virtual Single Stepping". 

  

1. System is halted.  Debugger reads/has the full state of all cores/memories 

2. Run ca. 100-1000 cycles and halt then synchronously. 

   Trace during this time frame IP and all data accesses. (No problem with MCDS, even with a 

small trace memory.) 

3. With this information debugger can exactly reconstruct all states and data values between 

start and end point 

  

This means the user can then virtually single step forth and back (!) in this time window. 

The timing relationship between the cores is as well maintained. There is possibly only a slight 

impact at the start and the end of the period. 

  

A similar solution is using an on-chip test platform with IEEE 1500 (developed by National 

Cheng Kung University, Taiwan). For each core there is a register to trigger the halt then use 

the 1500 scan chain to dump the core and memory. With the dump an ESL debugger can trace 

the bug. When thinking about how to halt all cores simultaneously, although we like to 

leverage test gates as much as possible, it seems additional debug gates are needed.  

 

 

6. EDA and SW Tools Support 

 

6.1 ESL Design and Design Checkers Support 

The OCP Debug Interface, after selection of the debug signal groups, generates an XML 

description text file that allows for easy modeling in the ESL abstracted chip design.  This 

XML file is the basic information for the automatic debug interface checkers.   

The association of an XML interface file with a specific chip design is proposed to be an ID in 

the JTAG interface readable by software level debuggers and EDA hardware level debuggers 

that can access the XML file from a library maintained on the web. The ID must be at least 128 

bits long or have a self-extensible format and size to be accepted by the world-wide chip 

industry. 
 

6.2  Programmers Model 

We do not intend to include a programmer’s model for debug interactions into the OCP 

standard. That is left to the vendors of the debug hardware blocks to satisfy the software DAS-

API interface requirements in providing and covering the  minimum set of control sequences 



OCP-IP Confidential 

 

 

     26�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

down to the cores and IP-blocks. Just when connecting their debug hardware to the OCP 

system interconnect the OCP Debug Interface signals must be used. 

By defining the two interfaces, on the electrical side the OCP Debug Signal Interface and on 

the software side the DAS-API Interface, we sufficiently pre-define and unify all the “Protocol 

Solutions” between them. To also prescribe one superset Debug Protocol is possible but 

unnecessarily restrictive.  

Instead we propose optionally in front of the OCP Debug Signal Interface also an OCP Debug 

Register Interface with predefined locations of bits for predefined debug operations and debug 

data.  Many existing debug solutions can be adapted to this register interface and natively 

matching debug solutions can emerge in the future. 

 
 



OCP-IP Confidential 

 

 

     27�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

Appendix    Implementation Examples 
 
 

A.   MCDS  Example of OCP Debug Interface Implementation and Protocol  

 

 

 

A.1  Trace Ports and Protocol, Complete Example with MCDS 

By showing how OCP Debug Signals match and translate to a proven Multi-Core Debug 

Solution MCDS we satisfy the proof that the OCP Debug Socket is complete and functional. 

(Other debug IP examples like CoreSight or Nexus could be adapted as well.) We choose 

MCDS because it comes close to the proposed OCP Debug HW implementation. 

A matching framework for multiple debuggers running over one JTAG is the work of SPRINT 

or the framework of Eclipse with GDB. Both run a debug server that operates the interface to 

the chip JTAG/TRACE over USB or Ethernet link transparently for all software debuggers. 

 

 

A.1.1 MCDS Trace Interfaces 

Within this section the generic trace interface protocol of the Multi Core Debug Solution 

(MCDS) is described. The text is split into two distinct chapters: 

• Protocol Definition: The concept of the protocol is described in an abstract way. 

• Examples: Some instances of the protocol are shown to illustrate the concept. 

 

 

A.1.1.1 MCDS Trace Protocol Definition 

The basic interface is a synchronous tagged data protocol without handshake. The sender 

places the data in well defined packets on the data port and indicates concurrently on the mode 

port which kind of packet is present. 

 

Note: Merging the mode into the data packet is avoided to simplify the implementation. 

 

The mode port must be able to express at least two different values: IDLE and VALID. 

If different kinds of data are supported, VALID is replaced by as many different other 

values on the mode port.  

Finally a standard way to invalidate the last packet is needed. This is done by the FORGET 

code. The MODE port is similar to the SResponse tag [3:0] in OCP and is realized in the OCP  

sideband interconnect. MODE port can be used to propagate SResponse to the debugger if it is 

extended from 3 to 5 bits. Usually the OCP bus observer block is between this trace interface 

and the system bus..  

 



OCP-IP Confidential 

 

 

     28�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 
 

Some fine points about the protocol implementation: 

• Startup should assure FORGET on all mode outputs. 

• If a time-out mechanism is provided, a synthetic FORGET is used. 

• Protocol errors are also forwarded downstream as FORGET. As no back channel is 

provided, the offending message is dropped by the receiver. 

• There is no way to slow down the sender; if the receiver is unable to accept a new 

message the protocol nevertheless has to be executed. The overflow processing is 

always done by the receiver. 

 

A.1.1.2 Examples 

A few typical applications of the protocol defined above are given here. 

 

A.1.1.2.1 Program Trace 

Great care was taken to cover all kinds of processor cores. The smallest common denominator 

is the interface described here, comprising of two ports: 

- Base Address: After power on and after each discontinuity of the program flow the trace 

logic needs to know the exact and complete value of the instruction pointer. 

- Instruction Pointer Increment: Once the base is known, only the increments are required 

to keep the local copy in sync with the original instruction pointer. This split has the 

additional advantage of allowing arbitrary clock ratios between core and trace logic, as long 

as not more than one base address needs to be transferred per trace clock cycle: Increments 

can be pre-accumulated in the core at will without loss of information. 

 

Discontinuity comes in two flavors: 

- Direct  Branches are caused by jump instructions in the executed program. The target 

address is a constant (label) in the source code and can be obtained from there by the 

decoder software. A branch of this kind is indicated by FORGET on the increment port. 



OCP-IP Confidential 

 

 

     29�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

- Indirect Branches are caused by jump instructions with calculated target address (e.g. 

Return from subroutine  
1)  

) or by exceptions (e.g. interrupts, traps). In these cases the 

target address must be contained in the trace memory. FORGET on the base port is used to 

indicate such a branch. Each FORGET received on any of the two ports invalidates the 

current base address. The exact protocol definition is given in the tables below. 

 

 

 
 

 
 

There is no need to serve both ports concurrently by the sender. The only requirement is that 

the base is sent prior to (or latest concurrently with) the next discontinuity. If this is not 

possible the sender may set both mode ports to FORGET. This is interpreted as .overrun. . 

 

Note: This  implies  that the increments  are accumulated starting from  0 after each 

discontinuity. A valid instruction pointer however, e.g. for comparison, is only 

available when the associated base was received. 

 

A short examples may help to understand the deceptively simple interface protocol. 

 

                                                 
1)  

It is not recommended to treat ”Return” instructions as direct branches: If the trace is turned 

on after the subroutine was called there is no way for the decoder to know the return address. 
 



OCP-IP Confidential 

 

 

     30�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 
 

A few points to consider: 

• After each branch the instruction pointer is .unknown. to the trace logic until a new base 

address is received. The decoder software however may already know the address (e.g. 

L1 above) from the source code. 

• For multi-scalar processors the last increment leading to a taken branch (e.g. d4 above) 

may include more than the branch itself. It is therefore not guaranteed that the branch 

instruction is stored at address L0+d1+d2+d3. 

• In case of some exceptions (e.g. illegal target address) the target address must be 

analyzed to distinguish the exception from a taken branch. That’s why it is important to 

treat exceptions and interrupts as indirect branches. 

 

A.1.1.2.2 Data Trace 

 

Let the task be to trace transactions on an arbitrary bus system, consisting of address, 

data and control information, e.g. 

• The effective address (byte granularity) 

• The current data (size depending on transaction) 

• Auxiliary information (.bus mode.) like mastership, privileges etc. 

 

The mode of the third item is used to signal completeness: Whenever asserted READ or 

WRITE all information concurrently valid is considered belonging to the same transaction. 

The protocol on the three input ports should be obvious from the tables below. FORGET is 

used to invalidate single items. If for example a read access fails the data port is invalidated and 

thus no data trace can be recorded - the offending address however is fully available. 

 



OCP-IP Confidential 

 

 

     31�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 
 

 
 

 
 

Note that the sender has to take care that the mode port of Transaction Type is READ or 

WRITE for exactly one clock cycle for each transaction. 

 

A.1.1.2.3 Ownership Trace 

 

Ownership is a NEXUS term; it translates to .Task ID. or .Process ID. for most practical 

purposes. The generic OTU is able to process the ownership information of an arbitrary 

processor core if implemented in hardware. 

As the rate of change for the process ID is rather low, it will be sent multiplexed over other 

trace interface signal lines of the core quite often. This is perfectly legal, provided a dedicated 

signal to drive the mode port is available. If the core is not doing any useful work (e.g. if no 

task is active), the process ID should be invalidated by FORGET. 

 

 
 

 



OCP-IP Confidential 

 

 

     32�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

A.2 The 12 MCDS Trace Ports and corresponding OCP Debug Socket Signals 

 

Instruction Trace  (data port / mode port) 

0   base address [31:0]             /     base_mode [2:0]            (Instruction Base Address) 

1   address increment  [3:0]    /     inc_mode  [2:0]   (Instruction Address Increment) 

(Data is usually [3:0], expecting no more than 16 bytes of code executed per emulation  

clock cycle. ) 

 

Data Trace   (data port / mode port)  

On a processor you usually have a write-only port at the end of the pipeline, and sometimes 

other ports (read only) on earlier stages.    

2   address  [31:0]     /      addr_mode [2:0]   (Transaction Address) 

3   data   [31:0]           /     data_mode [2:0]        (Transaction Data) 

4   control   [31:0]      /     control_mode [2:0]    (Transaction Type) 

(This part of the trace interface is intended for multi-master bus traces.) 

5   ownership id   [7:0]   /     id_mode [2:0]     (Process ID) 

(Processor specific thread number OR task ID OR interrupt priority OR ..., mostly [7:0]  

or less.) 

Example 1. Standardized MCDS debug port MODE definitions for 32 bit cores. 

 

In bold is naming for the 12 ports of the 6 debug interfaces. The width of the ports 0,2,3 is 32 

bits for a 32 bit RISC processor. Other cores might require 16 or 64 bits.  Tracing is a one-way 

road from the cores to on-chip trace memory and to the debugger. Selecting just 2 cores out of 

N for tracing reduces trace information. The control data port 4 is used for multiple cores.  

 

There is no acknowledge and no OCP-protocol-like handshake for trace.  The observed core or 

bus INTENTIONALLY shall not know anything about being traced. That's the main paradigm 

of "non-intrusive" tracing.  

You can implement a feedback path sometimes via the run control: The "buffer memory full" 

signal can be used to request a breakpoint or suspension in certain applications, but this is a 

safety hole (you can't "suspend" a turning crankshaft!) and needs great care in implementation.   

  

Using 2 or 3 MODE bits allows for 4 to 8 TAGS in the MODE port that are partially listed and 

standardized/fixed in Table 1-1 to Table 1-7. The best standard offers a fixed basic framework 

but remains expandable by users. 

 

Historically there was hard pressure to reduce the physical number of wires between the cores 

and the trace subsystem. So we settled for a dedicated enumeration type for each mode. This 

gives the hardware compiler (simultaneous synthesis of sender and receiver RTL) all the 

freedom to encode in the most efficient way (variable 1..3 bit wide mode ports, see example 2). 

 

Of course this is not a good idea if we want to split the design of SoC and debug IP system at 

this point. In a standard we propose to have 3 wires for each mode port as in Example 1. Users 

can fill in the blank lines in Tables 1-1 to 1-7 that will have 8 possible cases each. Even 4 and 8 

mode-port bits are necessary if optional OCP sockets shall be implemented as shown in A 2.1. 



OCP-IP Confidential 

 

 

     33�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 

 

Example 2. Wire saving MCDS debug port MODE definitions: 

  ----------------------------------------------------------------------------- 

  -- Type Declarations  for MODE ports  

  ----------------------------------------------------------------------------- 

  -- Status ModeType is enum 

  type tu_mode_2_t is 

    (idle, valid);                  -- 2**1 

  

  -- Address Pointer Mode Type is enum 

  type tu_mode_3_t is 

    (idle, valid, forget, invalid); -- 2**2 

  

  -- Transaction Type Control Mode Type is enum 

  type tu_mode_4_t is 

    (idle, write, read, forget);    -- 2**2 

  

  -- Data Bus Mode Type is enum 

  type tu_mode_6_t is 

    (idle, byte, h_word, word, d_word, forget, none, invalid); -- 2**3 

  

We need to change the meaning of acknowledge/handshake with debug signals. In debugging 

or tracing ACK shall mean that the connection between external debugger and chip is working. 

ACK tells back to the debugger that the debugger command arrived in the chip well. Also trace 

data shall send a parity bit in MODE after every word/burst to detect a bad/unplugged cable 

immediately. We will avoid any interaction with the core processor. Just the debug subsystem 

will do ACK management with the external debugger. The new MIPI/AJTAG has a master 

feedback signal back to the debugger that can serve as ACK or trigger out. 

 

The MCDS trace port matches the OCP Trace Debug socket that exposes bus data of two cores 

to the debug IP block. How does the rest of OCP debug interface signals map into MCDS 

ports?  More correspondence between the debug ports and OCP debug signals is in the next 

section.  

 

Comments 

This leaves compression (e.g. Nexus) to a separate module. We'll note however, that more 

information can help compression. You might want to consider more (optional) inc_mode 

variants for this, and add them to the standard.  For example, in applications with a lot of calls 

and returns, a large portion of compressed trace is taken up by return PCs.  These can often be 

compressed quite well if the compressor knows which branches are calls and which are returns. 

For calls/exceptions/interrupts, it seems we can usually expect that the PC past the branching 

instruction is the return PC, except perhaps with certain superscalar processors. 

  



OCP-IP Confidential 

 

 

     34�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

E.g., more optional base_modes that report the type of the trace event on the mode port. (E.g. 

function call, return, exception, interrupt, etc.) 

  

It might be useful to provide information for a zero-overhead loop, i.e. where zero cycles are 

used to branch back to the top of the loop.  (That's effectively implemented for zero-overhead 

loops with Nexus). Another example how to extend the base_mode port information. 

  

One processor architecture has a literal load instruction that is typically never used to load 

anything other than literals, whose values are part of the program (constant) and thus need not 

be traced.  Some information on the trace port inc_mode identifying such constant data is 

useful to filter it out, unless you design such filtering to occur before the trace port. 

  

Some processors have 128 bit wide data paths. We use additional data_mode encoding for that. 

  

Let’s stress again that we are interested in showing how the debug interfaces match between 

the debug block and the system bus/interconnect and not how the debug block internals have 

been designed in the MCDS implementation example. The match must be conceptual first and 

eventually going down to individual signals.  

 

Debug wiring between any core and the debug-IP block shall be created as part of the OCP 

interconnect to maintain clean socket interfaces.



OCP-IP Confidential 

 

 

     35�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

A.2.1 OCP Debug Signal Classes and their Mapping on the MCDS Interface 

 

Instruction Trace  (data port / mode port) 

0   base address [31:0]             /     base_mode [2:0] =     (idle, valid, forget, invalid); 

1   address increment  [3:0]    /     inc_mode  [2:0] =     (idle, valid, forget, invalid);   

 

 

Data Trace   (data port / mode port)  

2   address  [31:0] /  addr_mode [2:0]   =     (idle, valid, forget, invalid); 

3   data   [31:0]  /  data_mode [2:0]=(idle, byte, h_word, word, d_word, forget, none, invalid);      

4   control   [31:0] / control_mode [2:0]  =  (idle, write, read, forget);    

5   ownership id   [7:0] /  id_mode [2:0]     =     (idle, valid, forget, invalid); 

 

Status information and qualification of data trace goes into mode ports. Still it can be used by 

the run control CERBERUS transactor for orientation: 

(The bold numbers are associated with the partial sockets to identify them in figures later.) 

 

 
 

Debug Run Control  in Cerberus Debug Bus Transactor and Cross-Trigger Unit in MCDS : 

 

 



OCP-IP Confidential 

 

 

     36�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 
 

Many signals are flowing back to the debugger as feedback information or qualify/tag the 

data/instructions to explain the momentary context/status of the chip at the clock cycle moment 

of tracing.  

 

Debug bus transactor “Cerberus” accesses all memory mapped register data. 

 

Synchronous start of all cores is accomplished by pre-setting them before the start. 

 

A.2.2 JTAG Pins 

 
 

 

A.3 Debug Transactor – RUN Control Bus Master 

A basic bus transactor implementation would support only simple read and posted write data 

operations and may require stalling between operations to ensure synchronization of signaling 

operations (i.e. MData must occur concurrent with MDatavalid, SDataAccept occurs 



OCP-IP Confidential 

 

 

     37�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

concurrent with Sdata). More advanced OCP operations such as bursting may require 

additional (dedicated) logic, to support full speed bursting. Signal timing is shown in the OCP 

Standard timing diagrams. 
 

 
 

A transactor bus master operation can be initiated either from an external register load or from 

trigger output signals acting on specific bus monitoring operations. Address and data for 

individual bus transactions can also be written from the externally controlled registers, 

although this may be a slower manual process or require multiple cycles. Alternately, writing 

of regular (i.e. incrementing or other simple pattern) address and data can be controlled by 

counters or by logic enabled by trigger signals. Data and other OCP signals or performance 

data may also be traced (i.e. sequentially or periodically) with the bus master operations 

optionally stalled during JTAG data download phase, avoid loss of continuity. Additional 

trigger or state signals may be used for defining and controlling basic memory maps or 

domains. 

 

A.4 OCDS/MCDS Complete Example of Run Control: On-Chip Debug Support 

This chapter gives an overview of the debug features of the OCDS and MCDS. For detailed 

information about the On-Chip Debug Support (OCDS) and Multi Core Debug Solution 

(MCDS) please contact local Infineon representatives. This solution can be purchased as IP and 

proves that the signaling concept of the OCP Debug Socket is sufficient for trace and run 

control. In OCDS/MCDS we can find three levels of debug operation: 

 

OCDS Level 1 

The OCDS Level 1 is mainly assigned for real-time software debugging purposes which 

have a demand for low-cost standard debugger hardware. 

The OCDS Level 1 is based on a JTAG interface that is used by the external debug hardware to 

communicate with the system. The on-chip Cerberus bus master module controls the 

interactions between the JTAG interface and the on-chip modules. The external debug 

hardware may become master of the internal buses, and read or write the on-chip 

register/memory resources. The Cerberus also makes it possible to define breakpoint and 

trigger conditions as well as to control user program execution (run/stop, break, single-step). 



OCP-IP Confidential 

 

 

     38�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 

OCDS Level 2 

The OCDS Level 2 will be gradually phased out and replaced by MCDS Level 3. Level 2 

makes it possible to implement program tracing capabilities for enhanced debuggers by 

extending the OCDS Level 1 debug functionality with an additional 16-bit wide trace output 

port with trace clock. With the trace extension, trace capabilities are provided for several cores 

and IP-blocks with just one trace active at a time. 

 

MCDS Level 3  

The OCDS Level 3 is based on a Multi Core Debug Solution (MCDS) using a special 

emulation device that has additional features required for high-end emulation purposes. It does 

not use more interface signals but replicates the debug interface for many cores and provides 

two out of N simultaneous trace channels differentiated by the process ID port. 

 

Figure A.1  - OCDS Based System  Block Diagram 

 

Components in Figure A-1 

The OCDS consists of the following building blocks: 

• Cerberus - OCDS System Control Unit (OSCU) 

• Cerberus - Multi-Core Break Switch (MCBS) (Cross-Trigger unit with external extensions) 

• Cerberus - JTAG Debug Interface (JDI) 



OCP-IP Confidential 

 

 

     39�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

• Suspend functionality of the peripherals (stop block activity for debug purposes) 

• Several L1, L2 units for the cores and IP-blocks 

• BCU allows cross-triggering by the system bus events 

 

Cerberus is one example implementation of the OCP Debug Bus-Transactor. 

 

A.4.1 OCDS Level 1 

The main philosophy of the cores is that the complete architecture and the status of a target 

system are visible from the FPI Bus (memory-mapped debug concept). This means that every 

component of the system can be accessed through its mapping into the FPI address space, 

including on-chip memories, CPU core registers and register of the peripheral units. 

 

A typical OCDS Level 1 debugging configuration is shown in Figure 15-2. It includes two 

parts: 

1. The debugger software, supporting a standard JTAG protocol via a PC port 

2. The debugger hardware adapter, connecting the JTAG interface with the PC port  

(parallel, serial, Ethernet or USB) 

 

This configuration makes it possible to realize a cheap debugging environment that permits 

comprehensive real-time debugging tasks to be performed. 

 

 
Figure A.2 - Typical OCDS Level 1 Hardware Connections  

 
A.4.1.1 Basic Concept 

The CPU core1 provides OCDS with the following two basic parts: 

• Debug Event Trigger Generation 

• Debug Event Trigger Processing 

The first part controls the generation of debug events and the second part controls what 

actions are taken when a debug event is generated. 

 



OCP-IP Confidential 

 

 

     40�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 
 
Figure A.3 – Core Debug Concept 

 

A.4.1.2 Debug Event Generation 

If debug mode is enabled, debug events can be generated by: 

• Debug event generation from debug triggers 

• Activation of the external break input pin BRKIN 

• Execution of a DEBUG instruction 

• Execution of an MTCR/MFCR instruction 

 
A.4.1.3 Debug Actions 

Four types of debug actions are available: 

• Assert BRKOUT signals by the MCBS unit 

• Halt the CPU core 

• Cause a breakpoint trap 

• Generate an interrupt request 

 

These debug actions are selected by programming the corresponding Event Specifier 

registers. Their contents determine which action shall be taken when the corresponding 

debug event occurs. 

 

A.4.1.4 CPU Core1 OCDS Registers (Many popular cores have similar registers) 
 



OCP-IP Confidential 

 

 

     41�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 
 
A.4.1.5 BCU OCDS Level 1   (OCP Bus-Observer unit on the system bus) 

The BCU on the FPI bus supports OCDS Level 1 and offers very comfortable and powerful 

means for breakpoint generation. The BCU contains one comparator for 

• the arbitration phase (look for specific bus master) 

• the address phase (look for specific address or range) 

• the data phase (look for read, write, supervisor mode, etc.) 

 

The results can be combined to generate a break request signal, to be sent to the Break Switch 

(Cross Trigger Block). 

 

A.4.2 CPU or PCP OCDS Level 2 Trace 

Every trace clock cycle, 16 bits of CPU/PCP trace information are sent out, representing the 

current state of the CPU/PCP cores. The trace output lines are grouped into three parts: 

• 5 bits of pipeline status information 

• 8-bit indirect PC bus information 

• 3 bits of breakpoint qualification information 

 

With this information, an external emulator can reconstruct a cycle-by-cycle image of the 

instruction flow through the CPU or PCP. The trace information can be captured by the 

external debugger hardware and used to rebuild later on (off-line, using the source code) 

a cycle accurate disassembly of the code that has been executed. It is also possible to 

follow in real-time the current PC, facilitating advanced tools such as profilers, coverage 

analysis tools etc. 

 

The trace output port is controlled by the OSCU. The trace data can be output at CPU 

clock speed (fTRCLK = fCPU). Trace clock can be higher if two cores are traced or a better 

compression of trace data of all cores can keep this trace clock low. 

 
A.4.3 Concurrent Debugging in Level 3 MCDS  (Two Channel Tracing) 

A concurrent debugging is possible when the control port is used as second channel and 

ownership port is extended with process ID to differentiate between two sources that are traced. 

The debug setup must define which two cores or IP-blocks were selected for concurrent 

tracing.  



OCP-IP Confidential 

 

 

     42�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

A.4.4 Debug Interface (Cerberus)  (Debug Bus-Transactor Module) 

The Cerberus module is the on-chip unit that controls all OCDS Levels 1, 2 and 3 main 

debug functions. Generally, the Cerberus should not be used by any application 

software, since this could disturb the emulation tool behavior. 

The Cerberus module is built up by three parts (see also Figure 15-1): 

• OCDS System Control Unit – OSCU  (Debug Bus Master) 

• JTAG Debug Interface - JDI 

• Multi Core Break Switch – MCBS   (OCP Cross-Trigger unit) 

 

A standard JTAG interface is connected via the JTAG controller with the JDI. Two pins 

are available to handle an external break condition. An external debug hardware can access the 

Cerberus registers and arbitrary memory locations across the System Peripheral (FPI) Bus.  

 
RW Mode and Communication Mode 

As the name implies, the RW mode is used by a JTAG host to read or write arbitrary memory 

locations via the JTAG interface. The RW mode needs the FPI Bus master interface of the 

Cerberus to actively request data reads or data writes. 

 

In Communication Mode, the Cerberus has no access to the FPI Bus and communication is 

established between the external JTAG host and a software monitor (embedded into the 

application program) via the Cerberus registers. The communication mode is the default mode 

after reset. 

 

In Communication Mode, the external JTAG host is master of all transactions. He requests the 

monitor to write or read a value to/from the Cerberus register COMDATA. The difference to 

RW Mode is, that the read or write request is not actively executed by the Cerberus, but it sets 

request bits in the CPU accessible IOSR register to signal the monitor that the debugger wants 

to send (IO_WRITE_WORD) or receive (IO_READ_WORD) a value. The software monitor 

has to poll register IOSR. The IOADDR register is not used. 

 
A.4.4.1 Multi Core Break Switch (OCP Cross-Trigger Unit) 

In this example, there are two main processor units, the CPU core1 and the PCP2 core2. For 

debugging purposes, the OCDS run control of one processor unit can break (interrupt) the other 

processor unit or vice versa. This run control tasks are handled by the MCBS unit which is a 

part of the Cerberus. Figure 15-5 shows the break signal interfaces of this MCBS unit. 

 
The MCBS unit supports the following features:  (very similar to the OCP Debug Standard) 

• Two independent break-out master units (Core1 and Core2) 

• Six break-in sources (CPUCore, PCP, DMA, SBCU, MLI0, MLI1) 

• Two port pins, BRKIN and BRKOUT 

• Two independent break buses   (two out of N) 

• Suspend generation supports delayed suspend 

• Break-to-suspend converter 

• Create interrupt request with a break coming from a source 

• Synchronous restart of the system 



OCP-IP Confidential 

 

 

     43�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 

 
Figure A.4 Break Switch Interfaces 

 
A.4.5 JTAG Interface 

The JTAG interface is a standardized unit that is typically used for boundary scan and internal 

device tests. Because both of these applications are not active during normal device operation 

in a system, the JTAG port can be used during normal device operation as an ideal interface for 

debugging tasks. 

 

On the other hand, the MCDS is designed to support complex multicore/debugging 

environments. The challenge here is that several debugger applications may have to share a 

single resource, i.e. the same JTAG interface. This becomes even more complicated because 

the JTAG module contains the IEEE 1149.1 JTAG state machine, which must be handled in the 

correct manner. 

 

The solution to this problem is a JTAG driver with a defined API and a Debug Applications 

Server DAS. The server can connect to many debuggers and redirect the debug streams through 

one  JTAG. It allows several debugger applications to share the same JTAG interface. In 

addition, the tool-specific PC interfaces like Ethernet, printer-port, or even USB can be hidden 

from the debugger software by the Debug Applications Server DAS. 

 

DAS enables the debugger vendor to ignore the complex task of understanding the JTAG 

module and supporting its functionality at low-level. All required information is provided as 

specifications and function references.  The DAS API can be obtained from the SPRINT 

consortium. 

 
A.4.6 Cerberus Bus Master Registers and JTAG  

 

This section summarizes all Cerberus and JTAG registers as seen by the Debug Applications 

Server DAS for reference purposes.  



OCP-IP Confidential 

 

 

     44�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 

 
 

 

 



OCP-IP Confidential 

 

 

     45�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

OCP-IP CONFIDENTIAL – NOT TO BE DUPLICATED 4

OCP- MCDS Wrappers
2 debug channels A, B active 

out of N possible channels

C
o
re

1
C
o
re

2
C
o
re

3

J
T
A
G
 A

P
I 
R
D
I

D
e
b
u
g
 S

e
rv

e
r 
 A

P
I

S
Y
S

D
e
b
u
g

C
o
re

1

D
e
b
u
g

C
o
re

2

D
e
b
u
g

C
o
re

3

D
e
b
u
g

CHIP

ICE
BOX

PC Software

A
  
  
  
 B

O
C
P
 I
n
te

rc
o
n
n
e
c
t

OCP Data/Addr Socket

OCP Data Wrapper

OCP Trace Compress

OCP Debug Wrapper

USB
Ethernet

Parallel
Serial

JTAG &
TRACE
(DAP)

Run Control Socket
Power, Security Socket
Trace Socket

Cross-Trigger Socket

Debug

Regs

Debug
Regs

Debug
Regs

Memory Mapped Access
(can be extended for more than 2 channels)

OCP
Debug
Socket

A
  
  
  
  
 B

  
  
  
  
  
  
  
  
  
  
  
 A

  
  
  
  
 B

T
A
P
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 T

R
A
C
E

A
  
 B

T
ra

c
e

MCDS

Core N
… Cross Trigger

Core 1

Core N

… Dual Trace     
Core 1

O
C
P
-W
ra
p
p
e
r

Cerberus

Multi-Core Break Switch
Breakpoints, synchronized start/stop

OSCU 
System Control

JTAG Debug Interface

 
Figure A.5 : OCP/MCDS Wrappers 

 

 

OCP-IP CONFIDENTIAL – NOT TO BE DUPLICATED

OCP Debug Interface and OSI-Model Borderlines

OCP Debug Signal Classes and their Mapping on the MCDS Interface

Instruction Trace (data port / mode port)

0  base address [31:0] / base_mode [2:0] = (idle, valid,  forget, invalid);
1  address increment [3:0] / inc_mode [2:0]  = (idle, valid, forget, invalid);  

Data Trace (data port / mode port) 
2  address [31:0]        / addr_mode [2:0]    = (idle,  valid, forget,  invalid);

3  data [31:0] / data_mode [2:0]=(idle, byte, h_word, word, d_word, forget, none, invalid);
4  control [31:0]        / control_mode [2:0]  =   (idle, write, read, forget);
5  ownership id [7:0] / id_mode [2:0]          = (idle, valid, forget, invalid);

OCP-DATA
SOCKET

OCP-DATA

SOCKET

OCP-

JTAG

OCP-
TRACE

OCP-TRIGGER

OCP-RUN

CONTROL

EXTENDED
DEBUG
SIGNALS

CORES             OCP- INTERFACE          OCP- INTERCONNECT        OCP- INTERFACE                          REGISTER                  CUSTOM                         CUSTOM                          EXTERNAL JTAG
TRANSFER                 DEBUG            DEBUG                             INTERFACE

PROTOCOL                LOGIC             REGISTERS TRACE

MCDS                       MCDS       MCDS INTERFACE

CHIP

CORE 1

CORE N

Core
Debug Regs

Trace Regs
or 

Bus Observer

T
A
P

T
A
P

T
R
A
C
E

T
A
P
 

M
a
n
u
fa

c
-

tu
ri
n
g
- OCP DATA
- OCP ADDRESS

- OCP CONTROL 
(SRESP, WIDTH, …)

- OCP DATA
- OCP ADDRESS

- OCP CONTROL 

(SRESP, WIDTH, …)

JTAG

Bus-Transactor

W
ra

p
p
e
r

O
C
P
 -

W
ra

p
p
e
r

Cross
Trigger

T
A
P

OCP-Bus
Observer

MCDS
SW-Register
Interface

JTAG

Data r/w

Run-
Control

Bus-Trace

Instructions

Data

OSI for Debug Information:        PHYSICAL  LAYER                | ���� TRANSPORT  LAYER

CERBERUS

10

5

4

7

8

6

9

1

2

3

ch0

ch1

O
C
P
 -

W
ra

p
p
e
r

10

5

4

7

8

6

9

1

2

3

 
Figure A.6 : OCP Debug Interface and OSI Model Borderlines. See page 35, 36, 41, 44. 

http://en.wikipedia.org/wiki/OSI_model 



OCP-IP Confidential 

 

 

     46�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 

 

B. Cross-Triggering Subsystem Example 
 

B.1 Functionality of Cross-Triggering in DSP Like Multichip Systems 

 

Here we have a use case for the cross-trigger lines.  Following are descriptions of functionality 

how the OCP Debug Interface signals can be mapped to existing implementations of debug 

systems. 

 

We will explore the DSP like multi chip debug implementation similar to TI products where 

 

• OCP Trigger-In is connected to nEMUI 

• OCP Trigger-Out is connected to  nEMUO 

• OCP Trigger-Enable is connected to nEMUOE 

 

 

B.2  Trigger Control Register 

 

The register in Table 3 allows users to read or set each bit of the trigger lines. The register itself 

is part of the cross-trigger block. Since it is memory mapped it can be accessed for read/write 

by the core itself or by a debug transactor.  

 

B.3  Emulation Trigger Functionality 

 

Cross-trigger C-TRIG supports two emulation triggers: Trigger0, and Trigger1.  For each 

trigger, there are three signals; nEMUxO is an output; nEMUxOZ is an output enable; nEMUxI 

is an input.  These three signals are combined at the device level to create triggers to other 

cores on chip and to the external EMU pins.  The trigger functionality shall be as shown in 

Table B.2. 

 

Under certain configurations, Table B.2 indicates that EMUDBGREQx is asserted based upon 

nEMUxI.  The EMUDBGREQx signal shall be gated by the security settings.  Given that the 

security constraints are met, it may result in halting the CPU via its EDBGRQ signal. 

 



OCP-IP Confidential 

 

 

     47�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

BitBitBitBit    FieldFieldFieldField    WidthWidthWidthWidth    R/WR/WR/WR/W    ResetResetResetReset    DescriptionDescriptionDescriptionDescription    

31-28 Claim 4 RW 2 
This resource must be claimed before use. 
 

27-20 Reserved 8 R 0  

R 1 
Reading the nEMU10 bit sssshallhallhallhall indicate the 
current value of the trigger 1 output. 

19 nEMU1O 1 

W  
When in BIT IO Mode, writing to this bit shall set 
the state of the trigger 1 output signal 

R 1 
Reading the nEMU1OE bit shallshallshallshall indicate the 
current value of the trigger 1 output-enable. 

18 nEMU1OE 1 

W  
When in BIT IO Mode, writing to this bit shallshallshallshall set 
the state of the trigger 1 output enable signal 

17 nEMU1I 1 R 0 
This bit shallshallshallshall indicate the current value of the 
trigger 1 input. 

16 Reserved 1 R 0  

15-12 Trigger1Control[3:0] 4 RW 0000 Trigger1 control.  See Table B.2. 

11-8 Reserved 4 R 0  

R 1 
Reading the nEMU00 bit shallshallshallshall indicate the 
current value of the trigger 0 output. 

7 nEMU0O 1 

W  
When in BIT IO Mode, writing to this bit shall set 
the state of the trigger 0 output signal 

R 1 
Reading the nEMU00E bit shallshallshallshall indicate the 

current value of the trigger 0 output-enable. 
6 nEMU0OE 1 

W  
When in BIT IO Mode, writing to this bit shallshallshallshall set 
the state of the trigger 0 output enable signal 

5 nEMU0I 1 R 0 
This bit shallshallshallshall indicate the current value of the 

trigger 0 input. 

4 Reserved 1 R 0  

3-0 Trigger0Control[3:0] 4 RW 0000 Trigger0 control.  See Table B.2. 

Table B.Table B.Table B.Table B.1111: Trigger Control R: Trigger Control R: Trigger Control R: Trigger Control Registeregisteregisteregister    



OCP-IP Confidential 

 

 

     48�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 
TriggerXTriggerXTriggerXTriggerX    
ControlControlControlControl    
[3:0][3:0][3:0][3:0]    Trigger ActionTrigger ActionTrigger ActionTrigger Action    

In/ In/ In/ In/ 
OutOutOutOut    

NEMUxONEMUxONEMUxONEMUxO    
(output)(output)(output)(output)    

NEMUxOZNEMUxOZNEMUxOZNEMUxOZ    
(output enable)(output enable)(output enable)(output enable)    NEMUINTxNEMUINTxNEMUINTxNEMUINTx    EMUDBGREQxEMUDBGREQxEMUDBGREQxEMUDBGREQx    

0000 Off Off High High High Low 

0001 Cross-trigger Halt I High  High  High Not nEMUxI 

0010 
Cross-trigger Out 

O Low 
Not DBGACK 
pulse 

High Low 

0011 
Cross-trigger 

I/O Low 
Not DBGACK 

pulse 
High Not nEMUxI 

0100 Interconnect O Low 
Not 
(InterconnectError 
& /DBGACK) 

High Low 

0101 Cross-trigger Interrupt I High High  nEMUxI Low 

0110 

Low Counter Overflow 
EMU0: Counter 0 
EMU1: Counter 1 

y = counter number (0,1) 

O Low 

Not 
(CTRy_TRGREQ 
& /DBGACK) 

High Low 

0111 
Reserved for High Counter 
Overflow 

O Low High High Low 

1000 

CPU WP Match 
EMU0: WP 0 
EMU1: WP 1 
w = watch point range (0,1) 

O Low 
Not(RANGEOUTw 
& /DBGACK) 

High Low 

1001 Reserved O Low High High Low 

1010 Reserved  O Low High High Low 

1011 Reserved O Low High High Low 

1100 Reserved  O Low High High Low 

1101 EXTERN O Low 
Not (EXTERN & 
/DBGACK) 

High Low 

1110 Reserved O Low High High Low 

1111 Bit IO I/O 
Register 
Bit 

Register Bit High Low 

TabTabTabTable B.le B.le B.le B.2222: Emulation Trigger Control: Emulation Trigger Control: Emulation Trigger Control: Emulation Trigger Control    

 



OCP-IP Confidential 

 

 

     49�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

B.3.1  EMUx Trigger Action – OFF 

The EMU0 and EMU1 trigger control functionality can be completely disabled by setting the 

TriggerXControl bits.  The control value is ‘0000’ for disabling the emulation pin functionality.  

As see in Table B.2, the following conditions hold true when the trigger control functionality is 

disabled: 

When the TriggerXControl field in the TCR is set ‘0000’ the EMUx output enables shall be set 

to off. 

When the TriggerXControl field in the TCR is set ‘0000’ the EMUx inputs shall be ignored. 

When the TriggerXControl field in the TCR is set ‘0000’ the corresponding EMUDBGREQx 

shall be driven LOW to ensure that the CPU does receive a debug request from the EMU 

triggers. 

 

B.3.2  EMUx Trigger Action – Halt on EMUx input LOW 

EMU0 and EMU1 can be used to halt the CPU by driving the corresponding input pin LOW.  

A high to low transition on either of the EMUx pins will cause the corresponding 

EMUDBGREQx to be asserted.  This will effectively drive the external debug request 

(EDBGRQ) signal into the CPU.  The EMU0 and EMU1 inputs are independent.  This function 

is enabled by writing a ‘0001’ into the TriggerXControl bits.  The following conditions hold 

true when this trigger control functionality is enabled 

When TriggerXControl field in the TCR is set ‘0001’ then a high-to-low transition on the EMU 

input shall drive the EMUDBGREQ0 signal HIGH. 

A low level on the EMU input pin shall not cause a debug request. 

If both EMU0 and EMU1 are configured to cause a halt when a low is seen on the 

corresponding input, a LOW on EMU0 shall not generate EMUDBGREQ1. 

If both EMU0 and EMU1 are configured to cause a halt when a low is seen on the 

corresponding input, a LOW on EMU1 shall not generate EMUDBGREQ0. 

The CPU must be configured for ‘Halt Mode’ debug via the Debug Status Control Register 

(DSCR) within Debug TAP (DBGTAP) on the CPU. 

 

B.3.3  EMUx Trigger Action – Drive EMUx LOW on CPU Halt 

The EMU0 and EMU1 pins can be used to notify external clients which  may also be connected 

to these lines, that the core has entered debug state and it has halted, since the last time it was 

issued a RUN command.  The EMU0 and EMU1 outputs are independent.  This function is 

enabled by writing a ‘0010’ into the TCR TriggerXControl bits.  The following conditions hold 

true when this trigger control functionality is enabled: 

When TriggerXControl field in the TCR is programmed to the value of ‘0010’, the EMU pin 

shall be driven LOW when DBGACK makes a low to high transition. 

The EMU pin shall be driven low for 32 clock cycles and then return high. 

This configuration shall not set EMUDBGREQ0 or EMUDBGREQ1 

If, for example, the emulation pins are configured to drive the EMU0 output LOW and the 

EMU1 is configured to monitor for a high-to-low transition on its input, then a LOW seen on 

the EMU0 event will not be read into the EMU1 pin unless it is explicitly tied to the EMU0 

pin.  

DBGACK is the Debug Acknowledge signal that is driven by the CPU when it halts due to a 

debug event.  DBGACK is driven LOW whenever the CPU exits debug state and starts 



OCP-IP Confidential 

 

 

     50�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

running.  Thus the output is driven LOW, and the tri-state is controlled by the NOT DBGACK 

signal.  

 

B.3.4  EMUx Trigger Action – Bi-directional Cross-triggering 

Bi-directional cross-triggering is selected on the emulation pins EMU0 and EMU1 by writing a 

‘0011’ to the TCR TriggerXControl bits.  The following conditions hold true when this trigger 

control functionality is enabled: 

The EMU0 input shall operate independent of the EMU0 output 

The EMU1 input shall operate independent of the EMU1 output 

If a High to Low transition is seen on the EMUx pins, the EMUDBGREQx signal shall be 

asserted high.  The detection of a high to low transition on the EMUx pin is an asynchronous 

event. 

A low level on the EMUx input pin shall not cause a debug request. 

The assertion of EMUDBGREQx shall be inhibited for 1 clock cycle each time the DBGACK 

signal transitions from the high-to-low state.  A high-to-low state transition on the DBGACK 

signal is an indication that the CPU is about to go out of debug state and start running.  This 

must be done to prevent self-triggering. 

A debug event such as a user halt or a breakpoint shall drive the EMUx pins LOW.  

The EMU pin shall be driven low for 32 clock cycles and then return high. 

Clearing the input synchronizers on a high to low transition of DBGACK will prevent 

retriggering from debug events that were registered on a previous halt. 

 

B.3.5  EMUx Trigger Action – Notify Interconnect Error 

The EMU0 and EMU1 trigger control can be used to notify the environment outside the chip 

that an application error has occurred on the L3/L4 interconnect.  This function is selected by 

writing a ‘0100’ to the TriggerXControl field.   The following conditions hold true when this 

trigger control function is enabled: 

The notification of Interconnect Error shall happen only at run-time when DBGACK is LOW.  

The application error flag [Serror_App] reports both Application errors and not attributable 

errors 

When the triggers are configured as “interconnect” and the SuppressInterconnIntr bit in the 

Debug Control and Status Register is set, then a non-attributable  interconnect error, reported 

through an application error flag (Serror App) occurring while DBGACK is high, will not be 

reflected on the EMUx lines 

The change in state on the EMUx pins may be used at the system level to either stop another 

CPU or start a trace. 

 

B.3.6  EMUx Trigger Action – Generate EMUINT Interrupt  

The EMU0 and EMU1 trigger control can be used to generate an interrupt on the target.  This 

function is selected by writing a ‘0101’ to the respective TriggerXControl field.   The following 

conditions hold true when this trigger control function is enabled: 

This function will effectively result in the generation of an interrupt to the CPU.  

If EMU0 is driven LOW it will result in the generation of GNEMUINT0, which will in turn 

generate the IC_EMUINTR.  



OCP-IP Confidential 

 

 

     51�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

If EMU1 is driven LOW it will result in the generation of GNEMUINT1, which will in turn 

generate the IC_EMUINTR.  

IC_EMUINTR is an input of the CPU interrupt controller. 

 

B.3.7  EMUx Trigger Action – Notify on Low Counter Overflow 

The EMU0 and EMU1 trigger control can be used to notify the environment outside the chip 

that the benchmark counters have overflowed.  This function is selected by writing a ‘0110’ to 

the TriggerXControl field.   The following conditions hold true when this trigger control 

function is enabled: 

The change in state on the EMUx pins may be used at the system level to either stop or 

interrupt another CPU or signal an external piece of equipment. 

 

B.3.8  EMUx Trigger Action – Notify on Watchpoint Match 

The EMU0 and EMU1 trigger control can be used to notify the environment outside the chip 

that the watchpoints from the CPU matched.  This function is selected by writing a ‘1000’ to 

the TriggerXControl field.   The following conditions hold true when this trigger control 

function is enabled: 

The change in state on the EMUx pins may be used at the system level to either stop or 

interrupt another CPU or signal an external piece of equipment. 

 

 B.3.9  EMUx Trigger Action - Notify on Extern Event 

The EMU0 and EMU1 trigger control can be used to notify the environment outside the chip 

that an event has occurred on the EXTERN input signals.  This function is selected by writing a 

‘1101’ to the TriggerXControl field.  

 

B.3.10  Trigger Control – Bit IO 

The EMU0 and EMU1 trigger control can be used to directly drive and/or read the levels 

present on the EMU pins.  This function is selected by writing ‘1111’ to the TriggerXControl 

field.   The following conditions hold true when this trigger control function is enabled: 

Each EMU pin can be tri-stated or driven to a high or low level 

The current level of each EMU pin can be read 

B.4  SOC Integration 

The SOC manages two emulation triggers: trigger0 and trigger1.  Based upon settings in a 

device or emulation pin manager, these triggers may be connected to the emulation device pins 

called EMU0 and EMU1.  These triggers are also driven by signals from each core and are 

used to facilitate co-emulation.  Cross triggering between cores within the device can occur 

even while the triggers are not connected to the external device pins.   

 

 

Functionality 

A trigger is used for both input and output.  Each trigger consists of 3 signals. 



OCP-IP Confidential 

 

 

     52�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

Trigger Signal NameTrigger Signal NameTrigger Signal NameTrigger Signal Name    DescriptionDescriptionDescriptionDescription    

nEMUxO Trigger-x output.  Active pulse low. 

nEMUxOz Trigger-x output-enable.  Active low. 

nEMUxI Trigger-x input.  Active falling edge. 
Table B.3: Emulation Trigger Description 

 

Polarity 

All trigger inputs and outputs are active low. 

B.4.1  Device Pin Triggers 

The SOC supports 2 external triggers.  Each external emulation trigger corresponds to a device 

pin.  The device pin EMU0 can be configured to contribute to trigger0.  The device pin EMU1 

can be configured to contribute to trigger1.   

Internal to the chip, each EMU pin is made up of 3 signals.  This means that there are 6 signals 

(2x3).  All the external modules will have to have default states “1” on those signals (inactive 

states). 

Signal NameSignal NameSignal NameSignal Name    I/OI/OI/OI/O    DescriptionDescriptionDescriptionDescription    

POEMU0ON Output from C-TRIG to EMU0 device pin. Trigger-0 output. Active low. 

POEMU0OEN Output enable from C-TRIG to EMU0 device pin. Trigger-0 output-enable.  Active low. 

PIEMU0I Input to C-TRIG from EMU0 device pin. Trigger-0 input.  Active low. 

POEMU1On Output from C-TRIG to EMU1 device pin. Trigger-1 output.  Active low. 

POEMU1OEN Output enable from C-TRIG to EMU1 device pin. Trigger-1 output-enable.  Active low. 

PIEMU1I Input to C-TRIG from device EMU1 pin. Trigger-1 input.  Active low. 
Table B.4: Emulation Signals for each EMU Pin 

  Input and Output 

The EMU device pins are bi-directional pins.  Even when the pin is driving an output, the input 

still senses the level on the device pin. 

 

  Input 

By default, EMU0 and EMU1 are configured to be inputs that contribute to the trigger 

generation.  

 

  Output 

For an EMU pin to act as an output, both the PODEMUpON signal must be driven with the 

desired value, and the corresponding DnDEMUpOEN signal must be driven low, where p is 0 

for EMU0 or 1 for EMU1. 

B.4.2  Module Triggers 

C-TRIG supports many sets of emulation trigger groups. Each core or module in the chip can 

have up to 2 triggers.  Each trigger consists of 3 signals.  For example, if 7 secondary TAPs 



OCP-IP Confidential 

 

 

     53�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

exist, C-TRIG will connect to 42 signals (7x2x3).  In this case TAP doesn't mean JTAG 

programming. The programming model could be memory mapped and still support the 

described C-TRIG interface. This is one more advantage of mapping the hardware to the OCP 

fabric. 

 

Signal NameSignal NameSignal NameSignal Name    I/OI/OI/OI/O    DescriptionDescriptionDescriptionDescription    

PIEMU0ON[ m ] Output from core to C-TRIG Trigger-0 output.  Active low. 

PIEMU0OEN[ m ] Output enable from core to C-TRIG Trigger-0 output-enable.  Active low. 

POEMU0I[ m ] Input to core from C-TRIG Trigger-0 input.  Active low. 

PIEMU1ON[ m ] Output from core to C-TRIG Trigger-1 output.  Active low. 

PIEMU1OEN[ m ] Output enable from core to C-TRIG Trigger-1 output-enable.  Active low. 

POEMU1I[ m ] Input to core from C-TRIG Trigger-1 input.  Active low. 
                Table B.5: Emulation Triggers for each TAP Core (m = TAP number) 

B.4.2.1  Wiring for Modules without Triggers 

If a module does not support a trigger, then the trigger inputs (PIEMUxON[m] and 

PIEMUxOEN[m]) to the C-TRIG for that TAP must be tied high external to the C-TRIG. This 

requirement does disappear if C-TRIG is distributed in OCP fabric and OCP Debug Socket is 

implemented only where desired- Then it's just configuration.  EMUxI[m] is an output from C-

TRIG.  It can be left with no connection.  For example, if TAP 5 does not have any triggers 

associated with it, then PIEMU0ON[5], PIEMU0OEN[5], PIEMU1ON[5], and 

PIEMU1OEN[5] will be tied high.  This signals POEMU0I[5] and POEMU1I[5] will have no 

connection. 

 
 

Table B.6: Tie-off for Modules without Emulation Triggers (m = TAP number without 
triggers) 

B.4.2.2  Un-powered Modules 

  Holding Triggers High When Un-powered 

 

When PISDOMAINPOWEREDx is 0, C-TRIG must hold POEMU0Ix and POEMU1Ix high. 

(Check if PISDOMAINPOWEREDx control is available in your design - It is in that case 

associated to an OCP master. We may see this redundant if power isolation is properly 

implemented. We want to keep it for robustness.) If an OCP debug interface is instantiated on 

Signal NameSignal NameSignal NameSignal Name    TieTieTieTie----off External to Coff External to Coff External to Coff External to C----TRIGTRIGTRIGTRIG    

PIEMU0ON[ m ] Tie high 

PIEMU0OEN[ m ] Tie high 

POEMU0I[ m ] No connect 

PIEMU1ON[ m ] Tie high 

PIEMU1OEN[ m ] Tie high 

POEMU1I[ m ] No connect 



OCP-IP Confidential 

 

 

     54�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

the bus but not used in a design then all inputs have to be tied correctly high or low. Best is not 

to instantiate superfluous sockets.  

 

   Power Isolation 

If isolation is required on any of these signals, the trigger signal should be held in the high 

state. 

B.4.3  Trigger Generation 

C-TRIG uses PIEMU0ON[m] and PIEMU0OEN[m] to create Trigger0.  Similarly, C-TRIG 

uses PIEMU1ON[m] and PIEMU1OEN[m] to create Trigger1. 

 

B.4.3.1  Trigger Output Enable 

There are two trigger output enables; one for each trigger.  TriggerxOZ is active low. 

 

  Generation 

The output enable for trigger 0 is called Trigger0_N.  It is 1 unless one or more of the 

following is true: 

PIEMU0OEN[m] = 0 and PIEMU0ON[m] = 0, for any m = 0…M, where M is the number of 

secondary TAPs – 1 

The output enable for trigger 1 is called Trigger1_N.  It is 1 unless one or more of the 

following is true: 

PIEMU1OEN[m] = 0 and PIEMU1ON[m] = 0, for any m = 0…M, where M is the number of 

secondary TAPs – 1 

In other words, if any one or more modules call for the emulation trigger to be used as an 

output and the module is driving the trigger signal to zero, then the Trigger0_N will become 0. 

 

   Connections 

The value of each trigger’s enable is driven out to the device pins via the PODnEMUxOZ 

signals, where x is the trigger number.  On-chip cross triggering shall function even if the 

EMU0,EMU1 pins are not available or any other debug / application function is mapped to 

these pins. 

 

Trigger0_N drives:     POEMU0OEN and POEMU0ON  

Trigger1_N drives:     POEMU1OEN and POEMU1ON 

 

When configured externally to C-TRIG, trigger0 can drive EMU0, while trigger1 can drive 

EMU1. 

 

B.4.3.2  Trigger Output 

There are two triggers.  Triggerx_N is active low. 

 

   Generation 
The default state for a trigger is 1.  It is held at this value unless one of the following conditions 

forces the trigger to be driven to 0.  In the following equations, X or x represents the trigger 



OCP-IP Confidential 

 

 

     55�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

number.  This will be 0 or 1, depending on the trigger that is in question.  If any one or more of 

these conditions is true, then the trigger should be 0. 

 

Each TAP trigger signals are qualified by PISTAPENABLED and PISDOMAINPOWERED 

for the respective TAP.  These are all combined as shown in Figure B.1.  If any of the qualified 

trigger signals from the TAPs is set and nTRST is not being asserted, the Trigger signal is 

driven low.  This signal drives both the active low output enable, POEMU0OEN and the data 

output signal, POEMU0ON.  The tristate buffer shown shaded is implemented outside of the C-

TRIG Module. 

 

pidomainpowered(0)
pitapenabled(0)

piemu0o(0)
piemu0oz(0)

pidomainpowered(1)
pitapenabled(1)

piemu0o(1)
piemu0oz(1)

pidomainpowered(N-1)
pitapenabled(N-1)

piemu0o(N-1)
piemu0oz(N-1)

ntrst

trigger0_n poemu0on

poemu0oen

EMU0

 

Figure B.Figure B.Figure B.Figure B.1111: Trigger Generation: Trigger Generation: Trigger Generation: Trigger Generation    

If less TAPs are instantiated in the debug bank in the implementation of C-TRIG than inputs 

are defined, not all of the contributing trigger equations list above will exist.  Trigger inputs 

only exists for TAPs that exist. This doesn't apply in case of a OCP distributed implementation 

where just the desired TAPs will be implemented. 

The PISDOMAINPOWERED[m] and PISTAPENABLED[m] signals are used in the trigger 

builder equations.  

 

If triggers are originated from different power domains, appropriate level shifters must be 

implemented external to the C-TRIG trigger generation block. 

 

B.4.3.3  Trigger Input 

The value of each trigger input is driven out to each core via the POEMUxIm signals, where x 

is the trigger number and m is the module TAP number.  Hence, a signal is driven for each 

instantiated secondary TAP, regardless of whether the TAP is selected.  In a C-TRIG 

implementation with 16 TAPs, 16 signals are always driven with the current value of the 

trigger. 

 

Triggers to the cores can be created from the external trigger input signal, PIEMUxI or from 

the trigger output signal, Triggerx_N.  If either of these two signals is low a trigger may be 



OCP-IP Confidential 

 

 

     56�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

generated to each core, provided it is qualified.  The trigger input is qualified by nTRST and 

PISTAPENABLED and PISDOMAINPOWERED for the respective TAPs as shown in Figure 

B.2.  The POEMU1I Trigger is generated in a similar manner. 

 

 

Figure B.Figure B.Figure B.Figure B.2222: Trigger Input Logic: Trigger Input Logic: Trigger Input Logic: Trigger Input Logic    

Trigger outputs exist only for debug TAPs that exist. 

When configured externally to C-TRIG, trigger0 can drive EMU0, while trigger1 can drive 

EMU1. 
 
 
 
 
 
 
 
 

C.   Nexus  Example for OCP Debug Interface Implementation and Protocol 
 

The Nexus 5001 activity was initiated in 1999 as an extended and inclusive specification based 

on the Global Embedded Processor Interface Forum work to address a standardized interface 

for on-silicon instrumentation and debug tools providing expanded features and higher 

performance. The Nexus infrastructure supports multicore development and multi featured 

trace and configuration/control. Nexus at its simplest (Class 1) level is compatible with JTAG, 

but recognizes that JTAG bandwidth limitations are not realistic for the debug requirements for 

complex or multicore environments. This discussion is supported by the Nexus 5001 

specification which is freely available for download from the Nexus website. 

http://www.nexus5001.org/ The current version of the specification was released in 2003. 

Versions of Nexus architectures have been used extensively in US Automotive applications. 

 

 



OCP-IP Confidential 

 

 

     57�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    

Figure C.1 : Nexus Interfaces  

 

The Nexus architecture defines high performance data interface, protocol, and register that can 

be used to implement a variety of trace and control instrumentation. 

 

C.1   Nexus  Debug Signal Interface  

  

The Nexus specification defines a vender-neutral IO signal interface and communications 

protocol that supports parallel debug and instrumentation support. The Nexus interface defines 

a small set of control signals and auxiliary (AUX) data ports that may be used in conjunction 

with JTAG or as a self contained port. The additional data pins provided by the AUX interfaces 

are scalable to allow higher read/write throughput between the target and debug and analysis 

tools compared to JTAG.   

 

The AUX interfaces are uni-directional (either Data In or Data Out), with each AUX port 

having its own clock. The Data Out pins of an AUX interface is typically used for trace, and 

the Data In mode is typically used for configuration or calibration of an IC. AUX Data In and 

Out ports may be operated concurrently. Nexus also specifies how a JTAG interface can be 

used in conjunction with the AUX ports.  JTAG interface operations in Nexus may be used 

both for configuration and control of the on-silicon instrumentation and for embedding Nexus 

protocol and data into a JTAG message. Both AUX and JTAG interfaces are controlled by 

FSM based controllers allowing a variety of transfer operations. 

 

 

 

 

IEEE 5001 Nexus 
AUX Port 

 

 

 
Processor 
Core(s) 

 

 Nexus Instrumentation 
and controllers 

•  Debug Registers 
•  Embedded Trace 
•  Breakpoint 

Triggers  

 Run/Trace 
Control  

 

Trace 
Memory 

 IEEE 1149  
JTAG Port 

 

• Data 
• Execu

tion 
• Instru

ctions 

Debug & 
Analysis Tools 

 

OCP Debug signals     
with Nexus Wrappers 

  Probe 



OCP-IP Confidential 

 

 

     58�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                    Figure C.2:  Nexus Internal Architecture 

 

AUX  IO Description of Auxiliary Pins 
MCKO Message Clockout (MCKO) is a free-running output clock to tools for timing MDO 

and MSEO pin functions. MCKO can be independent of the embedded processor’s 

system clock or an embedded processor’s clock pin may be used as a functional 

equivalent for MCKO. 
MDO[M:0] Message Data Out (MDO[M:0]) are output pin(s) used for sending messages such 

as trace export and other read operations, memory substitution accesses, etc. 

Depending upon output bandwidth requirements, one, two, four, eight, or more pins 

may be implemented. 
MSEO[1:0] Message Start/End Out (MSEO [1:0]) are output pins that indicate when a message 

on the MDO pins has started, when a variable-length packet has ended, and when 

the message has ended. Only one MSEO pin is required, but two pins provide  for 

more efficient transfers.  
EVTO Event Out (EVTO) is an optional output pin to development tools indicating exact 

timing for a single breakpoint status indication. Upon a breakpoint occurrence of 

the programmed breakpoint source, EVTO is asserted for a minimum of one clock 

period of MCKO. 

  
MCKI Message Clockin (MCKI) is a free-running input clock from development tools for 

timing MDI and MSEI pin functions. MCKI can be independent of the embedded 

processor’s system clock. 
MDI[N:0] Message Data In (MDI[N:0]) are inputs used for downloading configuration data, 

writing to on chip resources, etc Depending upon input bandwidth requirements, 

multiple pins may be implemented. 
MSEI[1:0] Message Start/End In (MSEI [1:0]) are inputs that indicate when a message on the 

MDI pins has started, when a variable-length packet has ended, and when the 

message has ended. Only one MSEI pin is required, but two pin implementations 

provide more efficient transfers. 
EVTI Event In (EVTI) is an input pin allowing off chip control such as processor halts 

(breakpoints) or synchronized Program/Data Messages  
RSTI Reset In (RSTI) is a pin for resetting the Nexus port resources. 

 

AUX In Port 

AUX Out Port 

JTAG Port 

AUX In 

FSM 

AUX Out 

FSM 

JTAG TAP 

FSM 

TCODE & Message 

Control/ Formatting 

Nexus 

Registers 

JTAG (IR/DR) 

Registers 

Debug Control  

 

Debug Data Out  

Debug Data In  



OCP-IP Confidential 

 

 

     59�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

C.2   Nexus Message Format 
 

Nexus architecture was designed based on a packet based messaging scheme, which supports 

debugging complex multicore systems and control of multicore debug processes using a 

transaction protocol (TCODE) that allows data to be sent in packets, using a packet header to 

provide information on the source and assumed destination of the data on-chip components as 

well as information on the subsequent data packets containing trace or other information. This 

simplifies interleaving of multiple trace sources and concurrent communication with multiple 

Nexus instruments. The Nexus specification defines a set of TCODEs for common 

identification and trace operations – including : 

• Program Trace: 

o Direct Branch  

o Indirect Branch  

o Indirect Branch With History  

o Synchronization 

o Resource Full 

o Repeat Branch 

o Repeat Instruction 

o Correlation 

• Data Trace: 

o Data Write  

o Data Read  

• Ownership Trace 

• Data Acquisition 

• Read/Write Access 

• Memory Substitution 

• Port Replacement 

• Watchpoint 

• Status   

 

User Defined TCODES can be defined by silicon or IP developers for debug features not 

covered in the standard, similarly to User Defined instruction features in JTAG. 

 

C.3   Nexus Debug Registers 

 

 Nexus also defines a standard set of debug related on-chip registers, which facilitate the 

identification and interface to different cores and sub-systems and multicore control and debug 

operations. Standard definition and location of register set allows simpler integration and 

control of the instrumentations with embedded debuggers and related tools. Nexus defined 

recommended registers debug purposes include: 

• Device identification register (DID)  

• Client Select Register (CSC) 

• Development Control Register (DC) 

• Development Status Register (DS) 

• User Base Address Register (UBA) 



OCP-IP Confidential 

 

 

     60�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

• Read/Write Access Registers (RWA / RWD / RWCS) 

• Watchpoint Trigger Registers (WT) 

• Data Trace Attribute Registers (minimum of 2) (DTSA / DTEA / DTC) 

• Breakpoint/Watchpoint Control Registers (minimum of 2) (BWC) 

• Breakpoint/Watchpoint Address/Data Registers (minimum of 2) (BWA/BWD) 

 

C.4   Nexus Multi-core Debug Example 

Nexus support the concurrent debug of both processor and bus operations. While each 

processor or logic/bus element in a design may have a native debug environment, debug 

information can be reformatted using Nexus interface wrappers, that package debug 

information into Nexus messages. Nexus messages can be merged at a Nexus port control 

level, to allow packets from many debug sources to be communicated over a common Nexus 

port. Since each debug block can be assigned an independent identification (DID) value, debug 

information can be redirected once off chip at the probe interface or as a software operation.   

 

 

 

 

 

 

 

  

 

 

 

 

  

Figure C.3 – Basic Nexus Multi-core Debug flow 

Figure C.3 shows this debug data flow, supporting a multi-core architecture consisting of 2 

processor (or other) cores with debug interfaces and a bus level debug interface. Native debug 

blocks can be made Nexus compliant via a translation layer that supports debug information 

made into Nexus compliant messages, including any additional compression; A Nexus Port 

interface or multiplexer allows selecting message streams through a single combined Nexus 

stream at the port interface.  

One of the issues in debug of multiple core systems is that even with debug information from 

different blocks being combined into a single Nexus stream, the control and synchronization 

over many different core or subsystems remains largely independent. Coordinated control and 

synchronization of different debug resources can significantly improve debug efficiency. A 

Multi-core Embedded Debugger architecture (Fig. C.4), in addition to the Nexus interfaces for 

each of the on chip debug resources, may include cross triggering and system timestamping 

Processor 

Core A 

Processor 

Core B  

Nexus 

Probe 

Uncompressed Trace  

Trace packet 

formatting   

  

 

Nexus 

Message 

Stream 

Combined 

Nexus  

stream 

Processor 

Nexus 

Interfaces 

Processor 

Nexus 

Interfaces 

Bus Trace 

Nexus 

Interfaces 

Bus 

(Debug) 

Port 

Bus  

Trace 

Analyzer 

 

 Debug 

Port 

Debug 

Port Chip IO 

Interface 

Nexus 

Port 

Ctrl 

 



OCP-IP Confidential 

 

 

     61�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

resources to help synchronize and cross-reference concurrent debug operations occurring at 

different parts of the architecture, allowing different off chip debugger environments to better 

comprehend the context of operations occurring in other parts of a design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.4 – A Nexus compliant OCP Multicore Embedded Debug environment 

Nexus 5001 Forum has ongoing collaboration with industry debug related efforts, including 

OCP-IP  http://www.ocpip.org/pressroom/releases/2007_press_releases/OCP_Nexus.pdf  and 

is in process of extension of the IEEE 5001 specification to support emerging debug interfaces 

such as SERDES and 2-wire JTAG  (1149.7) ports to address diverse debug requirements.  

 

 

 

 

 

 

 
 
 

Core A 

(Nexus 

compliant) 

subsystem 

 

Core B 

(Non-Nexus) 

subsystem 
 

 
Nexus 

Port 

Control 

Nexus 

Probe  

 

 

Inst/Data/Addr trace        Addr trace 

Compression/Formatting 

JTAG 

Nexus 

Message  

Packets  
Combined Nexus Stream  

   Core A 

 Debugger 

SW 
 Debug  Port 

Bus Monitor 

 Gasket 

 

EVTI, EVTO 

    Core B 

 Debugger 

SW   

A

H

B 

/ 

O

C

P 

System 

Ctrl  & 

Monitor 

SW 

Synchronized  timestamp 

Run/stop/ Stall control, 

breakpoints/tracepoints, 

trigger in/out signals 

Nexus Port 

Core B 

Nexus    

Translation 

Layer 

Nexus  Data  

Trace 

 

Core A  

Nexus 

Interface 

 Synchronized 

 Timestamps 

 Cross-triggers 



OCP-IP Confidential 

 

 

     62�  of   62�     © 2007 OCP-IP Association, All Rights Reserved.  

 

OCP International Partnership 

3855 SW 153rd Drive 

Beaverton, OR 97006 

Ph: 503-619-0560 

Fax: 503-297-1090 

admin@ocpip.org 

www.ocpip.org 
 

 

 
 
Part Number: xxxx 

 


